Sex as a Predictor of Response to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.1.1. Sample Collection and RNA Extraction
2.1.2. Gene Expression Assay, Data Normalization and Data Analysis
2.2. Statistical Analysis
2.3. Ethics
3. Results
3.1. Patient and Tumour Characteristics
3.2. Treatment Outcomes
3.3. Association between Baseline Clinical Factors and Treatment Efficacy
3.4. Sex-Based Differential Gene Expression of Immune-Related Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Australian Institude of Health and Welfare. Skin Cancer in Australia; Australian Institude of Health and Welfare: Canberra, Australia, 2016.
- Sung, H.; Ferlay, J.; Siegel, R.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Soura, E.; Gagari, E.; Stratigos, A. Advanced cutaneous squamous cell carcinoma: How is it defined and what new therapeutic approaches are available? Curr. Opin. Oncol. 2019, 31, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Ashford, B.G.; Clark, J.; Gupta, R.; Iyer, N.G.; Yu, B.; Ranson, M. Reviewing the genetic alterations in high-risk cutaneous squamous cell carcinoma: A search for prognostic markers and therapeutic targets. Head Neck 2017, 39, 1462–1469. [Google Scholar] [CrossRef] [PubMed]
- Guminski, A.; Stein, B. Immunotherapy and other systemic therapies for cutaneous SCC. Oral Oncol. 2019, 99, 104459. [Google Scholar] [CrossRef] [PubMed]
- Varki, V.; Loffe, O.; Bentzen, S.; Heath, J.; Cellini, A.; Feliciano, J.; Zandberg, D. PD-L1, B7-H3, and PD-1 expression in immunocompetent vs. immunosuppressed patients with cutaneous squamous cell carcinoma. Cancer Immunol. 2018, 67, 805–814. [Google Scholar] [CrossRef]
- Migden, M.; Rischin, D.; Schmults, C.; Guminski, A.; Hauschild, A.; Lewis, K.; Chung, C. PD-1 Blockade with Cemiplimab in Advanced Cutaneous Squamous-Cell Carcinoma. N. Engl. J. Med. 2018, 379, 341–351. [Google Scholar] [CrossRef]
- Migden, M.; Schmults, C.; Khushanlani, N.; Guminski, A.; Chang, A.; Lewis, K.; Ansstas, G. Phase II study of cemiplimab in patients with advanced cutaneous squamous cell carcinoma (CSCC): Final analysis from EMPOWER-CSCC-1 groups 1, 2 and 3. Ann. Oncol. 2022, 33, S918–S919. [Google Scholar] [CrossRef]
- Maubec, E.; Boubaya, M.; Petrow, P.; Beylot-Barry, M.; Basset-Seguin, N.; Deschamps, L.; Grob, J. Phase II Study of Pembrolizumab As First-Line, Single-Drug Therapy for Patients With Unresectable Cutaneous Squamous Cell Carcinomas. J. Clin. Oncol. 2020, 38, 3051–3061. [Google Scholar] [CrossRef]
- Grob, J.; Gonzalez, R.; Basset-Seguin, N.; Vornicova, O.; Schachter, J.; Joshi, A.; Meyer, N. Pembrolizumab Monotherapy for Recurrent or Metastatic Cutaneous Squamous Cell Carcinoma: A Single-Arm Phase II Trial (KEYNOTE-629). J. Clin. Oncol. 2020, 38, 2916–2925. [Google Scholar] [CrossRef]
- Hughes, B.; Munoz-Couselo, E.; Mortier, L.; Bratland, A.; Gutzmer, R.; Roshby, O.; Gonzalez, R. Pembrolizumab for locally advanced and recurrent/metastatic cutaneous squamous cell carcinoma (KEYNOTE-629 study): An open-label, nonrandomized, multicenter, phase II trial. Ann. Oncol. 2021, 32, 1276–1285. [Google Scholar] [CrossRef]
- Munhoz, R.; Nader-Marta, G.; de Camargo, V.; Queiroz, M.; Cury-Martins, J.; Ricci, H.; de Mattos, M. A phase 2 study of first-line nivolumab in patients with locally advanced or metastatic cutaneous squamous-cell carcinoma. Cancer 2022, 128, 4223–4231. [Google Scholar] [CrossRef] [PubMed]
- Bumanlag, I.; Jaoude, J.; Rooney, M.; Taniguchi, C.; Ludmir, E. Exclusion of Older Adults from Cancer Clinical Trials: Review of the Literature and Future Recommendations. Semin. Radiat. Oncol. 2022, 32, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Berg, D.; Otley, C. Skin cancer in organ transplant recipients: Epidemiology, pathogenesis, and management. J. Am. Acad. Dermatol. 2002, 47, 125579. [Google Scholar] [CrossRef] [PubMed]
- Migden, M.; Khushanlani, N.; Chang, A.; Lewis, K.; Schmults, C.; Hernandez-Aya, L.; Meier, F. Cemiplimab in locally advanced cutaneous squamous cell carcinoma: Results from an open-label, phase 2, single-arm trial. Lancet. Oncol. 2020, 21, 294–305. [Google Scholar] [CrossRef]
- Minaei, E.; Mueller, S.A.; Ashford, B.; Thind, A.S.; Mitchell, J.; Perry, J.R.; Genenger, B.; Clark, J.R.; Gupta, R.; Ranson, M. Cancer Progression Gene Expression Profiling Identifies the Urokinase Plasminogen Activator Receptor as a Biomarker of Metastasis in Cutaneous Squamous Cell Carcinoma. Front. Oncol. 2022, 12, 835929. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Hamilton, A.M.; Furberg, H.; Pietzak, E.; Purdue, M.P.; Troester, M.A.; Hoadley, K.A.; Love, M.I. An approach for normalization and quality control for NanoString RNA expression data. Brief. Bioinform. 2021, 22, bbaa163. [Google Scholar] [CrossRef]
- Zelner, B.A. Using simulation to interpret results from logit, probit, and other nonlinear models. Strateg. Manag. J. 2009, 30, 1335–1348. [Google Scholar] [CrossRef]
- Risso, D.; Ngai, J.; Speed, T.P.; Dudoit, S. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat. Biotechnol. 2014, 32, 896–902. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Xie, Z.; Bailey, A.; Kuleshov, M.V.; Clarke, D.J.B.; Evangelista, J.E.; Jenkins, S.L.; Lachmann, A.; Wojciechowicz, M.L.; Kropiwnicki, E.; Jagodnik, K.M.; et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 2021, 1, e90. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.; Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019, 28, 1947–1951. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Martens, M.; Ammar, A.; Riutta, A.; Waagmeester, A.; Slenter, D.N.; Hanspers, K.; Miller, R.A.; Digles, D.; Lopes, E.N.; Ehrhart, F.; et al. WikiPathways: Connecting communities. Nucleic Acids Res. 2021, 49, D613–D621. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Newman, A.M.; Steen, C.B.; Liu, C.L.; Gentles, A.J.; Chaudhuri, A.A.; Scherer, F.; Khodadoust, M.S.; Esfahani, M.S.; Luca, B.A.; Steiner, D.; et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 2019, 37, 773–782. [Google Scholar] [CrossRef]
- Tan, B.; Seth, I.; Fischer, O.; Hewitt, L.; Melville, G.; Bulloch, G.; Ashford, B. Sex Disparity for Patients with Cutaneous Squamous Cell Carcinoma of the Head and Neck: A Systematic Review. Cancers 2022, 14, 5830. [Google Scholar] [CrossRef]
- Kolde, R. Pheatmap: Pretty Heatmaps (v1.0.12). Available online: https://CRAN.R-project.org/package=pheatmap (accessed on 16 October 2023).
- Jang, S.; Nikita, N.; Banks, J.; Keith, S.; Johnson, J.; Wilson, M.; Lu-Yao, G. Association Between Sex and Immune Checkpoint Inhibitor Outcomes for Patients With Melanoma. JAMA Netw. Open 2021, 4, e2136823. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Yao, Y.; Tian, Y.; Chen, K.; Liu, B. Advances in sex disparities for cancer immunotherapy: Unveiling the dilemma of Yin and Yang. Biol. Sex Differ. 2022, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Jing, Y.; Li, L.; Mills, G.; Diao, L.; Liu, H.; Han, L. Sex-associated molecular differences for cancer immunotherapy. Nat. Commun. 2020, 11, 1779. [Google Scholar] [CrossRef] [PubMed]
- Mazzaschi, G.; Quaini, F.; Buti, S. Exploring genetic and immune underpinnings of the sexual dimorphism in tumor response to immune checkpoints inhibitors: A narrative review. Curr. Res. Pharmacol. Drug Discov. 2023, 4, 100146. [Google Scholar] [CrossRef] [PubMed]
- Roved, J.; Westerdahl, H.; Hasselquist, D. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Horm. Behav. 2017, 88, 95–105. [Google Scholar] [CrossRef]
- Budden, T.; Gaudy-Marqueste, C.; Craig, S.; Hu, Y.; Earnshaw, C.H.; Gurung, S.; Ra, A.; Akhras, V.; Shenjere, P.; Green, R.; et al. Female Immunity Protects from Cutaneous Squamous Cell Carcinoma. Clin. Cancer Res. 2021, 27, 3215–3223. [Google Scholar] [CrossRef] [PubMed]
- Baggi, A.; Quaglino, P.; Rubatto, M.; Depenni, R.; Guida, M.; Ascierto, P.; Trojaniello, C.; Queirolo, P. Real world data of cemiplimab in locally advanced and metastatic cutaneous squamous cell carcinoma. Eur. J. Cancer 2021, 157, 250–258. [Google Scholar] [CrossRef]
- Hasmat, S.; Howle, J.R.; Carlino, M.S.; Sundaresan, P.; Veness, M.J. Immunotherapy in advanced cutaneous squamous cell carcinoma: Sydney west cancer network experience. ANZ J. Surg. 2023, 93, 235–241. [Google Scholar] [CrossRef]
- Samaran, Q.; Samaran, R.; Ferreira, E.; Haddad, N.; Fottorino, A.; Maillard, H.; Dreno, B.; Meyer, N. Anti-PD-1 for the treatment of advanced cutaneous squamous cell carcinoma in elderly patients: A French multicenter retrospective survey. J. Cancer Res. Clin. Oncol. 2023, 149, 3549–3562. [Google Scholar] [CrossRef]
- Kasherman, L.; Siu, D.; Lee, K.; Lord, S.; Marschner, I.; Lewis, C.; Friedlander, M.; Lee, C. Efficacy of immune checkpoint inhibitors in older adults with advanced stage cancers: A meta-analysis. J. Geriatr. Oncol. 2020, 11, 508–514. [Google Scholar] [CrossRef]
- Thind, A.S.; Ashford, B.; Strbenac, D.; Mitchell, J.; Lee, J.; Mueller, S.A.; Minaei, E.; Perry, J.R.; Ch’ng, S.; Iyer, N.G.; et al. Whole genome analysis reveals the genomic complexity in metastatic cutaneous squamous cell carcinoma. Front. Oncol. 2022, 12, 919118. [Google Scholar] [CrossRef] [PubMed]
Variables | Total n = 51 | Responders (CR/PR/SD) n = 34 (67%) | Non-Responders n = 17 (33%) | p Value (Chi Sq) |
---|---|---|---|---|
Sex: | ||||
Male | 34 | 29 (85) | 5 (15) | <0.0001 |
Female | 17 | 7 (41) | 10 (58) | |
Age: | ||||
<69 | 15 | 11 (73) | 4 (27) | 0.78 |
69–79 | 12 | 8 (66) | 9 (33) | |
≥79 | 24 | 15 (63) | 8 (37) | |
CCI | ||||
CCI < 5 | 21 | 15 (71) | 6 (29) | 0.54 |
CCI ≥ 5 | 30 | 19 (63) | 11 (37) | |
Site of Primary CSCC | ||||
Head and neck | 29 | 20 (69) | 9 (31) | 0.77 |
Other | 22 | 14 (64) | 8 (36) | |
Disease extent | ||||
Locally advanced | 23 | 15 (65) | 8 (35) | 0.84 |
Metastatic | 28 | 19 (69) | 9 (32) | |
Presence of visceral metastases | 18 | 14 (75) | 4 (22) | 0.13 |
Significant Immunosuppression | ||||
No | 45 | 30 (66) | 15 (34) | 0.95 |
Yes | 6 | 4 (67) | 2 (33) | |
Antibiotics Prior to Starting ICI | ||||
No | 43 | 28 (65) | 15 (35) | 0.58 |
Yes | 8 | 6 (75) | 2 (25) | |
Previous radiotherapy | ||||
No | 22 | 13 (59) | 9 (41) | 0.32 |
Yes | 29 | 21 (72) | 8 (28) | |
Previous surgery for advanced disease | ||||
No | 14 | 8 (57) | 6 (43) | 0.37 |
Yes | 37 | 26 (70) | 11 (30) | |
Elevated LDH | 9 | 8 (88) | 1 (12) | 0.18 |
Immunotherapy agent | ||||
Cemiplimab | 21 | 14 (66) | 7 (33) | 0.99 |
Other agents | 30 | 20 (66) | 10 (33) |
Variables | Overall Survival | Progression-Free Survival | ||
---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | |
Age | ||||
<69 | 1 | 1 | ||
69–78 | 4.0 (0.8–21.1) | 0.007 | 1.4 (0.4–4.8) | 0.40 |
≥79 | 6.9 (1.6–30.7) | 2.0 (0.7–5.8) | ||
Sex | ||||
Male | 1 | 1 | ||
Female | 3.0 (1.3–7.1) | 0.006 | 4.6 (1.9–10.8) | 0.0007 |
CCI | ||||
<5 | 1 | 1 | ||
5 or more | 3.1 (1.1–8.4) | 0.02 | 1.4 (0.6–3.3) | 0.46 |
Site of Primary SCC | ||||
Head and neck | 1 | 1 | ||
Other | 1.0 (0.4–2.5) | 0.91 | 1.2 (0.5–2.7) | 0.60 |
Disease extent | ||||
Locally Advanced | 1 | 1 | ||
Metastatic | 1.0 (0.4–2.4) | 0.98 | 0.99 (0.4–2.9) | 0.97 |
Visceral Mets | ||||
No | 1 | 1 | ||
Yes | 0.7 (0.2–2.2) | 0.57 | 0.47 (0.2–1.5) | 0.19 |
Significant Immunosuppression | ||||
No | 1 | 1 | ||
Yes | 1.7 (0.6–5.2) | 0.30 | 2.3 (0.9–6.3) | 0.08 |
Previous Radiotherapy | ||||
No | 1 | 1 | ||
Yes | 0.9 (0.4–2.2) | 0.85 | 0.9 (0.3–2.0) | 0.76 |
Previous Surgery for Advanced Disease | ||||
No | 1 | 1 | ||
Yes | 0.7 (0.3–1.6) | 0.37 | 0.8 (0.3–1.9) | 0.55 |
Antibiotics prior to Immunotherapy | ||||
No | 1 | 1 | ||
Yes | 0.53 (0.1–2.3) | 0.39 | 0.5 (0.1–2.2) | 0.34 |
Elevated LDH | ||||
No | 1 | 1 | ||
yes | 1.1 (0.4–3.2) | 0.73 | 0.8 (0.3–2.3) | 0.67 |
Immunotherapy Agent | ||||
Cemiplimab | 1 | 1 | ||
Other agents | 2.1 (0.8–5.4) | 0.10 | 0.5 (0.1–2.2) | 0.88 |
Trial | Agent | Patient Population | Total ORR | |
---|---|---|---|---|
Prospective Trials | ||||
Maubec 2020 [9], Hughes 2021 [11] | Pembrolizumab | Phase II | 159 patients (54 LA, 105 recurrent/metastatic) | 50.0% (27/54) LA 35.2% (37/105) recurrent/metastatic |
Migden 2022 [8] | Cemiplimab | Phase II | 59 patients LA and metastatic (Group 1) 78 patients LA 56 patients metastatic | 50.8% (30/59) 44.9% (35/78) 46.4% (26/56) |
Munhoz 2022 [12] | Nivolumab | Phase II | 24 LA | 58.3% (14/24) |
Retrospective Trials | ||||
In 2020 | ICI | Retrospective | 26 LA and metastatic | 42.3% |
Hanna 2020 | ICI | Retrospective | 61 LA and metastatic | 31.5% |
Salzmann 2020 | ICI | Retrospective | 46 LA and metastatic | 58.7% |
Baggi 2021 | Cemiplimab | Retrospective | 131 LA and metastatic | 58.0% |
Samaran 2022 | ICI | Retrospective | 63 LA and metastatic | 57.1% |
Hasmat 2023 | Cemiplimab | Retrospective | 19 LA and metastatic | 68.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, N.; Genenger, B.; Aghmesheh, M.; Thind, A.; Napaki, S.; Perry, J.; Ashford, B.; Ranson, M.; Brungs, D. Sex as a Predictor of Response to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma. Cancers 2023, 15, 5026. https://doi.org/10.3390/cancers15205026
Yeo N, Genenger B, Aghmesheh M, Thind A, Napaki S, Perry J, Ashford B, Ranson M, Brungs D. Sex as a Predictor of Response to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma. Cancers. 2023; 15(20):5026. https://doi.org/10.3390/cancers15205026
Chicago/Turabian StyleYeo, Nicholas, Benjamin Genenger, Morteza Aghmesheh, Amarinder Thind, Sarbar Napaki, Jay Perry, Bruce Ashford, Marie Ranson, and Daniel Brungs. 2023. "Sex as a Predictor of Response to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma" Cancers 15, no. 20: 5026. https://doi.org/10.3390/cancers15205026
APA StyleYeo, N., Genenger, B., Aghmesheh, M., Thind, A., Napaki, S., Perry, J., Ashford, B., Ranson, M., & Brungs, D. (2023). Sex as a Predictor of Response to Immunotherapy in Advanced Cutaneous Squamous Cell Carcinoma. Cancers, 15(20), 5026. https://doi.org/10.3390/cancers15205026