The Challenges and Opportunities of the Implementation of Comprehensive Genomic Profiling in Everyday Clinical Practice with Non-Small Cell Lung Cancer: National Results from Croatia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Project Design
2.2. Comprehensive Genomic Profiling Analysis
2.3. Participants
2.4. Endpoints
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics of Patients
3.2. Results of the CGP Testing
3.3. CGP-Guided Therapy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hrvatski zavod za javno zdravstvo, Registar za rak Republike Hrvatske. Incidencija raka u Hrvatskoj 2020., Bilten 45, Zagreb, 2022. Available online: https://www.hzjz.hr/wp-content/uploads/2022/11/Bilten-Incidencija-raka-u-Hrvatskoj-2020.-godine.pdf (accessed on 26 June 2023).
- Gridelli, C.; Rossi, A.; Carbone, D.P.; Guarize, J.; Karachaliou, N.; Mok, T.; Petrella, F.; Spaggiari, L.; Rosell, R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2015, 1, 15009. [Google Scholar] [CrossRef] [PubMed]
- Tan, A.C.; Tan, D.S.W. Targeted Therapies for Lung Cancer Patients With Oncogenic Driver Molecular Alterations. J. Clin. Oncol. 2022, 40, 611–625. [Google Scholar] [CrossRef] [PubMed]
- NCCN. NCCN Clinical Practice Guidelines in Oncology, Non-Small Cell Lung Cancer. Version 2.2023; NCCN: Plymouth Meeting, PA, USA, 2023. [Google Scholar]
- Hendriks, L.; Kerr, K.; Menis, J.; Mok, T.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.; Solomon, B.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Behjati, S.; Tarpey, P.S. What is next generation sequencing? Arch. Dis. Child. Educ. Pract. Ed. 2013, 98, 236–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Normanno, N.; Barberis, M.; De Marinis, F.; Gridelli, C.; On Behalf of the AIOT Expert Panel. Molecular and Genomic Profiling of Lung Cancer in the Era of Precision Medicine: A Position Paper from the Italian Association of Thoracic Oncology (AIOT). Cancers 2020, 12, 1627. [Google Scholar] [CrossRef] [PubMed]
- Samstein, R.M.; Lee, C.-H.; Shoushtari, A.N.; Hellmann, M.D.; Shen, R.; Janjigian, Y.Y.; Barron, D.A.; Zehir, A.; Jordan, E.J.; Omuro, A.; et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat. Genet. 2019, 51, 202–206. [Google Scholar] [CrossRef]
- Picard, E.; Verschoor, C.P.; Ma, G.W.; Pawelec, G. Relationships Between Immune Landscapes, Genetic Subtypes and Responses to Immunotherapy in Colorectal Cancer. Front. Immunol. 2020, 11, 369. [Google Scholar] [CrossRef]
- Aisner, D.L.; Marshall, C.B. Molecular Pathology of Non–Small Cell Lung Cancer: A Practical Guide. Am. J. Clin. Pathol. 2012, 138, 332–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodhouse, R.; Li, M.; Hughes, J.; Delfosse, D.; Skoletsky, J.; Ma, P.; Meng, W.; Dewal, N.; Milbury, C.; Clark, T.; et al. Clinical and analytical validation of FoundationOne Liquid CDx, a novel 324-Gene cfDNA-based comprehensive genomic profiling assay for cancers of solid tumor origin. PLoS ONE 2020, 15, e0237802. [Google Scholar] [CrossRef]
- Li, B.; Janku, F.; Jung, B.; Hou, C.; Madwani, K.; Alden, R.; Razavi, P.; Reis-Filho, J.; Shen, R.; Isbell, J.; et al. Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: Results from the Actionable Genome Consortium. Ann. Oncol. 2019, 30, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Babić, D.; Pleština, S.; Samaržija, M.; Tomić, S.; Vrdoljak, E.; Ban, M.; Belac Lovasić, I.; Belev, B.; Ćorić, M.; Dabelić, N.; et al. Preporuke Za Odabir Bolesnika/tumora Za SGP (2021). Available online: https://www.hrvatsko-onkolosko-drustvo.com/wp-content/uploads/2021/02/Preporuke-za-SGP_Izdanje-23.2.2021.pdf (accessed on 25 June 2023).
- Mok, T.S.; Wu, Y.-L.; Thongprasert, S.; Yang, C.-H.; Chu, D.-T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Kazandjian, D.; Blumenthal, G.M.; Chen, H.-Y.; He, K.; Patel, M.; Justice, R.; Keegan, P.; Pazdur, R. FDA Approval Summary: Crizotinib for the Treatment of Metastatic Non-Small Cell Lung Cancer with Anaplastic Lymphoma Kinase Rearrangements. Oncology 2014, 19, e5–e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, A.T.; Ou, S.-H.I.; Bang, Y.-J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-Rearranged Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Odogwu, L.; Mathieu, L.; Blumenthal, G.; Larkins, E.; Goldberg, K.B.; Griffin, N.; Bijwaard, K.; Lee, E.Y.; Philip, R.; Jiang, X.; et al. FDA Approval Summary: Dabrafenib and Trametinib for the Treatment of Metastatic Non-Small Cell Lung Cancers Harboring BRAF V600E Mutations. Oncologist 2018, 23, 740–745. [Google Scholar] [CrossRef] [Green Version]
- Subbiah, V.; Velcheti, V.; Tuch, B.; Ebata, K.; Busaidy, N.; Cabanillas, M.; Wirth, L.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Liang, Y.; Zhu, V.; Ou, S.-H.I. The race to target MET exon 14 skipping alterations in non-small cell lung cancer: The Why, the How, the Who, the Unknown, and the Inevitable. Lung Cancer 2016, 103, 27–37. [Google Scholar] [CrossRef] [Green Version]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef]
- Ferrer, I.; Zugazagoitia, J.; Herbertz, S.; John, W.; Paz-Ares, L.; Schmid-Bindert, G. KRAS-Mutant non-small cell lung cancer: From biology to therapy. Lung Cancer 2018, 124, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Baas, P.; Kim, D.-W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.-Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Brahmer, J.R.; Kim, E.S.; Zhang, J.; Smith, M.M.; Rangwala, R.A.; O’Brien, M.E. KEYNOTE-024: Phase III trial of pembrolizumab (MK-3475) vs platinum-based chemotherapy as first-line therapy for patients with metastatic non-small cell lung cancer (NSCLC) that expresses programmed cell death ligand 1 (PD-L1). J. Clin. Oncol. 2017, 33, 15s. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Li, B.T.; Shen, R.; Buonocore, D.; Olah, Z.T.; Ni, A.; Ginsberg, M.S.; Ulaner, G.A.; Offin, M.; Feldman, D.; Hembrough, T.; et al. Ado-Trastuzumab Emtansine for Patients With HER2-Mutant Lung Cancers: Results From a Phase II Basket Trial. J. Clin. Oncol. 2018, 36, 2532–2537. [Google Scholar] [CrossRef]
- Frampton, G.M.; Fichtenholtz, A.; Otto, G.A.; Wang, K.; Downing, S.R.; He, J.; Schnall-Levin, M.; White, J.; Sanford, E.M.; An, P.; et al. Development and validation of a clinical cancer genomic profiling test based on massively parallel DNA sequencing. Nat. Biotechnol. 2013, 31, 1023–1031. [Google Scholar] [CrossRef]
- Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017, 9, 34. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. FoundationOne®CDx (F1CDx) 2020. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170019S017B.pdf (accessed on 26 June 2023).
- FoundationOne LiquidCDx Technical information. Available online: https://assets.ctfassets.net/w98cd481qyp0/wVEm7VtICYR0sT5C1VbU7/fd055e0476183a6acd4eae6b583e3a00/F1LCDx_Technical_Specs_072021.pdf (accessed on 26 June 2023).
- World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pennell, N.A.; Arcila, M.E.; Gandara, D.R.; West, H. Biomarker Testing for Patients With Advanced Non–Small Cell Lung Cancer: Real-World Issues and Tough Choices. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, M.E.; Choi, K.; Lanman, R.B.; Licitra, E.J.; Skrzypczak, S.M.; Benito, R.P.; Wu, T.; Arunajadai, S.; Kaur, S.; Harper, H.; et al. Genomic Profiling of Advanced Non–Small Cell Lung Cancer in Community Settings: Gaps and Opportunities. Clin. Lung Cancer 2017, 18, 651–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.S.P.; Severson, E.; Haberberger, J.; Duncan, D.L. Landscape of Biomarkers in Non-small Cell Lung Cancer Using Comprehensive Genomic Profiling and PD-L1 Immunohistochemistry. Pathol. Oncol. Res. 2021, 27, 592997. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Gondos, A.; Saldana, D.; Thomas, M.; Mascaux, C.; Bubendorf, L.; Barlesi, F. Genomic testing among patients with newly diagnosed advanced non-small cell lung cancer in the United States: A contemporary clinical practice patterns study. Lung Cancer 2022, 167, 41–48. [Google Scholar] [CrossRef]
- Suh, J.H.; Johnson, A.; Albacker, L.; Wang, K.; Chmielecki, J.; Frampton, G.; Gay, L.; Elvin, J.A.; Vergilio, J.A.; Ali, S. Comprehensive Genomic Profiling Facilitates Implementation of the National Comprehensive Cancer Network Guidelines for Lung Cancer Biomarker Testing and Identifies Patients Who May Benefit from Enrollment in Mechanism-Driven Clinical Trials. Oncologist 2016, 21, 684–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Zhang, Z.; Zhan, J.; Zhao, X.; Chen, X.; Xiao, L.; Wu, K.; Ma, Y.; Li, M.; Yang, Y.; et al. Utility of comprehensive genomic profiling in directing treatment and improving patient outcomes in advanced non-small cell lung cancer. BMC Med. 2021, 19, 223. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.-W.; Stefaniuk, C.; Jakubowski, M.A. Real-time PCR and targeted next-generation sequencing in the detection of low level EGFR mutations: Instructive case analyses. Respir. Med. Case Rep. 2019, 28, 100901. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.M.; Hensing, T.; Schrock, A.B.; Allen, J.; Sanford, E.; Gowen, K.; Kulkarni, A.; He, J.; Suh, J.H.; Lipson, D.; et al. Comprehensive Genomic Profiling Identifies a Subset of Crizotinib-Responsive ALK-Rearranged Non-Small Cell Lung Cancer Not Detected by Fluorescence In Situ Hybridization. Oncologist 2016, 21, 762–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zugazagoitia, J.; Ramos, I.; Trigo, J.; Palka, M.; Gómez-Rueda, A.; Jantus-Lewintre, E.; Camps, C.; Isla, D.; Iranzo, P.; Ponce-Aix, S.; et al. Clinical utility of plasma-based digital next-generation sequencing in patients with advance-stage lung adenocarcinomas with insufficient tumor samples for tissue genotyping. Ann. Oncol. 2019, 30, 290–296. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.; Liao, J.; Hayashi, H. Real-World Clinical Outcomes after Genomic Profiling of Circulating Tumor DNA in Patients with Previously Treated Advanced Non-Small Cell Lung Cancer. Curr. Oncol. 2022, 29, 4811–4826. [Google Scholar] [CrossRef]
- Madison, R.; Schrock, A.B.; Castellanos, E.; Gregg, J.P.; Snider, J.; Ali, S.M.; Miller, V.A.; Singal, G.; Alexander, B.M.; Venstrom, J.M.; et al. Retrospective analysis of real-world data to determine clinical outcomes of patients with advanced non-small cell lung cancer following cell-free circulating tumor DNA genomic profiling. Lung Cancer 2020, 148, 69–78. [Google Scholar] [CrossRef]
- Sheffield, B.S.; Eaton, K.; Emond, B.; Lafeuille, M.-H.; Hilts, A.; Lefebvre, P.; Morrison, L.; Stevens, A.L.; Ewara, E.M.; Cheema, P. Cost Savings of Expedited Care with Upfront Next-Generation Sequencing Testing versus Single-Gene Testing among Patients with Metastatic Non-Small Cell Lung Cancer Based on Current Canadian Practices. Curr. Oncol. 2023, 30, 2348–2365. [Google Scholar] [CrossRef]
- Lemmon, C.A.; Zhou, J.; Hobbs, B.; Pennell, N.A. Modeling Costs and Life-Years Gained by Population-Wide Next-Generation Sequencing or Single-Gene Testing in Nonsquamous Non–Small-Cell Lung Cancer in the United States. JCO Precis. Oncol. 2023, 7, e2200294. [Google Scholar] [CrossRef]
All Patients N (%) | ||
---|---|---|
FoundationOneCDx | 45 | (94) |
FoundationOne Liquid CDx | 3 | (6) |
Sex | ||
Male | 23 | (48) |
Female | 25 | (52) |
Age at the time of diagnosis, median (IQR) | 62 | (51.5–68) |
Metastatic disease at the initial diagnosis | 30 | (63) |
Disease progression | 15 | (31) |
Stage of the disease not determined | 3 | (6) |
Number of patients receiving previous chemotherapy | 37 | (77) |
Number of previous treatment lines for metastatic disease | ||
0 | 5 | (10) |
1 | 36 | (75) |
2 | 17 | (35) |
3 | 7 | (15) |
Not determined | 3 | (6) |
ECOG performance status before CGP * | ||
0 | 24 | (50) |
1 | 22 | (46) |
Not determined | 2 | (4) |
All Patients N (%) | ||
---|---|---|
Genomic alterations (N,%) | ||
Any genomic alteration | 46 | (96) |
Clinically relevant | 38 | (79) |
Not clinically relevant | 41 | (85) |
Number of genomic alterations, median (IQR) | ||
Clinically relevant | 2 | (1–3) |
Not clinically relevant | 3 | (2–4) |
Clinically relevant genomic alterations (N,%) | ||
KRAS | 16 | (33) |
STK11 | 15 | (31) |
KEAP | 6 | (13) |
MET | 5 | (10) |
CTNNB1 | 5 | (10) |
EGFR | 3 | (6) |
BRAF | 3 | (6) |
ROS1, ERBB2, RICTOR, MYC, ATM, | 2 | (4) |
CDK4, MDM2, CHEK2, MTAP | ||
RET, BRCA1, PIK3CA, SMARCBI, | 1 | (2) |
ERRFI1, MTAT, AKT2, AXL, CBL, | ||
CDKN1A, NF1 | ||
PD-L1 status † | 30 | (63) |
Negative | 7 | (23) |
Low positive (1–24%) | 13 | (43) |
Moderately positive (25–49%) | 3 | (10) |
Highly positive (≥50%) | 7 | (23) |
Not determined | 18 | (38) |
Microsatellite status | ||
Stable | 44 | (92) |
High instability | 0 | (0) |
Not determined | 4 | (8) |
Tumor mutational burden (TMB), median (IQR) | 8 | (4–13) |
Tumor mutational burden (TMB) | ||
Not high (<10 mutations/Mb) | 25 | (52) |
High (≥10 mutations/Mb) | 19 | (40) |
Not determined | 4 | (8) |
CRGA | Targeted Therapy | Treatment Duration Months (Outcome) |
---|---|---|
BRAF | Trametinib | 2 (DEATH) |
ROS1 | Crizotinib | 30 (ONGOING) |
High TMB | Atezolizumab | 4 (DEATH) |
KRAS | Sotorasib * | 16 (PROGRESSION) |
High TMB | Atezolizumab | 3 (DEATH) |
RET | Pralsetinib * | 27 (ONGOING) |
EGFR | Erlotinib | 29 (ONGOING) |
MET | Crizotinib | 5 (PROGRESSION) |
MET | Crizotinib | 18 (PROGRESSION) |
High TMB | Atezolizumab | 1 (DEATH) |
ROS1 | Crizotinib | 9 (PROGRESSION) |
High TMB | Atezolizumab | 1 (DEATH) |
EGFR | Osimertinib | 2 (DEATH) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Čerina, D.; Krpina, K.; Jakopović, M.; Dedić Plavetić, N.; Seiwerth, F.; Tomić, S.; Radić, J.; Belac Lovasić, I.; Canjko, I.; Boban, M.; et al. The Challenges and Opportunities of the Implementation of Comprehensive Genomic Profiling in Everyday Clinical Practice with Non-Small Cell Lung Cancer: National Results from Croatia. Cancers 2023, 15, 3395. https://doi.org/10.3390/cancers15133395
Čerina D, Krpina K, Jakopović M, Dedić Plavetić N, Seiwerth F, Tomić S, Radić J, Belac Lovasić I, Canjko I, Boban M, et al. The Challenges and Opportunities of the Implementation of Comprehensive Genomic Profiling in Everyday Clinical Practice with Non-Small Cell Lung Cancer: National Results from Croatia. Cancers. 2023; 15(13):3395. https://doi.org/10.3390/cancers15133395
Chicago/Turabian StyleČerina, Dora, Kristina Krpina, Marko Jakopović, Natalija Dedić Plavetić, Fran Seiwerth, Snježana Tomić, Jasna Radić, Ingrid Belac Lovasić, Ivana Canjko, Marijo Boban, and et al. 2023. "The Challenges and Opportunities of the Implementation of Comprehensive Genomic Profiling in Everyday Clinical Practice with Non-Small Cell Lung Cancer: National Results from Croatia" Cancers 15, no. 13: 3395. https://doi.org/10.3390/cancers15133395
APA StyleČerina, D., Krpina, K., Jakopović, M., Dedić Plavetić, N., Seiwerth, F., Tomić, S., Radić, J., Belac Lovasić, I., Canjko, I., Boban, M., Samaržija, M., & Vrdoljak, E. (2023). The Challenges and Opportunities of the Implementation of Comprehensive Genomic Profiling in Everyday Clinical Practice with Non-Small Cell Lung Cancer: National Results from Croatia. Cancers, 15(13), 3395. https://doi.org/10.3390/cancers15133395