Technological Convergence: Highlighting the Power of CRISPR Single-Cell Perturbation Toolkit for Functional Interrogation of Enhancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. A High-Throughput Toolkit for Precision Epigenome Editing
3. Enhancer Interrogation via crisprQTL
4. Computational and Statistical Toolkits
5. Pitfalls and Recommendations
6. Conclusions and Future Prospective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chi, K.R. The dark side of the human genome. Nature 2016, 538, 275–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corradin, O.; Scacheri, P.C. Enhancer variants: Evaluating functions in common disease. Genome Med. 2014, 6, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurano, M.T.; Humbert, R.; Rynes, E.; Thurman, R.E.; Haugen, E.; Wang, H.; Reynolds, A.P.; Sandstrom, R.; Qu, H.; Brody, J.; et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA. Science 2012, 337, 1190–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerji, J.; Rusconi, S.; Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 1981, 27, 299–308. [Google Scholar] [CrossRef]
- Long, H.K.; Prescott, S.L.; Wysocka, J. Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell 2016, 167, 1170–1187. [Google Scholar] [CrossRef] [Green Version]
- Nasser, J.; Bergman, D.T.; Fulco, C.P.; Guckelberger, P.; Doughty, B.R.; Patwardhan, T.A.; Jones, T.R.; Nguyen, T.H.; Ulirsch, J.C.; Lekschas, F.; et al. Genome-wide enhancer maps link risk variants to disease genes. Nature 2021, 593, 238–243. [Google Scholar] [CrossRef]
- Nair, S.J.; Suter, T.; Wang, S.; Yang, L.; Yang, F.; Rosenfeld, M.G. Transcriptional enhancers at 40: Evolution of a viral DNA element to nuclear architectural structures. Trends Genet. 2022, 38, 1019–1047. [Google Scholar] [CrossRef]
- Moore, J.E.; Purcaro, M.J.; Pratt, H.E.; Epstein, C.B.; Shoresh, N.; Adrian, J.; Adrian, J.; Kawli, T.; Davis, C.A.; Dobin, A.; et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 2020, 583, 699–710. [Google Scholar]
- Roadmap Epigenomics, C.; Kundaje, A.; Meuleman, W.; Ernst, J.; Bilenky, M.; Yen, A.; Heravi-Moussavi, A.; Kheradpour, P.; Zhang, Z.; Wang, J.; et al. Integrative analysis of 111 reference human epigenomes. Nature 2015, 518, 317–330. [Google Scholar]
- Gasperini, M.; Hill, A.J.; McFaline-Figueroa, J.L.; Martin, B.; Kim, S.; Zhang, M.D.; Jackson, D.; Leith, A.; Schreiber, J.; Noble, W.S.; et al. A Genome-wide Framework for Mapping Gene Regulation via Cellular Genetic Screens. Cell 2019, 176, 1516. [Google Scholar] [CrossRef] [Green Version]
- O’geen, H.; Tomkova, M.; Combs, J.A.; Tilley, E.K.; Segal, D.J. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res. 2022, 50, 3239–3253. [Google Scholar] [CrossRef]
- Brocken, D.J.; Tark-Dame, M.; Dame, R. dCas9: A Versatile Tool for Epigenome Editing. Curr. Issues Mol. Biol. 2018, 26, 15–32. [Google Scholar] [CrossRef] [Green Version]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Li, K.; Liu, Y.; Cao, H.; Zhang, Y.; Gu, Z.; Liu, X.; Yu, A.; Kaphle, P.; Dickerson, K.E.; Ni, M.; et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat. Commun. 2020, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Pulecio, J.; Verma, N.; Mejía-Ramírez, E.; Huangfu, D.; Raya, A. CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell 2017, 21, 431–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alerasool, N.; Segal, D.; Lee, H.; Taipale, M. An efficient KRAB domain for CRISPRi applications in human cells. Nat. Methods 2020, 17, 1093–1096. [Google Scholar] [CrossRef] [PubMed]
- Thakore, P.I.; D’ippolito, A.M.; Song, L.; Safi, A.; Shivakumar, N.K.; Kabadi, A.M.; Reddy, T.E.; Crawford, G.E.; Gersbach, C.A. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 2015, 12, 1143–1149. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.W.; Wisniewska, K.; King, C.M.; Li, S.; Coffey, A.; Kelly, M.R.; Regner, M.J.; Franco, H.L. Enhancer RNA Transcription Is Essential for a Novel CSF1 Enhancer in Triple-Negative Breast Cancer. Cancers 2022, 14, 1852. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, J.; Park, J.-E. Single-Cell Toolkits Opening a New Era for Cell Engineering. Mol. Cells 2021, 44, 127–135. [Google Scholar] [CrossRef]
- Dixit, A.; Parnas, O.; Li, B.; Chen, J.; Fulco, C.P.; Jerby-Arnon, L.; Marjanovic, N.D.; Dionne, D.; Burks, T.; Raychowdhury, R.; et al. Perturb-Seq: Dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 2016, 167, 1853–1866.e17. [Google Scholar] [CrossRef] [Green Version]
- Jaitin, D.A.; Weiner, A.; Yofe, I.; Lara-Astiaso, D.; Keren-Shaul, H.; David, E.; Salame, T.M.; Tanay, A.; van Oudenaarden, A.; Amit, I. Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq. Cell 2016, 167, 1883–1896.e15. [Google Scholar] [CrossRef] [Green Version]
- Adamson, B.; Norman, T.M.; Jost, M.; Cho, M.Y.; Nuñez, J.K.; Chen, Y.; Villalta, J.E.; Gilbert, L.A.; Horlbeck, M.A.; Hein, M.Y.; et al. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 2016, 167, 1867–1882.e21. [Google Scholar] [CrossRef] [Green Version]
- Datlinger, P.; Rendeiro, A.F.; Schmidl, C.; Krausgruber, T.; Traxler, P.; Klughammer, J.; Schuster, L.C.; Kuchler, A.; Alpar, D.; Bock, C. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 2017, 14, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Replogle, J.M.; Norman, T.M.; Xu, A.; Hussmann, J.A.; Chen, J.; Cogan, J.Z.; Meer, E.J.; Terry, J.M.; Riordan, D.P.; Srinivas, N.; et al. Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing. Nat. Biotechnol. 2020, 38, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chan, A.K.N.; Miyashita, K.; Delaney, C.D.; Wang, X.; Li, H.; Pokharel, S.P.; Li, S.; Li, M.; Xu, X.; et al. High-resolution characterization of gene function using single-cell CRISPR tiling screen. Nat. Commun. 2021, 12, 4063. [Google Scholar] [CrossRef]
- Mimitou, E.P.; Cheng, A.; Montalbano, A.; Hao, S.; Stoeckius, M.; Legut, M.; Roush, T.; Herrera, A.; Papalexi, E.; Ouyang, Z.; et al. Multiplexed detection of proteins, transcriptomes, clonotypes and CRISPR perturbations in single cells. Nat. Methods 2019, 16, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Wang, E.; Zhou, H.; Nadorp, B.; Cayanan, G.; Chen, X.; Yeaton, A.H.; Nomikou, S.; Witkowski, M.T.; Narang, S.; Kloetgen, A.; et al. Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation. Cell Stem Cell 2021, 28, 718–731.e6. [Google Scholar] [CrossRef] [PubMed]
- Liscovitch-Brauer, N.; Montalbano, A.; Deng, J.; Méndez-Mancilla, A.; Wessels, H.-H.; Moss, N.G.; Kung, C.-Y.; Sookdeo, A.; Guo, X.; Geller, E.; et al. Profiling the genetic determinants of chromatin accessibility with scalable single-cell CRISPR screens. Nat. Biotechnol. 2021, 39, 1270–1277. [Google Scholar] [CrossRef]
- Feldman, D.; Funk, L.; Le, A.; Carlson, R.J.; Leiken, M.D.; Tsai, F.; Soong, B.; Singh, A.; Blainey, P.C. Pooled genetic perturbation screens with image-based phenotypes. Nat. Protoc. 2022, 17, 476–512. [Google Scholar] [CrossRef]
- Xie, S.; Duan, J.; Li, B.; Zhou, P.; Hon, G.C. Multiplexed Engineering and Analysis of Combinatorial Enhancer Activity in Single Cells. Mol. Cell 2017, 66, 285–299.e5. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Hon, G.C. Experimental and Computational Approaches for Single-Cell Enhancer Perturbation Assay. Methods Mol. Biol. 2019, 1935, 203–221. [Google Scholar] [CrossRef]
- Xie, S.; Armendariz, D.; Zhou, P.; Duan, J.; Hon, G.C. Global Analysis of Enhancer Targets Reveals Convergent Enhancer-Driven Regulatory Modules. Cell Rep. 2019, 29, 2570–2578.e5. [Google Scholar] [CrossRef]
- Schraivogel, D.; Gschwind, A.R.; Milbank, J.H.; Leonce, D.R.; Jakob, P.; Mathur, L.; Korbel, J.O.; Merten, C.A.; Velten, L.; Steinmetz, L.M. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 2020, 17, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.A.; Caragine, C.; Daniloski, Z.; Domingo, J.; Barry, T.; Lu, L.; Davis, K.; Ziosi, M.; Glinos, D.A.; Hao, S.; et al. Discovery of target genes and pathways at GWAS loci by pooled single-cell CRISPR screens. Science 2023, 380, eadh7699. [Google Scholar] [CrossRef]
- Armendariz, D.A.; Goetsch, S.C.; Sundarrajan, A.; Sivakumar, S.; Wang, Y.; Xie, S.; Munshi, N.V.; Hon, G.C. CHD-associated enhancers shape human cardiomyocyte lineage commitment. eLife 2023, 12, e86206. [Google Scholar] [CrossRef] [PubMed]
- Tuano, N.K.; Beesley, J.; Manning, M.; Shi, W.; Perlaza-Jimenez, L.; Malaver-Ortega, L.F.; Paynter, J.M.; Black, D.; Civitarese, A.; McCue, K.; et al. CRISPR screens identify gene targets at breast cancer risk loci. Genome Biol. 2023, 24, 59. [Google Scholar] [CrossRef] [PubMed]
- Green, N. Investigating Gene Expression Regulation in the Brain and Its Role in Neurodevelopmental Disorders; UNSW Sydney: Kensington, Australia, 2023. [Google Scholar] [CrossRef]
- Wessels, H.-H.; Méndez-Mancilla, A.; Hao, Y.; Papalexi, E.; Mauck, W.M.; Lu, L.; Morris, J.A.; Mimitou, E.P.; Smibert, P.; Sanjana, N.E.; et al. Efficient combinatorial targeting of RNA transcripts in single cells with Cas13 RNA Perturb-seq. Nat. Methods 2022, 20, 86–94. [Google Scholar] [CrossRef]
- Chidley, C.; Darnell, A.M.; Gaudio, B.L.; Lien, E.C.; Barbeau, A.M.; Vander Heiden, M.G.; Sorger, P.K. A CRISPRi/a screening platform to study cellular nutrient transport in diverse microenvironments. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kampmann, M. CRISPRi and CRISPRa Screens in Mammalian Cells for Precision Biology and Medicine. ACS Chem. Biol. 2017, 13, 406–416. [Google Scholar] [CrossRef]
- Gilbert, L.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 2013, 154, 442–451. [Google Scholar] [CrossRef] [Green Version]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef] [Green Version]
- Menon, A.V.; Sohn, J.-I.; Nam, J.-W. CGD: Comprehensive guide designer for CRISPR-Cas systems. Comput. Struct. Biotechnol. J. 2020, 18, 814–820. [Google Scholar] [CrossRef]
- Doench, J.G.; Hartenian, E.; Graham, D.B.; Tothova, Z.; Hegde, M.; Smith, I.; Sullender, M.; Ebert, B.L.; Xavier, R.J.; Root, D.E. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 2014, 32, 1262–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, H.; Xiao, T.; Chen, C.-H.; Li, W.; Meyer, C.A.; Wu, Q.; Wu, D.; Cong, L.; Zhang, F.; Liu, J.S.; et al. Sequence determinants of improved CRISPR sgRNA design. Genome Res. 2015, 25, 1147–1157. [Google Scholar] [CrossRef] [Green Version]
- Doench, J.G.; Fusi, N.; Sullender, M.; Hegde, M.; Vaimberg, E.W.; Donovan, K.F.; Smith, I.; Tothova, Z.; Wilen, C.; Orchard, R.; et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 2016, 34, 184–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chuai, G.; Ma, H.; Yan, J.; Chen, M.; Hong, N.; Xue, D.; Zhou, C.; Zhu, C.; Chen, K.; Duan, B.; et al. DeepCRISPR: Optimized CRISPR guide RNA design by deep learning. Genome Biol. 2018, 19, 80. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, Y.; Lee, S.; Min, S.; Bae, J.Y.; Choi, J.W.; Park, J.; Jung, D.; Yoon, S.; Kim, H.H. SpCas9 activity prediction by DeepSpCas9, a deep learning–based model with high generalization performance. Sci. Adv. 2019, 5, eaax9249. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.; Wang, X.; Morris, J.A.; Roeder, K.; Katsevich, E. SCEPTRE improves calibration and sensitivity in single-cell CRISPR screen analysis. Genome Biol. 2021, 22, 344. [Google Scholar] [CrossRef]
- Barry, T.; Katsevich, E.; Roeder, K. Exponential family measurement error models for single-cell CRISPR screens. arXiv 2022, arXiv:2201.01879. [Google Scholar]
- Yang, L.; Zhu, Y.; Yu, H.; Cheng, X.; Chen, S.; Chu, Y.; Huang, H.; Zhang, J.; Li, W. scMAGeCK links genotypes with multiple phenotypes in single-cell CRISPR screens. Genome Biol. 2020, 21, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xie, S.; Armendariz, D.; Hon, G.C. Computational identification of clonal cells in single-cell CRISPR screens. BMC Genom. 2022, 23, 135. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.L.; Guruvayurappan, K.; Chen, H.V.; Chen, A.R.; McVicker, G.P. Genome-wide analysis of CRISPR perturbations indicates that enhancers act multiplicatively and without epistatic-like interactions. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wei, H.; Han, T.; Li, T.; Wu, Q.; Wang, C. SCREE: A comprehensive pipeline for single-cell multi-modal CRISPR screen data processing and analysis. Briefings Bioinform. 2023, 24, bbad123. [Google Scholar] [CrossRef]
- Bock, C.; Datlinger, P.; Chardon, F.; Coelho, M.A.; Dong, M.B.; Lawson, K.A.; Lu, T.; Maroc, L.; Norman, T.M.; Song, B.; et al. High-content CRISPR screening. Nat. Rev. Methods Primers 2022, 2, 8. [Google Scholar] [CrossRef]
- Bae, S.; Park, J.; Kim, J.S. Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 2014, 30, 1473–1475. [Google Scholar] [CrossRef]
- Kim, D.; Kang, B.-C.; Kim, J.-S. Identifying genome-wide off-target sites of CRISPR RNA–guided nucleases and deaminases with Digenome-seq. Nat. Protoc. 2021, 16, 1170–1192. [Google Scholar] [CrossRef]
- Kim, N.; Kim, H.K.; Lee, S.; Seo, J.H.; Choi, J.W.; Park, J.; Min, S.; Yoon, S.; Cho, S.-R.; Kim, H.H. Prediction of the sequence-specific cleavage activity of Cas9 variants. Nat. Biotechnol. 2020, 38, 1328–1336. [Google Scholar] [CrossRef]
- Kim, N.; Choi, S.; Kim, S.; Song, M.; Seo, J.H.; Min, S.; Park, J.; Cho, S.-R.; Kim, H.H. Deep learning models to predict the editing efficiencies and outcomes of diverse base editors. Nat. Biotechnol. 2023, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dang, Y.; Jia, G.; Choi, J.; Ma, H.; Anaya, E.; Ye, C.; Shankar, P.; Wu, H. Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. 2015, 16, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Listgarten, J.; Weinstein, M.; Kleinstiver, B.P.; Sousa, A.A.; Joung, J.K.; Crawford, J.; Gao, K.; Hoang, L.; Elibol, M.; Doench, J.G.; et al. Prediction of off-target activities for the end-to-end design of CRISPR guide RNAs. Nat. Biomed. Eng. 2018, 2, 38–47. [Google Scholar] [CrossRef]
- McCarty, N.S.; Graham, A.E.; Studená, L.; Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 2020, 11, 1281. [Google Scholar] [CrossRef] [Green Version]
- Lensch, S.; Herschl, M.H.; Ludwig, C.H.; Sinha, J.; Hinks, M.M.; Mukund, A.; Fujimori, T.; Bintu, L. Dynamic spreading of chromatin-mediated gene silencing and reactivation between neighboring genes in single cells. eLife 2022, 11, e75115. [Google Scholar] [CrossRef]
- Holding, A.N.; Cook, H.V.; Markowetz, F. Data generation and network reconstruction strategies for single cell transcriptomic profiles of CRISPR-mediated gene perturbations. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2019, 1863, 194441. [Google Scholar] [CrossRef] [PubMed]
- Danko, C.G.; Choate, L.A.; Marks, B.A.; Rice, E.J.; Wang, Z.; Chu, T.; Martins, A.L.; Dukler, N.; Coonrod, S.A.; Wojno, E.D.T.; et al. Dynamic evolution of regulatory element ensembles in primate CD4+ T cells. Nat. Ecol. Evol. 2018, 2, 537–548. [Google Scholar] [CrossRef] [Green Version]
- Luecken, M.D.; Theis, F.J. Current best practices in single-cell RNA-seq analysis: A tutorial. Mol. Syst. Biol. 2019, 15, e8746. [Google Scholar] [CrossRef] [PubMed]
- Houston, A. 10x Genomics Multiome ATAC+ GEX; 2023. Available online: https://www.protocols.io/view/10x-genomics-multiome-atac-gex-n2bvj8kqpgk5/v1 (accessed on 23 May 2023).
- Tian, L.; Jabbari, J.S.; Thijssen, R.; Gouil, Q.; Amarasinghe, S.L.; Voogd, O.; Kariyawasam, H.; Du, M.R.M.; Schuster, J.; Wang, C.; et al. Comprehensive characterization of single-cell full-length isoforms in human and mouse with long-read sequencing. Genome Biol. 2021, 22, 310. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghamsari, R.; Rosenbluh, J.; Menon, A.V.; Lovell, N.H.; Alinejad-Rokny, H. Technological Convergence: Highlighting the Power of CRISPR Single-Cell Perturbation Toolkit for Functional Interrogation of Enhancers. Cancers 2023, 15, 3566. https://doi.org/10.3390/cancers15143566
Ghamsari R, Rosenbluh J, Menon AV, Lovell NH, Alinejad-Rokny H. Technological Convergence: Highlighting the Power of CRISPR Single-Cell Perturbation Toolkit for Functional Interrogation of Enhancers. Cancers. 2023; 15(14):3566. https://doi.org/10.3390/cancers15143566
Chicago/Turabian StyleGhamsari, Reza, Joseph Rosenbluh, A Vipin Menon, Nigel H. Lovell, and Hamid Alinejad-Rokny. 2023. "Technological Convergence: Highlighting the Power of CRISPR Single-Cell Perturbation Toolkit for Functional Interrogation of Enhancers" Cancers 15, no. 14: 3566. https://doi.org/10.3390/cancers15143566
APA StyleGhamsari, R., Rosenbluh, J., Menon, A. V., Lovell, N. H., & Alinejad-Rokny, H. (2023). Technological Convergence: Highlighting the Power of CRISPR Single-Cell Perturbation Toolkit for Functional Interrogation of Enhancers. Cancers, 15(14), 3566. https://doi.org/10.3390/cancers15143566