Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities
Abstract
:Simple Summary
Abstract
1. Introduction
2. Radioprotective Mechanisms of Natural Products
2.1. Promoting DNA Damage Repair
2.2. ROS Scavenging
2.3. Anti-Inflammation
2.4. Inhibition of Death Signaling Pathways
3. The Radioprotective Effects of Polyphenols
3.1. Flavonoids
3.2. Non-Flavonoids
4. The Radioprotective Effects of Polysaccharides
4.1. Plant Polysaccharides
4.2. Animal and Microbial Polysaccharides
5. The Radioprotective Effects of Alkaloids
6. The Radioprotective Effects of Saponin
7. The Radioprotective Effects of Other Natural Products
8. Limitations and Future Directions
9. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.M.; Hegi-Johnson, F. Radiotherapy Toxicity. Nat. Rev. Dis. Prim. 2019, 5, 13. [Google Scholar] [CrossRef] [PubMed]
- Barton, M.B.; Frommer, M.; Shafiq, J. Role of Radiotherapy in Cancer Control in Low-Income and Middle-Income Countries. Lancet Oncol. 2006, 7, 584–595. [Google Scholar] [CrossRef]
- Kalman, N.S.; Zhao, S.S.; Anscher, M.S.; Urdaneta, A.I. Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 662–682. [Google Scholar] [CrossRef]
- Candéias, S.M.; Mika, J.; Finnon, P.; Verbiest, T.; Finnon, R.; Brown, N.; Bouffler, S.; Polanska, J.; Badie, C. Low-Dose Radiation Accelerates Aging of the T-Cell Receptor Repertoire in CBA/Ca Mice. Cell. Mol. Life Sci. 2017, 74, 4339–4351. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Asensio, I.; Barthlott, T.; Von Muenchow, L.; Lowndes, N.F.; Ceredig, R. Differential Response of Mouse Thymic Epithelial Cell Types to Ionizing Radiation-Induced DNA Damage. Front. Immunol. 2017, 8, 418. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.-R.; Li, Y.; Wang, J.-Y.; Wang, H.-W.; Wang, H.-N.; Kang, X.-M.; Xu, W.-Q. Synthesis and Characterization of a Rosmarinic Acid Derivative That Targets Mitochondria and Protects against Radiation-Induced Damage in Vitro. Radiat. Res. 2017, 188, 264–275. [Google Scholar] [CrossRef]
- Mothersill, C.E.; Moriarty, M.J.; Seymour, C.B. Radiotherapy and the Potential Exploitation of Bystander Effects. Int. J. Radiat. Oncol. Biol. Phys. 2004, 58, 575–579. [Google Scholar] [CrossRef]
- Wang, K.; Tepper, J.E. Radiation Therapy-Associated Toxicity: Etiology, Management, and Prevention. CA A Cancer J. Clin. 2021, 71, 437–454. [Google Scholar] [CrossRef]
- Wen, S.; Dooner, M.; Papa, E.; Del Tatto, M.; Pereira, M.; Borgovan, T.; Cheng, Y.; Goldberg, L.; Liang, O.; Camussi, G. Biodistribution of Mesenchymal Stem Cell-Derived Extracellular Vesicles in a Radiation Injury Bone Marrow Murine Model. Int. J. Mol. Sci. 2019, 20, 5468. [Google Scholar] [CrossRef] [Green Version]
- Maier, P.; Wenz, F.; Herskind, C. Radioprotection of Normal Tissue Cells. Strahlenther. Und Onkol. 2014, 190, 745–752. [Google Scholar] [CrossRef]
- Culy, C.R.; Spencer, C.M. Amifostine: An Update on Its Clinical Status as a Cytoprotectant in Patients with Cancer Receiving Chemotherapy or Radiotherapy and Its Potential Therapeutic Application in Myelodysplastic Syndrome. Drugs 2001, 61, 641–684. [Google Scholar] [CrossRef] [PubMed]
- Andreassen, C.N.; Grau, C.; Lindegaard, J.C. Chemical Radioprotection: A Critical Review of Amifostine as a Cytoprotector in Radiotherapy. Semin. Radiat. Oncol. 2003, 13, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, N.; Usmani, D.; Tarique, M.; Naz, H.; Ashraf, M.; Raliya, R.; Tabrez, S.; Zughaibi, T.A.; Alsaieedi, A.; Hakeem, I.J. The Role of Natural Products and Their Multitargeted Approach to Treat Solid Cancer. Cells 2022, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Decker, M. Hybrid Molecules Incorporating Natural Products: Applications in Cancer Therapy, Neurodegenerative Disorders and Beyond. Curr. Med. Chem. 2011, 18, 1464–1475. [Google Scholar] [CrossRef] [PubMed]
- ul Islam, B.; Suhail, M.; Khan, M.K.; Zughaibi, T.A.; Alserihi, R.F.; Zaidi, S.K.; Tabrez, S. Polyphenols as Anticancer Agents: Toxicological Concern to Healthy Cells. Phytother. Res. 2021, 35, 6063–6079. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Nur, H.; Ismail, A.F.; Sharif, S.; RamaKrishna, S.; Berto, F. Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants 2020, 9, 1309. [Google Scholar] [CrossRef]
- Begum, N.; Prasad, N.R. Apigenin, a Dietary Antioxidant, Modulates Gamma Radiation-Induced Oxidative Damages in Human Peripheral Blood Lymphocytes. Biomed. Prev. Nutr. 2012, 2, 16–24. [Google Scholar] [CrossRef]
- Imran, M.; Aslam Gondal, T.; Atif, M.; Shahbaz, M.; Batool Qaisarani, T.; Hanif Mughal, M.; Salehi, B.; Martorell, M.; Sharifi-Rad, J. Apigenin as an Anticancer Agent. Phytother. Res. 2020, 34, 1812–1828. [Google Scholar] [CrossRef]
- Grace, M.B.; Blakely, W.F.; Landauer, M.R. Genistein-Induced Alterations of Radiation-Responsive Gene Expression. Radiat. Meas. 2007, 42, 1152–1157. [Google Scholar] [CrossRef]
- Hsiao, Y.-C.; Peng, S.-F.; Lai, K.-C.; Liao, C.-L.; Huang, Y.-P.; Lin, C.-C.; Lin, M.-L.; Liu, K.-C.; Tsai, C.-C.; Ma, Y.-S. Genistein Induces Apoptosis in Vitro and Has Antitumor Activity against Human Leukemia HL-60 Cancer Cell Xenograft Growth in Vivo. Environ. Toxicol. 2019, 34, 443–456. [Google Scholar] [CrossRef] [PubMed]
- El-Missiry, M.A.; Othman, A.I.; El-Sawy, M.R.; Lebede, M.F. Neuroprotective Effect of Epigallocatechin-3-Gallate (EGCG) on Radiation-Induced Damage and Apoptosis in the Rat Hippocampus. Int. J. Radiat. Biol. 2018, 94, 798–808. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.-W.; Cai, S.; Zhao, T.-S.; Li, M.; Tian, Y. Green Tea Derivative (-)-Epigallocatechin-3-Gallate (EGCG) Confers Protection against Ionizing Radiation-Induced Intestinal Epithelial Cell Death Both in Vitro and in Vivo. Free Radic. Biol. Med. 2020, 161, 175–186. [Google Scholar] [CrossRef]
- Horton, J.A.; Li, F.; Chung, E.J.; Hudak, K.; White, A.; Krausz, K.; Gonzalez, F.; Citrin, D. Quercetin Inhibits Radiation-Induced Skin Fibrosis. Radiat. Res. 2013, 180, 205–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Özyurt, H.; Çevik, Ö.; Özgen, Z.; Özden, A.S.; Çadırcı, S.; Elmas, M.A.; Ercan, F.; Gören, M.Z.; Şener, G. Quercetin Protects Radiation-Induced DNA Damage and Apoptosis in Kidney and Bladder Tissues of Rats. Free. Radic. Res. 2014, 48, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Agbele, A.T.; Fasoro, O.J.; Fabamise, O.M.; Oluyide, O.O.; Idolor, O.R.; Bamise, E.A. Protection Against Ionizing Radiation-Induced Normal Tissue Damage by Resveratrol: A Systematic Review. Eurasian J. Med. 2020, 52, 298–303. [Google Scholar] [CrossRef]
- Xu, L.; Yang, X.; Cai, J.; Ma, J.; Cheng, H.; Zhao, K.; Yang, L.; Cao, Y.; Qin, Q.; Zhang, C. Resveratrol Attenuates Radiation-Induced Salivary Gland Dysfunction in Mice. Laryngoscope 2013, 123, E23–E29. [Google Scholar] [CrossRef]
- Ye, K.; Ji, C.-B.; Lu, X.-W.; Ni, Y.-H.; Gao, C.-L.; Chen, X.-H.; Zhao, Y.-P.; Gu, G.-X.; Guo, X.-R. Resveratrol Attenuates Radiation Damage in Caenorhabditis Elegans by Preventing Oxidative Stress. J. Radiat. Res. 2010, 51, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Chendil, D.; Ranga, R.S.; Meigooni, D.; Sathishkumar, S.; Ahmed, M.M. Curcumin Confers Radiosensitizing Effect in Prostate Cancer Cell Line PC-3. Oncogene 2004, 23, 1599–1607. [Google Scholar] [CrossRef] [Green Version]
- Okunieff, P.; Xu, J.; Hu, D.; Liu, W.; Zhang, L.; Morrow, G.; Pentland, A.; Ryan, J.L.; Ding, I. Curcumin Protects against Radiation-Induced Acute and Chronic Cutaneous Toxicity in Mice and Decreases MRNA Expression of Inflammatory and Fibrogenic Cytokines. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 890–898. [Google Scholar] [CrossRef]
- Qiao, Q.; Jiang, Y.; Li, G. Curcumin Improves the Antitumor Effect of X-Ray Irradiation by Blocking the NF-ΚB Pathway: An in-Vitro Study of Lymphoma. Anti-Cancer Drugs 2012, 23, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, F.; Yang, Y.; Li, D.; Lv, J.; Ou, Y.; Sun, F.; Chen, J.; Shi, Y.; Xia, P. Astragalus Polysaccharide Ameliorates Ionizing Radiation-Induced Oxidative Stress in Mice. Int. J. Biol. Macromol. 2014, 68, 209–214. [Google Scholar] [CrossRef]
- Li, Q.; Wang, D.; Bai, D.; Cai, C.; Li, J.; Yan, C.; Zhang, S.; Wu, Z.; Hao, J.; Yu, G. Photoprotective Effect of Astragalus Membranaceus Polysaccharide on UVA-Induced Damage in HaCaT Cells. PLoS ONE 2020, 15, e0235515. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-M.; Jia, Y.-L.; Ma, M.; Duan, Y.-Q.; Liu, L.-H. Prevention Effects of Schisandra Polysaccharide on Radiation-Induced Immune System Dysfunction. Int. J. Biol. Macromol. 2015, 76, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Wang, Z. Radioprotective Activity of Neutral Polysaccharides Isolated from the Fruiting Bodies of Hohenbuehelia Serotina. Phys. Med. 2015, 31, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Raghavendran, H.R.B.; Rekha, S.; Cho, H.-K.K.J.-H.; Jang, S.-S.; Son, C.-G. Ginsenoside Rich Fraction of Panax Ginseng CA Meyer Improve Feeding Behavior Following Radiation-Induced Pica in Rats. Fitoterapia 2012, 83, 1144–1150. [Google Scholar] [CrossRef]
- Pan, Y.; Gu, Y.; Gu, X. Protection of Acanthopanax Senticosus Saponin on Free Radical Injury Induced Aging of Nerve Cell. Chin. J. Integr. Tradit. West. Med. 2002, 8, 200–203. [Google Scholar] [CrossRef]
- Li, J.; Xu, J.; Lu, Y.; Qiu, L.; Xu, W.; Lu, B.; Hu, Z.; Chu, Z.; Chai, Y.; Zhang, J. MASM, a Matrine Derivative, Offers Radioprotection by Modulating Lethal Total-Body Irradiation-Induced Multiple Signaling Pathways in Wistar Rats. Molecules 2016, 21, 649. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Wang, S.; Zhou, P.; Liu, W.; Ni, F. Effects of Ligustrazine on DNA Damage and Apoptosis Induced by Irradiation. Environ. Toxicol. Pharmacol. 2013, 36, 1197–1206. [Google Scholar] [CrossRef]
- Herraiz, T.; Galisteo, J. Hydroxyl Radical Reactions and the Radical Scavenging Activity of β-Carboline Alkaloids. Food Chem. 2015, 172, 640–649. [Google Scholar] [CrossRef]
- Wickramasinghe, J.S.; Udagama, P.V.; Dissanayaka, V.H.; Weerasooriya, A.D.; Goonasekera, H.W. Plant Based Radioprotectors as an Adjunct to Radiotherapy: Advantages and Limitations. J. Radiol. Prot. 2022, 42, 021001. [Google Scholar] [CrossRef] [PubMed]
- Szejk, M.; Kołodziejczyk-Czepas, J.; Żbikowska, H.M. Radioprotectors in Radiotherapy—Advances in the Potential Application of Phytochemicals. Adv. Hyg. Exp. Med. 2016, 70, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Fischer, N.; Seo, E.-J.; Efferth, T. Prevention from Radiation Damage by Natural Products. Phytomedicine 2018, 47, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Mun, G.-I.; Kim, S.; Choi, E.; Kim, C.S.; Lee, Y.-S. Pharmacology of Natural Radioprotectors. Arch. Pharm. Res. 2018, 41, 1033–1050. [Google Scholar] [CrossRef] [Green Version]
- Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S. Radioprotective Role of Natural Polyphenols: From Sources to Mechanisms. Anti-Cancer Agents Med. Chem. (Former. Curr. Med. Chem.-Anti-Cancer Agents) 2022, 22, 30–39. [Google Scholar]
- Haritwal, T.; Tiwari, M.; Agrawala, P.K. Herbal Radioprotectors: A Mini-Review of the Current Status. NRFHH 2022, 2, 274–286. [Google Scholar] [CrossRef]
- Chargari, C.; Deutsch, E.; Blanchard, P.; Gouy, S.; Martelli, H.; Guérin, F.; Dumas, I.; Bossi, A.; Morice, P.; Viswanathan, A.N. Brachytherapy: An Overview for Clinicians. CA A Cancer J. Clin. 2019, 69, 386–401. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.; Zhou, P.-K. DNA Damage Repair: Historical Perspectives, Mechanistic Pathways and Clinical Translation for Targeted Cancer Therapy. Signal Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef]
- Vendrely, V.; Amintas, S.; Noel, C.; Moranvillier, I.; Lamrissi, I.; Rousseau, B.; Coulibaly, S.; Bedel, A.; Moreau-Gaudry, F.; Buscail, E. Combination Treatment of Resveratrol and Capsaicin Radiosensitizes Pancreatic Tumor Cells by Unbalancing DNA Repair Response to Radiotherapy towards Cell Death. Cancer Lett. 2019, 451, 1–10. [Google Scholar] [CrossRef]
- Gao, P.; Li, N.; Ji, K.; Wang, Y.; Xu, C.; Liu, Y.; Wang, Q.; Wang, J.; He, N.; Sun, Z. Resveratrol Targets TyrRS Acetylation to Protect against Radiation-Induced Damage. FASEB J. 2019, 33, 8083–8093. [Google Scholar] [CrossRef]
- Su, N.-W.; Wu, S.-H.; Chi, C.-W.; Tsai, T.-H.; Chen, Y.-J. Cordycepin, Isolated from Medicinal Fungus Cordyceps Sinensis, Enhances Radiosensitivity of Oral Cancer Associated with Modulation of DNA Damage Repair. Food Chem. Toxicol. 2019, 124, 400–410. [Google Scholar] [CrossRef]
- Lee, Y.-P.; Lin, C.-R.; Chen, S.-S.; Chen, R.-J.; Wu, Y.-H.; Chen, Y.-H.; Huang, B.-M. Combination Treatment of Cordycepin and Radiation Induces MA-10 Mouse Leydig Tumor Cell Death via ROS Accumulation and DNA Damage. Am. J. Cancer Res. 2023, 13, 1329. [Google Scholar]
- Wang, Z.; Chen, Z.; Jiang, Z.; Luo, P.; Liu, L.; Huang, Y.; Wang, H.; Wang, Y.; Long, L.; Tan, X. Cordycepin Prevents Radiation Ulcer by Inhibiting Cell Senescence via NRF2 and AMPK in Rodents. Nat. Commun. 2019, 10, 2538. [Google Scholar] [CrossRef] [Green Version]
- Nayak, D.; Tripathi, N.; Kathuria, D.; Siddharth, S.; Nayak, A.; Bharatam, P.V.; Kundu, C. Quinacrine and Curcumin Synergistically Increased the Breast Cancer Stem Cells Death by Inhibiting ABCG2 and Modulating DNA Damage Repair Pathway. Int. J. Biochem. Cell Biol. 2020, 119, 105682. [Google Scholar] [CrossRef] [PubMed]
- Tong, R.; Wu, X.; Liu, Y.; Liu, Y.; Zhou, J.; Jiang, X.; Zhang, L.; He, X.; Ma, L. Curcumin-Induced DNA Demethylation in Human Gastric Cancer Cells Is Mediated by the DNA-Damage Response Pathway. Oxidative Med. Cell. Longev. 2020, 2020, 2543504. [Google Scholar] [CrossRef] [PubMed]
- Guney Eskiler, G.; Sahin, E.; Deveci Ozkan, A.; Cilingir Kaya, O.T.; Kaleli, S. Curcumin Induces DNA Damage by Mediating Homologous Recombination Mechanism in Triple Negative Breast Cancer. Nutr. Cancer 2020, 72, 1057–1066. [Google Scholar] [CrossRef] [PubMed]
- Darband, S.G.; Sadighparvar, S.; Yousefi, B.; Kaviani, M.; Ghaderi-Pakdel, F.; Mihanfar, A.; Rahimi, Y.; Mobaraki, K.; Majidinia, M. Quercetin Attenuated Oxidative DNA Damage through NRF2 Signaling Pathway in Rats with DMH Induced Colon Carcinogenesis. Life Sci. 2020, 253, 117584. [Google Scholar] [CrossRef]
- Yang, P.; Li, X.; Wen, Q.; Zhao, X. Quercetin Attenuates the Proliferation of Arsenic-Related Lung Cancer Cells via a Caspase-Dependent DNA Damage Signaling. Mol. Carcinog. 2022, 61, 655–663. [Google Scholar] [CrossRef]
- Halliwell, B. Free Radicals and Antioxidants: A Personal View. Nutr. Rev. 1994, 52, 253–265. [Google Scholar] [CrossRef]
- Zhao, W.; Diz, D.I.; Robbins, M.E. Oxidative Damage Pathways in Relation to Normal Tissue Injury. Br. J. Radiol. 2007, 80, S23–S31. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in Cancer Therapy: The Bright Side of the Moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Wang, H.; De Ridder, M. Targeting Antioxidant Enzymes as a Radiosensitizing Strategy. Cancer Lett. 2018, 438, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xie, C.; Xi, S.; Qian, F.; Peng, X.; Huang, J.; Tang, F. Radioprotective Effect of Flavonoids on Ionizing Radiation-Induced Brain Damage. Molecules 2020, 25, 5719. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Yanase, E.; Mori, T.; Kurata, K.; Toyama, M.; Tsuchiya, A.; Yamauchi, K.; Mitsunaga, T.; Iwahashi, H.; Takahashi, J. Relationship between Flavonoid Structure and Reactive Oxygen Species Generation upon Ultraviolet and X-Ray Irradiation. J. Photochem. Photobiol. A Chem. 2019, 384, 112044. [Google Scholar] [CrossRef]
- Verma, S.; Dutta, A.; Dahiya, A.; Kalra, N. Quercetin-3-Rutinoside Alleviates Radiation-Induced Lung Inflammation and Fibrosis via Regulation of NF-ΚB/TGF-Β1 Signaling. Phytomedicine 2022, 99, 154004. [Google Scholar] [CrossRef]
- Verma, S.; Dutta, A. Quercetin 3 Rutinoside Facilitates Protection Against Radiation Induced Genotoxic and Oxidative Damage A Study in C57bl 6 Mice. Def. Life Sci. J. 2021, 6, 128–137. [Google Scholar] [CrossRef]
- Altay, H.; Demir, E.; Binici, H.; Aytaç, İ.; Taysı, M.E.; Taysı, S. Radioprotective Effects of Propolis and Caffeic Acid Phenethyl Ester on the Tongue-Tissues of Total-Head Irradiated Rats. Eur. J. Ther. 2020, 26, 202–207. [Google Scholar] [CrossRef]
- Liu, Y.-Q.; Wang, X.-L.; He, D.-H.; Cheng, Y.-X. Protection against Chemotherapy-and Radiotherapy-Induced Side Effects: A Review Based on the Mechanisms and Therapeutic Opportunities of Phytochemicals. Phytomedicine 2021, 80, 153402. [Google Scholar] [CrossRef]
- Jing, W.; Liu, C.; Su, C.; Liu, L.; Chen, P.; Li, X.; Zhang, X.; Yuan, B.; Wang, H.; Du, X. Role of Reactive Oxygen Species and Mitochondrial Damage in Rheumatoid Arthritis and Targeted Drugs. Front. Immunol. 2023, 14, 1107670. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, B.; Tu, C.; Ping, Y.; Chen, S.; Wu, T.; Zhao, Z.; Mao, Y.; Yang, Z.; Cao, Z. Mitochondrial Impairment and Downregulation of Drp1 Phosphorylation Underlie the Antiproliferative and Proapoptotic Effects of Alantolactone on Oral Squamous Cell Carcinoma Cells. J. Transl. Med. 2023, 21, 328. [Google Scholar] [CrossRef]
- Yu, C.; Fu, J.; Guo, L.; Yu, M.; Yu, D. Integrating Metabolomics and Network Pharmacology to Explore the Protective Effect of Ginsenoside Re against Radiotherapy Injury in Mice. Evid. Based Complement. Altern. Med. 2022, 2022, 5436979. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ma, X.; Wei, Y.; Wei, X.-W. Potential Roles and Targeted Therapy of the CXCLs/CXCR2 Axis in Cancer and Inflammatory Diseases. Biochim. Biophys. Acta (BBA) Rev. Cancer 2019, 1871, 289–312. [Google Scholar] [CrossRef] [PubMed]
- Chiba, N.; Comaills, V.; Shiotani, B.; Takahashi, F.; Shimada, T.; Tajima, K.; Winokur, D.; Hayashida, T.; Willers, H.; Brachtel, E. Homeobox B9 Induces Epithelial-to-Mesenchymal Transition-Associated Radioresistance by Accelerating DNA Damage Responses. Proc. Natl. Acad. Sci. USA 2012, 109, 2760–2765. [Google Scholar] [CrossRef] [PubMed]
- Di Maggio, F.M.; Minafra, L.; Forte, G.I.; Cammarata, F.P.; Lio, D.; Messa, C.; Gilardi, M.C.; Bravatà, V. Portrait of Inflammatory Response to Ionizing Radiation Treatment. J. Inflamm. 2015, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an Anti-Inflammatory Agent: Implications to Radiotherapy and Chemotherapy. J. Cell. Physiol. 2019, 234, 5728–5740. [Google Scholar] [CrossRef]
- Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-Induced Fibrosis: Mechanisms and Implications for Therapy. J. Cancer Res. Clin. Oncol. 2015, 141, 1985–1994. [Google Scholar] [CrossRef] [Green Version]
- Yafeng, L.; Jing, W.; Jiawei, Z.; Yingru, X.; Xin, Z.; Danting, L.; Jun, X.; Chang, T.; Min, M.; Xuansheng, D. Construction and Verification of a Radiation Pneumonia Prediction Model Based on Multiple Parameters. Cancer Control. 2021, 28, 10732748211026672. [Google Scholar] [CrossRef]
- Lee, J.C.; Krochak, R.; Blouin, A.; Kanterakis, S.; Chatterjee, S.; Arguiri, E.; Vachani, A.; Solomides, C.C.; Cengel, K.A.; Christofidou-Solomidou, M. Dietary Flaxseed Prevents Radiation-Induced Oxidative Lung Damage, Inflammation and Fibrosis in a Mouse Model of Thoracic Radiation Injury. Cancer Biol. Ther. 2009, 8, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Haddad, Y. Genistein As Radioprotective Against Premature Ovarian Failure. Al-Azhar J. Pharm. Sci. 2019, 59, 152–167. [Google Scholar] [CrossRef]
- Sakat, M.S.; Kılıç, K.; Sahin, A.; Kiziltunc Ozmen, H.; Yıldırım, S.; Egilmez, E. The Protective Efficacy of Hesperidin and Thymol on Radiation-Induced Submandibular Gland Damage. Laryngoscope 2022. [Google Scholar] [CrossRef]
- Musa, A.E.; Omyan, G.; Esmaely, F.; Shabeeb, D. Radioprotective Effect of Hesperidin: A Systematic Review. Medicina 2019, 55, 370. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Nie, Y.; Huang, C.; Zhu, G.; Zhang, X.; Hu, C.; Li, Z.; Gao, Y.; Ma, Z. Ferulic Acid Produces Neuroprotection against Radiation-Induced Neuroinflammation by Affecting NLRP3 Inflammasome Activation. Int. J. Radiat. Biol. 2022, 98, 1442–1451. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Li, W.; Jia, R.; Meng, D.; Zhang, H.; Xia, L. Molecular Mechanism of Ferulic Acid and Its Derivatives in Tumor Progression. Pharmacol. Rep. 2023, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.H.; Bak, D.-H.; Chung, B.Y.; Bai, H.-W.; Kang, B.S. Delphinidin Enhances Radio-Therapeutic Effects via Autophagy Induction and JNK/MAPK Pathway Activation in Non-Small Cell Lung Cancer. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2020, 24, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Mottaghipisheh, J.; Doustimotlagh, A.H.; Irajie, C.; Tanideh, N.; Barzegar, A.; Iraji, A. The Promising Therapeutic and Preventive Properties of Anthocyanidins/Anthocyanins on Prostate Cancer. Cells 2022, 11, 1070. [Google Scholar] [CrossRef] [PubMed]
- Horn, H.F.; Vousden, K.H. Coping with Stress: Multiple Ways to Activate P53. Oncogene 2007, 26, 1306–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gudkov, A.V.; Komarova, E.A. Radioprotection: Smart Games with Death. J. Clin. Investig. 2010, 120, 2270–2273. [Google Scholar] [CrossRef] [Green Version]
- Morita, A.; Takahashi, I.; Sasatani, M.; Aoki, S.; Wang, B.; Ariyasu, S.; Tanaka, K.; Yamaguchi, T.; Sawa, A.; Nishi, Y. A Chemical Modulator of P53 Transactivation That Acts as a Radioprotective Agonist. Mol. Cancer Ther. 2018, 17, 432–442. [Google Scholar] [CrossRef] [Green Version]
- Munshi, A.; Ramesh, R. Mitogen-Activated Protein Kinases and Their Role in Radiation Response. Genes Cancer 2013, 4, 401–408. [Google Scholar] [CrossRef]
- Komorowska, D.; Radzik, T.; Kalenik, S.; Rodacka, A. Natural Radiosensitizers in Radiotherapy: Cancer Treatment by Combining Ionizing Radiation with Resveratrol. Int. J. Mol. Sci. 2022, 23, 10627. [Google Scholar] [CrossRef]
- Yu, C.; Yang, B.; Najafi, M. Targeting of Cancer Cell Death Mechanisms by Curcumin: Implications to Cancer Therapy. Basic Clin. Pharmacol. Toxicol. 2021, 129, 397–415. [Google Scholar] [CrossRef] [PubMed]
- Zoi, V.; Galani, V.; Tsekeris, P.; Kyritsis, A.P.; Alexiou, G.A. Radiosensitization and Radioprotection by Curcumin in Glioblastoma and Other Cancers. Biomedicines 2022, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Zhang, X.; Cao, N.; Chen, C.; Yi, J.; Hao, L.; Ji, Y.; Liu, X.; Lu, J. EGCG Enhances Cancer Cells Sensitivity under 60Coγ Radiation Based on MiR-34a/Sirt1/P53. Food Chem. Toxicol. 2019, 133, 110807. [Google Scholar] [CrossRef]
- Malyarenko, O.S.; Usoltseva, R.V.; Zvyagintseva, T.N.; Ermakova, S.P. Laminaran from Brown Alga Dictyota Dichotoma and Its Sulfated Derivative as Radioprotectors and Radiosensitizers in Melanoma Therapy. Carbohydr. Polym. 2019, 206, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The Effects of Polyphenols and Other Bioactives on Human Health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [Green Version]
- Singla, R.K.; Dubey, A.K.; Garg, A.; Sharma, R.K.; Fiorino, M.; Ameen, S.M.; Haddad, M.A.; Al-Hiary, M. Natural Polyphenols: Chemical Classification, Definition of Classes, Subcategories, and Structures. J. AOAC Int. 2019, 102, 1397–1400. [Google Scholar] [CrossRef]
- Faramarzi, S.; Piccolella, S.; Manti, L.; Pacifico, S. Could Polyphenols Really Be a Good Radioprotective Strategy? Molecules 2021, 26, 4969. [Google Scholar] [CrossRef]
- Das, J.; Ramani, R.; Suraju, M.O. Polyphenol Compounds and PKC Signaling. Biochim. Biophys. Acta (BBA) Gen. Subj. 2016, 1860, 2107–2121. [Google Scholar] [CrossRef] [Green Version]
- Zughaibi, T.A.; Suhail, M.; Tarique, M.; Tabrez, S. Targeting PI3K/Akt/MTOR Pathway by Different Flavonoids: A Cancer Chemopreventive Approach. Int. J. Mol. Sci. 2021, 22, 12455. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.; Chen, K.; Huang, L.; Li, J. Pharmacokinetic Properties and Drug Interactions of Apigenin, a Natural Flavone. Expert Opin. Drug Metab. Toxicol. 2017, 13, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Rithidech, K.N.; Tungjai, M.; Whorton, E.B. Protective Effect of Apigenin on Radiation-Induced Chromosomal Damage in Human Lymphocytes. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2005, 585, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Rašković, A.; Gigov, S.; Čapo, I.; Paut Kusturica, M.; Milijašević, B.; Kojić-Damjanov, S.; Martić, N. Antioxidative and Protective Actions of Apigenin in a Paracetamol-Induced Hepatotoxicity Rat Model. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Paredes-Gonzalez, X.; Fuentes, F.; Su, Z.-Y.; Kong, A.-N.T. Apigenin Reactivates Nrf2 Anti-Oxidative Stress Signaling in Mouse Skin Epidermal JB6 P + Cells through Epigenetics Modifications. AAPS J. 2014, 16, 727–735. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Gonzalez, X.; Fuentes, F.; Jeffery, S.; Saw, C.L.-L.; Shu, L.; Su, Z.-Y.; Kong, A.-N.T. Induction of NRF2-Mediated Gene Expression by Dietary Phytochemical Flavones Apigenin and Luteolin. Biopharm. Drug Dispos. 2015, 36, 440–451. [Google Scholar] [CrossRef]
- Begum, N.; Rajendra Prasad, N.; Kanimozhi, G.; Agilan, B. Apigenin Prevents Gamma Radiation-Induced Gastrointestinal Damages by Modulating Inflammatory and Apoptotic Signalling Mediators. Nat. Prod. Res. 2022, 36, 1631–1635. [Google Scholar] [CrossRef]
- Song, L.; Ma, L.; Cong, F.; Shen, X.; Jing, P.; Ying, X.; Zhou, H.; Jiang, J.; Fu, Y.; Yan, H. Radioprotective Effects of Genistein on HL-7702 Cells via the Inhibition of Apoptosis and DNA Damage. Cancer Lett. 2015, 366, 100–111. [Google Scholar] [CrossRef]
- Fountain, M.D.; McLellan, L.A.; Smith, N.L.; Loughery, B.F.; Rakowski, J.T.; Tse, H.Y.; Hillman, G.G. Isoflavone-Mediated Radioprotection Involves Regulation of Early Endothelial Cell Death and Inflammatory Signaling in Radiation-Induced Lung Injury. Int. J. Radiat. Biol. 2020, 96, 245–256. [Google Scholar] [CrossRef]
- Tuli, H.S.; Tuorkey, M.J.; Thakral, F.; Sak, K.; Kumar, M.; Sharma, A.K.; Sharma, U.; Jain, A.; Aggarwal, V.; Bishayee, A. Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Front. Pharmacol. 2019, 10, 1336. [Google Scholar] [CrossRef] [Green Version]
- Hillman, G.G.; Singh-Gupta, V.; Runyan, L.; Yunker, C.K.; Rakowski, J.T.; Sarkar, F.H.; Miller, S.; Gadgeel, S.M.; Sethi, S.; Joiner, M.C. Soy Isoflavones Radiosensitize Lung Cancer While Mitigating Normal Tissue Injury. Radiother. Oncol. 2011, 101, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Son, T.G.; Gong, E.J.; Bae, M.J.; Kim, S.D.; Heo, K.; Moon, C.; Yang, K.; Kim, J.S. Protective Effect of Genistein on Radiation-Induced Intestinal Injury in Tumor Bearing Mice. BMC Complement. Altern. Med. 2013, 13, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, R.M.; Barshishat-Kupper, M.; Mog, S.R.; McCart, E.A.; Prasanna, P.G.S.; Davis, T.A.; Landauer, M.R. Genistein Protects against Biomarkers of Delayed Lung Sequelae in Mice Surviving High-Dose Total Body Irradiation. J. Radiat. Res. 2008, 49, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.U.; Forman, J.D.; Sarkar, F.H.; Hillman, G.G.; Heath, E.; Vaishampayan, U.; Cher, M.L.; Andic, F.; Rossi, P.J.; Kucuk, O. Soy Isoflavones in Conjunction with Radiation Therapy in Patients with Prostate Cancer. Nutr. Cancer 2010, 62, 996–1000. [Google Scholar] [CrossRef] [Green Version]
- Raffoul, J.J.; Banerjee, S.; Che, M.; Knoll, Z.E.; Doerge, D.R.; Abrams, J.; Kucuk, O.; Sarkar, F.H.; Hillman, G.G. Soy Isoflavones Enhance Radiotherapy in a Metastatic Prostate Cancer Model. Int. J. Cancer 2007, 120, 2491–2498. [Google Scholar] [CrossRef]
- Yashar, C.M.; Spanos, W.J.; Taylor, D.D.; Gercel-Taylor, C. Potentiation of the Radiation Effect with Genistein in Cervical Cancer Cells. Gynecol. Oncol. 2005, 99, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Shin, J.-I.; Shim, J.-H.; Kim, K.-H.; Choi, H.-S.; Kim, J.-W.; Lee, H.-G.; Kim, B.-Y.; Park, S.-N.; Park, O.-J.; Yoon, D.-Y. Sensitization of the Apoptotic Effect of $${$$\backslash$gamma$}$ $-Irradiation in Genistein-Pretreated CaSki Cervical Cancer Cells. J. Microbiol. Biotechnol. 2008, 18, 523–531. [Google Scholar] [PubMed]
- Yan, H.; Jiang, J.; Du, A.; Gao, J.; Zhang, D.; Song, L. Genistein Enhances Radiosensitivity of Human Hepatocellular Carcinoma Cells by Inducing G2/M Arrest and Apoptosis. Radiat. Res. 2020, 193, 286–300. [Google Scholar] [CrossRef]
- Singh, V.K.; Fatanmi, O.O.; Wise, S.Y.; Carpenter, A.; Nakamura-Peek, S.; Serebrenik, A.A.; Kaytor, M.D. A Novel Oral Formulation of BIO 300 Confers Prophylactic Radioprotection from Acute Radiation Syndrome in Mice. Int. J. Radiat. Biol. 2022, 98, 958–967. [Google Scholar] [CrossRef]
- Singh, V.K.; Seed, T.M. BIO 300: A Promising Radiation Countermeasure under Advanced Development for Acute Radiation Syndrome and the Delayed Effects of Acute Radiation Exposure. Expert Opin. Investig. Drugs 2020, 29, 429–441. [Google Scholar] [CrossRef]
- Ouyang, J.; Zhu, K.; Liu, Z.; Huang, J. Prooxidant Effects of Epigallocatechin-3-Gallate in Health Benefits and Potential Adverse Effect. Oxidative Med. Cell. Longev. 2020, 2020, 9723686. [Google Scholar] [CrossRef]
- Alam, M.; Ali, S.; Ashraf, G.M.; Bilgrami, A.L.; Yadav, D.K.; Hassan, M.I. Epigallocatechin 3-Gallate: From Green Tea to Cancer Therapeutics. Food Chem. 2022, 379, 132135. [Google Scholar] [CrossRef] [PubMed]
- Salaheldin, T.A.; Adhami, V.M.; Fujioka, K.; Mukhtar, H.; Mousa, S.A. Photochemoprevention of Ultraviolet Beam Radiation-Induced DNA Damage in Keratinocytes by Topical Delivery of Nanoformulated Epigallocatechin-3-Gallate. Nanomed. Nanotechnol. Biol. Med. 2022, 44, 102580. [Google Scholar] [CrossRef] [PubMed]
- Pianetti, S.; Guo, S.; Kavanagh, K.T.; Sonenshein, G.E. Green Tea Polyphenol Epigallocatechin-3 Gallate Inhibits Her-2/Neu Signaling, Proliferation, and Transformed Phenotype of Breast Cancer Cells. Cancer Res. 2002, 62, 652–655. [Google Scholar] [PubMed]
- Guvvala, P.R.; Ravindra, J.P.; Rajani, C.V.; Sivaram, M.; Selvaraju, S. Protective Role of Epigallocatechin-3-Gallate on Arsenic Induced Testicular Toxicity in Swiss Albino Mice. Biomed. Pharmacother. 2017, 96, 685–694. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, X.; Mei, L.; Wang, H.; Fang, F. Epigallocatechin-3-Gallate (EGCG) Inhibits Imiquimod-Induced Psoriasis-like Inflammation of BALB/c Mice. BMC Complement. Altern. Med. 2016, 16, 334. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Chen, C.; Liu, X.; Kang, Q.; Hao, L.; Huang, J.; Lu, J. Radioprotection of EGCG Based on Immunoregulatory Effect and Antioxidant Activity against 60Coγ Radiation-Induced Injury in Mice. Food Chem. Toxicol. 2020, 135, 111051. [Google Scholar] [CrossRef]
- Zhao, H.; Jia, L.; Chen, G.; Li, X.; Meng, X.; Zhao, X.; Xing, L.; Zhu, W. A Prospective, Three-Arm, Randomized Trial of EGCG for Preventing Radiation-Induced Esophagitis in Lung Cancer Patients Receiving Radiotherapy. Radiother. Oncol. 2019, 137, 186–191. [Google Scholar] [CrossRef]
- Li, X.; Xing, L.; Zhang, Y.; Xie, P.; Zhu, W.; Meng, X.; Wang, Y.; Kong, L.; Zhao, H.; Yu, J. Phase II Trial of Epigallocatechin-3-Gallate in Acute Radiation-Induced Esophagitis for Esophagus Cancer. J. Med. Food 2020, 23, 43–49. [Google Scholar] [CrossRef]
- Zhu, W.; Mei, H.; Jia, L.; Zhao, H.; Li, X.; Meng, X.; Zhao, X.; Xing, L.; Yu, J. Epigallocatechin-3-Gallate Mouthwash Protects Mucosa from Radiation-Induced Mucositis in Head and Neck Cancer Patients: A Prospective, Non-Randomised, Phase 1 Trial. Investig. New Drugs 2020, 38, 1129–1136. [Google Scholar] [CrossRef]
- Zhao, H.; Zhu, W.; Jia, L.; Sun, X.; Chen, G.; Zhao, X.; Li, X.; Meng, X.; Kong, L.; Xing, L. Phase I Study of Topical Epigallocatechin-3-Gallate (EGCG) in Patients with Breast Cancer Receiving Adjuvant Radiotherapy. Br. J. Radiol. 2016, 89, 20150665. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Jia, L.; Chen, G.; Zhao, H.; Sun, X.; Meng, X.; Zhao, X.; Xing, L.; Yu, J.; Zheng, M. Epigallocatechin-3-Gallate Ameliorates Radiation-Induced Acute Skin Damage in Breast Cancer Patients Undergoing Adjuvant Radiotherapy. Oncotarget 2016, 7, 48607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eseberri, I.; Miranda, J.; Lasa, A.; Mosqueda-Solís, A.; González-Manzano, S.; Santos-Buelga, C.; Portillo, M.P. Effects of Quercetin Metabolites on Triglyceride Metabolism of 3T3-L1 Preadipocytes and Mature Adipocytes. Int. J. Mol. Sci. 2019, 20, 264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Hu, M.-J.; Wang, Y.-Q.; Cui, Y.-L. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules 2019, 24, 1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Wang, T.; Long, M.; Li, P. Quercetin: Its Main Pharmacological Activity and Potential Application in Clinical Medicine. Oxidative Med. Cell. Longev. 2020, 2020, 8825387. [Google Scholar] [CrossRef]
- Kale, A.; Pişkin, Ö.; Baş, Y.; Aydın, B.G.; Can, M.; Elmas, Ö.; Büyükuysal, Ç. Neuroprotective Effects of Quercetin on Radiation-Induced Brain Injury in Rats. J. Radiat. Res. 2018, 59, 404–410. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhang, Y.-Y.; Cheng, J.; Zhang, J.-L.; Li, B.-S. Preventive and Therapeutic Effects of Quercetin on Experimental Radiation Induced Lung Injury in Mice. Asian Pac. J. Cancer Prev. 2015, 16, 2909–2914. [Google Scholar] [CrossRef] [Green Version]
- Guven, B.; Can, M.; Piskin, O.; Aydin, B.G.; Karakaya, K.; Elmas, O.; Acikgoz, B. Flavonoids Protect Colon against Radiation Induced Colitis. Regul. Toxicol. Pharmacol. 2019, 104, 128–132. [Google Scholar] [CrossRef]
- Rotelli, A.E.; Guardia, T.; Juárez, A.O.; De la Rocha, N.E.; Pelzer, L.E. Comparative Study of Flavonoids in Experimental Models of Inflammation. Pharmacol. Res. 2003, 48, 601–606. [Google Scholar] [CrossRef]
- Wadsworth, T.L.; Koop, D.R. Effects of the Wine Polyphenolics Quercetin and Resveratrol on Pro-Inflammatory Cytokine Expression in RAW 264.7 Macrophages. Biochem. Pharmacol. 1999, 57, 941–949. [Google Scholar] [CrossRef]
- Filipa Brito, A.; Ribeiro, M.; Margarida Abrantes, A.; Salome Pires, A.; Jorge Teixo, R.; Guilherme Tralhao, J.; Filomena Botelho, M. Quercetin in Cancer Treatment, Alone or in Combination with Conventional Therapeutics? Curr. Med. Chem. 2015, 22, 3025–3039. [Google Scholar] [CrossRef] [Green Version]
- Debes, A.; Oerding, M.; Willers, R.; Göbel, U.; Wessalowski, R. Sensitization of Human Ewing’s Tumor Cells to Chemotherapy and Heat Treatment by the Bioflavonoid Quercetin. Anticancer. Res. 2003, 23, 3359–3366. [Google Scholar] [PubMed]
- Azevedo, J.; Fernandes, I.; Faria, A.; Oliveira, J.; Fernandes, A.; de Freitas, V.; Mateus, N. Antioxidant Properties of Anthocyanidins, Anthocyanidin-3-Glucosides and Respective Portisins. Food Chem. 2010, 119, 518–523. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, H.; Song, L.; Yang, Z.; Qiu, M.; Wang, J.; Shi, S. Anthocyanins: Promising Natural Products with Diverse Pharmacological Activities. Molecules 2021, 26, 3807. [Google Scholar] [CrossRef]
- Kalt, W.; Cassidy, A.; Howard, L.R.; Krikorian, R.; Stull, A.J.; Tremblay, F.; Zamora-Ros, R. Recent Research on the Health Benefits of Blueberries and Their Anthocyanins. Adv. Nutr. 2020, 11, 224–236. [Google Scholar] [CrossRef]
- Targhi, R.G.; Homayoun, M.; Mansouri, S.; Soukhtanloo, M.; Soleymanifard, S.; Seghatoleslam, M. Radio Protective Effect of Black Mulberry Extract on Radiation-Induced Damage in Bone Marrow Cells and Liver in the Rat. Radiat. Phys. Chem. 2017, 130, 297–302. [Google Scholar] [CrossRef]
- Liu, Y.; Tan, D.; Tong, C.; Zhang, Y.; Xu, Y.; Liu, X.; Gao, Y.; Hou, M. Blueberry Anthocyanins Ameliorate Radiation-Induced Lung Injury through the Protein Kinase RNA-Activated Pathway. Chem.-Biol. Interact. 2015, 242, 363–371. [Google Scholar] [CrossRef] [PubMed]
- Tuli, H.S.; Mittal, S.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Upadhyay, S.K.; Barwal, T.S.; Jain, A.; Kaur, G.; Savla, R. Path of Silibinin from Diet to Medicine: A Dietary Polyphenolic Flavonoid Having Potential Anti-Cancer Therapeutic Significance. Semin. Cancer Biol. 2021, 73, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Son, Y.; Lee, H.J.; Rho, J.K.; Chung, S.Y.; Lee, C.G.; Yang, K.; Kim, S.H.; Lee, M.; Shin, I.S.; Kim, J.S. The Ameliorative Effect of Silibinin against Radiation-Induced Lung Injury: Protection of Normal Tissue without Decreasing Therapeutic Efficacy in Lung Cancer. BMC Pulm. Med. 2015, 15, 68. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, M.; Arora, R. The Flavonolignan-Silymarin Protects Enzymatic, Hematological, and Immune System against γ-Radiation-Induced Toxicity. Environ. Toxicol. 2016, 31, 641–654. [Google Scholar] [CrossRef]
- Prasad, R.R.; Paudel, S.; Raina, K.; Agarwal, R. Silibinin and Non-Melanoma Skin Cancers. J. Tradit. Complement. Med. 2020, 10, 236–244. [Google Scholar] [CrossRef]
- Aggarwal, V.; Tuli, H.S.; Thakral, F.; Singhal, P.; Aggarwal, D.; Srivastava, S.; Pandey, A.; Sak, K.; Varol, M.; Khan, M.A. Molecular Mechanisms of Action of Hesperidin in Cancer: Recent Trends and Advancements. Exp. Biol. Med. 2020, 245, 486–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosseinimehr, S.J.; Nemati, A. Radioprotective Effects of Hesperidin against Gamma Irradiation in Mouse Bone Marrow Cells. Br. J. Radiol. 2006, 79, 415–418. [Google Scholar] [CrossRef] [PubMed]
- Kalpana, K.B.; Devipriya, N.; Srinivasan, M.; Menon, V.P. Investigation of the Radioprotective Efficacy of Hesperidin against Gamma-Radiation Induced Cellular Damage in Cultured Human Peripheral Blood Lymphocytes. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2009, 676, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Shaban, N.Z.; Ahmed Zahran, A.M.; El-Rashidy, F.H.; Abdo Kodous, A.S. Protective Role of Hesperidin against γ-Radiation-Induced Oxidative Stress and Apoptosis in Rat Testis. J. Biol. Res.-Thessalon. 2017, 24, 5. [Google Scholar] [CrossRef] [Green Version]
- Sim, H.-J.; Bhattarai, G.; Lee, J.; Lee, J.-C.; Kook, S.-H. The Long-Lasting Radioprotective Effect of Caffeic Acid in Mice Exposed to Total Body Irradiation by Modulating Reactive Oxygen Species Generation and Hematopoietic Stem Cell Senescence-Accompanied Long-Term Residual Bone Marrow Injury. Aging Dis. 2019, 10, 1320–1327. [Google Scholar] [CrossRef] [Green Version]
- Anjaly, K.; Tiku, A.B. Caffeic Acid Phenethyl Ester Induces Radiosensitization via Inhibition of DNA Damage Repair in Androgen-Independent Prostate Cancer Cells. Environ. Toxicol. 2022, 37, 995–1006. [Google Scholar] [CrossRef]
- Gandhi, N.M. Baicalein Protects Mice against Radiation-Induced DNA Damages and Genotoxicity. Mol. Cell. Biochem. 2013, 379, 277–281. [Google Scholar] [CrossRef]
- Joshi, H.A.; Patwardhan, R.S.; Sharma, D.; Sandur, S.K.; Devarajan, P.V. Pre-Clinical Evaluation of an Innovative Oral Nano-Formulation of Baicalein for Modulation of Radiation Responses. Int. J. Pharm. 2021, 595, 120181. [Google Scholar] [CrossRef]
- Maurya, D.K.; Lomte, R. Baicalin Protected Mice against Radiation-Induced Lethality: A Mechanistic Study Employing in Silico and Wet Lab Techniques. Comput. Toxicol. 2022, 23, 100229. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Wang, H. Anticancer Activity of Vicenin-2 against 7, 12 Dimethylbenz [a] Anthracene-Induced Buccal Pouch Carcinoma in Hamsters. J. Biochem. Mol. Toxicol. 2021, 35, e22673. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, X.; Zhang, W.; Rengarajan, T. Vicenin-2 Inhibits Wnt/β-Catenin Signaling and Induces Apoptosis in HT-29 Human Colon Cancer Cell Line. Drug Des. Dev. Ther. 2018, 12, 1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baruah, T.J.; Sharan, R.N.; Kma, L. Vicenin-2: A Potential Radiosensitizer of Non-Small Cell Lung Cancer Cells. Mol. Biol. Rep. 2018, 45, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Tong, M.; Li, Z.; Huang, W.; Jin, Y.; Cao, Q.; Zhou, X.; Tong, G. The Effects of Orientin on Proliferation and Apoptosis of T24 Human Bladder Carcinoma Cells Occurs through the Inhibition of Nuclear Factor-KappaB and the Hedgehog Signaling Pathway. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2019, 25, 9547. [Google Scholar] [CrossRef] [PubMed]
- Jit, B.P.; Pattnaik, S.; Arya, R.; Dash, R.; Sahoo, S.S.; Pradhan, B.; Bhuyan, P.P.; Behera, P.K.; Jena, M.; Sharma, A. Phytochemicals: A Potential next Generation Agent for Radioprotection. Phytomedicine 2022, 106, 154188. [Google Scholar] [CrossRef]
- Mansour, S.Z.; Moawed, F.S.; Elmarkaby, S.M. Protective Effect of 5, 7-Dihydroxyflavone on Brain of Rats Exposed to Acrylamide or γ-Radiation. J. Photochem. Photobiol. B Biol. 2017, 175, 149–155. [Google Scholar] [CrossRef]
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health Benefits of Resveratrol: Evidence from Clinical Studies. Med. Res. Rev. 2019, 39, 1851–1891. [Google Scholar] [CrossRef]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A Double-Edged Sword in Health Benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [Green Version]
- Carsten, R.E.; Bachand, A.M.; Bailey, S.M.; Ullrich, R.L. Resveratrol Reduces Radiation-Induced Chromosome Aberration Frequencies in Mouse Bone Marrow Cells. Radiat. Res. 2008, 169, 633–638. [Google Scholar] [CrossRef] [Green Version]
- Sebastià, N.; Almonacid, M.; Villaescusa, J.I.; Cervera, J.; Such, E.; Silla, M.A.; Soriano, J.M.; Montoro, A. Radioprotective Activity and Cytogenetic Effect of Resveratrol in Human Lymphocytes: An in Vitro Evaluation. Food Chem. Toxicol. 2013, 51, 391–395. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, H.; Zhou, X.; Wang, H.; Yang, Y.; Zhang, J.; Wang, H. The Protective Effects of Resveratrol against Radiation-Induced Intestinal Injury. BMC Complement. Altern. Med. 2017, 17, 410. [Google Scholar] [CrossRef] [Green Version]
- Giordano, A.; Tommonaro, G. Curcumin and Cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansouri, K.; Rasoulpoor, S.; Daneshkhah, A.; Abolfathi, S.; Salari, N.; Mohammadi, M.; Rasoulpoor, S.; Shabani, S. Clinical Effects of Curcumin in Enhancing Cancer Therapy: A Systematic Review. BMC Cancer 2020, 20, 791. [Google Scholar] [CrossRef]
- Tomeh, M.A.; Hadianamrei, R.; Zhao, X. A Review of Curcumin and Its Derivatives as Anticancer Agents. Int. J. Mol. Sci. 2019, 20, 1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotha, R.R.; Luthria, D.L. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules 2019, 24, 2930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, G.-Y.; Kim, H.-B.; Hwang, E.-S.; Lee, S.; Kim, M.-J.; Choi, J.-Y.; Lee, S.-O.; Kim, S.-S.; Park, J.-H. Curcumin Alters Neural Plasticity and Viability of Intact Hippocampal Circuits and Attenuates Behavioral Despair and COX-2 Expression in Chronically Stressed Rats. Mediat. Inflamm. 2017, 2017, 6280925. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Seong, K.M.; Youn, B. Phenylpropanoids in Radioregulation: Double Edged Sword. Exp. Mol. Med. 2011, 43, 323–333. [Google Scholar] [CrossRef]
- Xie, Y.; Zhao, Q.Y.; Li, H.Y.; Zhou, X.; Liu, Y.; Zhang, H. Curcumin Ameliorates Cognitive Deficits Heavy Ion Irradiation-Induced Learning and Memory Deficits through Enhancing of Nrf2 Antioxidant Signaling Pathways. Pharmacol. Biochem. Behav. 2014, 126, 181–186. [Google Scholar] [CrossRef]
- Ryan Wolf, J.; Gewandter, J.S.; Bautista, J.; Heckler, C.E.; Strasser, J.; Dyk, P.; Anderson, T.; Gross, H.; Speer, T.; Dolohanty, L. Utility of Topical Agents for Radiation Dermatitis and Pain: A Randomized Clinical Trial. Support. Care Cancer 2020, 28, 3303–3311. [Google Scholar] [CrossRef]
- Nosrati, H.; Danafar, H.; Rezaeejam, H.; Gholipour, N.; Rahimi-Nasrabadi, M. Evaluation Radioprotective Effect of Curcumin Conjugated Albumin Nanoparticles. Bioorganic Chem. 2020, 100, 103891. [Google Scholar] [CrossRef]
- Zahrani, N.A.A.; El-Shishtawy, R.M.; Asiri, A.M. Recent Developments of Gallic Acid Derivatives and Their Hybrids in Medicinal Chemistry: A Review. Eur. J. Med. Chem. 2020, 204, 112609. [Google Scholar] [CrossRef]
- Nair, G.G.; Nair, C.K.K. Radioprotective Effects of Gallic Acid in Mice. BioMed Res. Int. 2013, 2013, 953097. [Google Scholar] [CrossRef] [Green Version]
- Topsakal, S.; Ozmen, O.; Cicek, E.; Comlekci, S. The Ameliorative Effect of Gallic Acid on Pancreas Lesions Induced by 2.45 GHz Electromagnetic Radiation (Wi-Fi) in Young Rats. J. Radiat. Res. Appl. Sci. 2017, 10, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Materska, M.; Konopacka, M.; Rogoliński, J.; Ślosarek, K. Antioxidant Activity and Protective Effects against Oxidative Damage of Human Cells Induced by X-Radiation of Phenolic Glycosides Isolated from Pepper Fruits Capsicum annuum L. Food Chem. 2015, 168, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-Y.; Lee, H.-J.; Nam, J.-W.; Seo, E.-K.; Lee, Y.-S. Coniferyl Aldehyde Reduces Radiation Damage through Increased Protein Stability of Heat Shock Transcriptional Factor 1 by Phosphorylation. Int. J. Radiat. Oncol. Biol. Phys. 2015, 91, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Lebrilla, C.B.; Liu, J.; Widmalm, G.; Prestegard, J.H. Oligosaccharides and polysaccharides. In Essentials of Glycobiology [Internet], 4th ed.; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2022. [Google Scholar]
- Huang, G.; Mei, X.; Hu, J. The Antioxidant Activities of Natural Polysaccharides. Curr. Drug Targets 2017, 18, 1296–1300. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xue, C.; Mao, X. Radioprotective Effects and Mechanisms of Animal, Plant and Microbial Polysaccharides. Int. J. Biol. Macromol. 2020, 153, 373–384. [Google Scholar] [CrossRef]
- Iqbal, S.; Shah, M.A.; Rasul, A.; Saadullah, M.; Tabassum, S.; Ali, S.; Zafar, M.; Muhammad, H.; Uddin, M.S.; Batiha, G.E.-S. Radioprotective Potential of Nutraceuticals and Their Underlying Mechanism of Action. Anti-Cancer Agents Med. Chem. 2022, 22, 40–52. [Google Scholar]
- Kumar, S.; Tiku, A.B. Immunomodulatory Potential of Acemannan (Polysaccharide from Aloe Vera) against Radiation Induced Mortality in Swiss Albino Mice. Food Agric. Immunol. 2016, 27, 72–86. [Google Scholar] [CrossRef]
- Zhang, T.; Shi, L.; Li, Y.; Mu, W.; Zhang, H.; Li, Y.; Wang, X.; Zhao, W.; Qi, Y.; Liu, L. Polysaccharides Extracted from Rheum Tanguticum Ameliorate Radiation-Induced Enteritis via Activation of Nrf2/HO-1. J. Radiat. Res. 2021, 62, 46–57. [Google Scholar] [CrossRef]
- Wang, L.; Li, X. Radioprotective Effect of Hohenbuehelia Serotina Polysaccharides through Mediation of ER Apoptosis Pathway in Vivo. Int. J. Biol. Macromol. 2019, 127, 18–26. [Google Scholar] [CrossRef]
- Bai, H.; Wang, Z.; Cui, J.; Yun, K.; Zhang, H.; Liu, R.H.; Fan, Z.; Cheng, C. Synergistic Radiation Protective Effect of Purified Auricularia Auricular-Judae Polysaccharide (AAP IV) with Grape Seed Procyanidins. Molecules 2014, 19, 20675–20694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, Y.; Shen, H.; Shen, X.; Nie, Y.; Wang, Y.; Han, T.; Yin, M.; Zhang, Q. Structural Characterization and Radioprotection of Bone Marrow Hematopoiesis of Two Novel Polysaccharides from the Root of Angelica sinensis (Oliv.) Diels. Fitoterapia 2012, 83, 1712–1720. [Google Scholar] [CrossRef] [PubMed]
- Malyarenko, O.S.; Zdobnova, E.V.; Silchenko, A.S.; Kusaykin, M.I.; Ermakova, S.P. Radiosensitizing Effect of the Fucoidan from Brown Alga Fucus Evanescens and Its Derivative in Human Cancer Cells. Carbohydr. Polym. 2019, 205, 465–471. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Sang, M.; Zhuang, H.; Xu, Z. In Vitro and in Vivo Antioxidative and Radioprotective Capacities of Polysaccharide Isolated from Mesona blumes Gum. Starch-Stärke 2017, 69, 1700056. [Google Scholar] [CrossRef]
- Ghavami, L.; Goliaei, B.; Taghizadeh, B.; Nikoofar, A. Effects of Barley β-Glucan on Radiation Damage in the Human Hepatoma Cell Line HepG2. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2014, 775, 1–6. [Google Scholar] [CrossRef]
- Li, N.; Shen, X.; Liu, Y.; Zhang, J.; He, Y.; Liu, Q.; Jiang, D.; Zong, J.; Li, J.; Hou, D. Isolation, Characterization, and Radiation Protection of Sipunculus nudus L. Polysaccharide. Int. J. Biol. Macromol. 2016, 83, 288–296. [Google Scholar] [CrossRef]
- Yang, J.; Shen, M.; Wen, H.; Luo, Y.; Huang, R.; Rong, L.; Xie, J. Recent Advance in Delivery System and Tissue Engineering Applications of Chondroitin Sulfate. Carbohydr. Polym. 2020, 230, 115650. [Google Scholar] [CrossRef]
- Lee, W.; Kang, N.; Kim, E.-A.; Yang, H.-W.; Oh, J.-Y.; Fernando, I.P.S.; Kim, K.-N.; Ahn, G.; Jeon, Y.-J. Radioprotective Effects of a Polysaccharide Purified from Lactobacillus Plantarum-Fermented Ishige Okamurae against Oxidative Stress Caused by Gamma Ray-Irradiation in Zebrafish in Vivo Model. J. Funct. Foods 2017, 28, 83–89. [Google Scholar] [CrossRef]
- Sun, M.; Cao, H.; Sun, L.; Dong, S.; Bian, Y.; Han, J.; Zhang, L.; Ren, S.; Hu, Y.; Liu, C. Antitumor Activities of Kushen: Literature Review. Evid. Based Complement. Altern. Med. 2012, 2012, 373219. [Google Scholar] [CrossRef] [Green Version]
- Sverdlov, R.L.; Brinkevich, S.D.; Shadyro, O.I. Effects of Tryptophan Derivatives and β-Carboline Alkaloids on Radiation-and Peroxide-Induced Transformations of Ethanol. Radiat. Phys. Chem. 2014, 98, 77–85. [Google Scholar] [CrossRef]
- Kim, H.-G.; Jang, S.-S.; Lee, J.-S.; Kim, H.-S.; Son, C.-G. Panax Ginseng Meyer Prevents Radiation-Induced Liver Injury via Modulation of Oxidative Stress and Apoptosis. J. Ginseng Res. 2017, 41, 159–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, Z.; Su, Y.; Yang, S.; Yin, L.; Wang, W.; Yi, Y.; Fenton, B.M.; Zhang, L.; Okunieff, P. Protective Effect of Esculentoside A on Radiation-Induced Dermatitis and Fibrosis. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Arunachalam, K.D.; Arun, L.B.; Annamalai, S.K.; Hari, S. Gymnemagenin-a Triterpene Saponin Prevents γ-Radiation Induced Cellular DNA Damage. In Proceedings of the ICRB-2014: International Conference on Radiation Biology: Frontiers in Radiobiology—Immunomodulation, Countermeasures and Therapeutics, New Delhi, India, 11–13 November 2014. [Google Scholar]
- Kim, K.M.; Im, A.-R.; Park, S.K.; Shin, H.S.; Chae, S. Protective Effects of Timosaponin AIII against UVB-Radiation Induced Inflammation and DNA Injury in Human Epidermal Keratinocytes. Biol. Pharm. Bull. 2019, 42, 1524–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, X.; Zhang, M.; Li, X.; Lai, F.; Zhao, G. Biocatalytic Synthesis of Acylated Derivatives of Troxerutin: Their Bioavailability and Antioxidant Properties in Vitro. Microb. Cell Factories 2018, 17, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurya, D.K.; Salvi, V.P.; Nair, C.K.K. Radioprotection of Normal Tissues in Tumor-Bearing Mice by Troxerutin. J. Radiat. Res. 2004, 45, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Zhang, W.-B.; Cai, X.-H.; Qiu, P.-Y.; Hao, M.-H.; Lu, D.-D. Activating AKT to Inhibit JNK by Troxerutin Antagonizes Radiation-Induced PTEN Activation. Eur. J. Pharmacol. 2017, 795, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Bosebabu, B.; Cheruku, S.P.; Chamallamudi, M.R.; Nampoothiri, M.; Shenoy, R.R.; Nandakumar, K.; Parihar, V.K.; Kumar, N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev. Med. Chem. 2020, 20, 988–1000. [Google Scholar] [CrossRef]
- Kanimozhi, P.; Prasad, N.R. Antioxidant Potential of Sesamol and Its Role on Radiation-Induced DNA Damage in Whole-Body Irradiated Swiss Albino Mice. Environ. Toxicol. Pharmacol. 2009, 28, 192–197. [Google Scholar] [CrossRef]
- Kumar, A.; Selvan, T.G.; Tripathi, A.M.; Choudhary, S.; Khan, S.; Adhikari, J.S.; Chaudhury, N.K. Sesamol Attenuates Genotoxicity in Bone Marrow Cells of Whole-Body γ-Irradiated Mice. Mutagenesis 2015, 30, 651–661. [Google Scholar] [CrossRef]
- Vasudeva, V.; Tenkanidiyoor, Y.S.; Radhakrishna, V.; Shivappa, P.; Lakshman, S.P.; Fernandes, R.; Patali, K.A. Palliative Effects of Lutein Intervention in Gamma-Radiation-Induced Cellular Damages in Swiss Albino Mice. Indian J. Pharmacol. 2017, 49, 26. [Google Scholar]
- Giardi, M.T.; Touloupakis, E.; Bertolotto, D.; Mascetti, G. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers. Int. J. Mol. Sci. 2013, 14, 17168–17192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boerma, M.; Roberto, K.A.; Hauer-Jensen, M. Prevention and Treatment of Functional and Structural Radiation Injury in the Rat Heart by Pentoxifylline and Alpha-Tocopherol. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serebrenik, A.A.; Verduyn, C.W.; Kaytor, M.D. Safety, Pharmacokinetics, and Biomarkers of an Amorphous Solid Dispersion of Genistein, a Radioprotectant, in Healthy Volunteers. Clin. Pharmacol. Drug Dev. 2023, 12, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Suhail, M.; Rehan, M.; Tarique, M.; Tabrez, S.; Husain, A.; Zughaibi, T.A. Targeting a Transcription Factor NF-ΚB by Green Tea Catechins Using in Silico and in Vitro Studies in Pancreatic Cancer. Front. Nutr. 2023, 9, 1078642. [Google Scholar] [CrossRef]
- El Bakary, N.M.; Abdel-Rafei, M.K.; Maarouf, R.E.; Mansour, S.Z.; Thabet, N.M. Trans-Resveratrol Alleviates Hepatic and Renal Injury in γ-Irradiated Rats. Hum. Exp. Toxicol. 2022, 41, 09603271221142817. [Google Scholar] [CrossRef]
- Dobrzyńska, M.M.; Gajowik, A. Protection and Mitigation by Resveratrol of DNA Damage Induced in Irradiated Human Lymphocytes In Vitro. Radiat. Res. 2022, 197, 149–156. [Google Scholar] [CrossRef]
- Evans, A.C.; Martin, K.A.; Saxena, M.; Bicher, S.; Wheeler, E.; Cordova, E.J.; Porada, C.D.; Almeida-Porada, G.; Kato, T.A.; Wilson, P.F. Curcumin Nanodiscs Improve Solubility and Serve as Radiological Protectants against Ionizing Radiation Exposures in a Cell-Cycle Dependent Manner. Nanomaterials 2022, 12, 3619. [Google Scholar] [CrossRef]
- Lledó, I.; Ibáñez, B.; Melero, A.; Montoro, A.; Merino-Torres, J.F.; San Onofre, N.; Soriano, J.M. Vitamins and Radioprotective Effect: A Review. Antioxidants 2023, 12, 611. [Google Scholar] [CrossRef]
- Alani, E.A.; Almusawi, M.S.; Mahdi, A.H. Evaluation the role of vitamin c as a radiation protective agent using γ-h2ax for signaling of DNA damage on irradiated mice testis. Period. Tche Quim. 2020, 17, 128–139. [Google Scholar] [CrossRef]
- Nuszkiewicz, J.; Woźniak, A.; Szewczyk-Golec, K. Ionizing Radiation as a Source of Oxidative Stress—The Protective Role of Melatonin and Vitamin D. Int. J. Mol. Sci. 2020, 21, 5804. [Google Scholar] [CrossRef]
- Yumusak, N.; Sadic, M.; Akbulut, A.; Aydinbelge, F.N.; Koca, G.; Korkmaz, M. Beneficial Effects of Vitamin E on Radioiodine Induced Gastrointestinal Damage: An Experimental and Pathomorphological Study. Bratisl. Med. J./Bratisl. Lek. Listy 2019, 120, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Monoglucosyl-Rutin as a Potential Radioprotector in Mammalian Cells—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/24788331/ (accessed on 27 January 2023).
- Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/32033222/ (accessed on 27 January 2023).
- Yu, H.; Yamashita, S. Radical Scavenging and Chemical Repair of Rutin Observed by Pulse Radiolysis: As a Basis for Radiation Protection. Free. Radic. Res. 2019, 53, 1005–1013. [Google Scholar] [CrossRef] [PubMed]
- The Anticancer Potential of the Dietary Polyphenol Rutin: Current Status, Challenges, and Perspectives—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/33054344/ (accessed on 27 January 2023).
- Obrador, E.; Salvador, R.; Villaescusa, J.I.; Soriano, J.M.; Estrela, J.M.; Montoro, A. Radioprotection and Radiomitigation: From the Bench to Clinical Practice. Biomedicines 2020, 8, 461. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-A.; Ha, S.K.; Kim, Y.-C.; Choi, I. Effects of Friedelin on the Intestinal Permeability and Bioavailability of Apigenin. Pharm. Rep. 2017, 69, 1044–1048. [Google Scholar] [CrossRef] [PubMed]
Group | Agent | Natural Sources | Mechanism of Action | Trial Status | Reference |
---|---|---|---|---|---|
Polyphenols | Genistein | Soybean | Free radical scavenging; anti-inflammatory | I, II | [119,215] |
EGCG | Tea, Camellia sinensis | Free radical scavenging; inhibiting lipid peroxidation, ROS generation and apoptosis; reducing DNA damage; regulating immune activity | I, II | [127,128,129,130,131,216] | |
Quercetin | Berries, shallots | Free radical scavenging; increasing DNA damage repair | II | [25,136,137] | |
Resveratrol | Soy, grapes, peanuts | Free radical scavenging; inhibiting lipid peroxidation and apoptosis; regulating antioxidant enzymes | I, II, III | [27,28,90,217,218] | |
Curcumin | Curcuma longa | Free radical scavenging; inhibiting lipid peroxidation; regulating antioxidant enzymes; anti-inflammatory | I, II, III | [92,178,219] | |
Polysaccharides | ASP | Astragalus | Reducing ALT, AST, and LDH levels | II | [32,33] |
SP | Schisandra | Protecting immunoglobulins and inhibiting apoptosis | Preclinical | [34] | |
HSP | Hohenbuehelia serotina | Blocking the mitochondrial apoptosis pathway | Preclinical | [35,191] | |
Alkaloids | Matrine | Sophora flavescens | Modulating radiation-induced multiple signaling pathways | Preclinical | [38] |
Ligustrazine | Rhizoma Chuanxiong | Inhibiting ROS generation and apoptosis; reducing DNA damage | Preclinical | [39] | |
β-Carboline | Picrasma quassioides | Free radical scavenging | Preclinical | [201] | |
Saponins | Ginsenosides | Ginseng | Inhibiting apoptosis | Preclinical | [36] |
ASS | Acanthopanax senticosus | Free radical scavenging; regulating immune activity | Preclinical | [37] | |
Others | Sesamol | Sesame, sunflower | DNA damage repair; inhibiting lipid peroxidation | Preclinical | [209,210,211] |
Vitamin C | Citrus fruits, berries | Antioxidant; free-radical scavenging | I, II, III | [220,221,222] | |
Vitamin E | Vegetable oils, nuts | Antioxidant; free-radical scavenging, inhibiting apoptosis | I, II, III | [220,223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Huang, Y.; Li, Z.; Wu, H.; Zou, B.; Xu, Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers 2023, 15, 3585. https://doi.org/10.3390/cancers15143585
Zhang Y, Huang Y, Li Z, Wu H, Zou B, Xu Y. Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers. 2023; 15(14):3585. https://doi.org/10.3390/cancers15143585
Chicago/Turabian StyleZhang, Yi, Ying Huang, Zheng Li, Hanyou Wu, Bingwen Zou, and Yong Xu. 2023. "Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities" Cancers 15, no. 14: 3585. https://doi.org/10.3390/cancers15143585
APA StyleZhang, Y., Huang, Y., Li, Z., Wu, H., Zou, B., & Xu, Y. (2023). Exploring Natural Products as Radioprotective Agents for Cancer Therapy: Mechanisms, Challenges, and Opportunities. Cancers, 15(14), 3585. https://doi.org/10.3390/cancers15143585