Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Genetic Basis of Radiation Sensitivity
- Cell cycle. Cells that are at or close to the mitotic (M) phase are the most sensitive.
- Cell cycle checkpoint. Mutated cells that lack checkpoint function proceed to the M phase with damaged chromosomes leading to a higher risk of cell death.
- DNA repair. Improper DNA repair functioning leads to the maintenance of genetic instability or misrepair of DSBs causing cell lethality.
Gene Symbol | Syndrome | Clinical References | In Vitro/Preclinical References | Level of Evidence |
---|---|---|---|---|
ATM | Ataxia-telangiectasia | [9,13,14,15,16,17,18,19,20] | [21,22,23,24,25,26,27,28,29,30] | **** |
ATR | Seckel syndrome | n/a | [31] | * |
BLM | Bloom syndrome | [32] | [33,34,35] | ** |
BRCA1/2 | n/a | [13,36] | [37,38,39,40,41] | **** |
CHK1/2 | n/a | n/a | [42,43,44,45,46,47,48,49,50] | ** |
FA complementation groups, including FANCA | Fanconi anemia | [8,51,52,53] | [35,54,55,56,57,58] | **** |
LIG4 | Ligase IV syndrome | [59] | [30,60,61,62] | *** |
MLH1, MSH2 | Lynch syndrome | n/a | [63,64] | * |
MRE11 | Ataxia-telangiectasia-like disorder | n/a | [65,66] | * |
NBS1/NBN | Nijmegen breakage syndrome | [67,68] | [29,69,70,71,72,73,74] | *** |
NF1 | Neurofibromatosis type 1 | n/a | [75,76] | * |
PARP1 | n/a | n/a | [77,78,79,80,81] | ** |
PTEN | Cowden syndrome | n/a | [82,83,84,85] | ** |
PTCH1 | Gorlin syndrome (nevoid basal cell carcinoma syndrome) | n/a | [86,87,88] | ** |
RAD50 | Nijmegen breakage-like syndrome | n/a | [89,90] | * |
RAD51 | n/a | [91] | [92,93,94,95,96,97] | *** |
RB1 | Retinoblastoma | n/a | [98,99,100] | ** |
RNF168 | RIDDLE syndrome | n/a | [101,102,103] | ** |
SMC1A | Cornelia de Lange syndrome | n/a | [104] | * |
STAT3 | Hyperimmunoglobulin E syndrome | n/a | [105] | * |
TP53 | Li-Fraumeni syndrome | [106] | [27,28,107,108] | *** |
XPD/ERCC2 | Xeroderma pigmentosum | n/a | [109] | * |
WEE1 | n/a | n/a | [110,111,112,113,114] | ** |
- Genomic level (such as mutation or chromosomal aberration)
- Transcriptome level (such as mRNA [messenger ribonucleic acid] expression)
- Epigenetic level (such as DNA methylation)
3. Gatekeeper and Caretaker Genes
3.1. Cell Cycle Checkpoint “Gatekeeper” Genes
3.2. DNA Repair “Caretaker” Genes
4. The Role of Molecular Testing in Identifying Radiosensitizing Genes
5. Moving towards Genomically-Guided Radiation Treatment
5.1. Omission of Radiation Treatment
5.2. Radiation Dose to Tumor
5.3. Volume Delineation
5.4. Combining with Systemic Therapy
6. Precision Medicine in Today’s Radiation Oncology Clinic—The Example of Genomically-Guided Radiation Treatment in Breast Cancer
7. Discussion and Future Direction
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Burnet, N.G. Defining the tumour and target volumes for radiotherapy. Cancer Imaging 2004, 4, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Baskar, R.; Lee, K.A.; Yeo, R.; Yeoh, K.-W. Cancer and Radiation Therapy: Current Advances and Future Directions. Int. J. Med. Sci. 2012, 9, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: A review. Orphanet J. Rare Dis. 2016, 11, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.L.; Holcomb, T.M.; Morrissey, R.W. Radiation Reaction in Ataxia Telangiectasia. Arch. Pediatr. Adolesc. Med. 1968, 116, 557–558. [Google Scholar] [CrossRef]
- Swift, M.; Morrell, D.; Massey, R.B.; Chase, C.L. Incidence of Cancer in 161 Families Affected by Ataxia–Telangiectasia. N. Engl. J. Med. 1991, 325, 1831–1836. [Google Scholar] [CrossRef]
- Hall, E.J.; Giaccia, A.J. Radiobiology for the Radiologist, 7th ed.; Wolters Kluwer Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012. [Google Scholar]
- El-Nachef, L.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Berthel, E.; Sonzogni, L.; Ferlazzo, M.L.; Bouchet, A.; Leblond, P.; Combemale, P.; et al. Human Radiosensitivity and Radiosusceptibility: What Are the Differences? Int. J. Mol. Sci. 2021, 22, 7158. [Google Scholar] [CrossRef]
- Alter, B.P. Radiosensitivity in Fanconi’s anemia patients. Radiother. Oncol. 2002, 62, 345–347. [Google Scholar] [CrossRef]
- Bremer, M.; Klöpper, K.; Yamini, P.; Bendix-Waltes, R.; Dörk, T.; Karstens, J.H. Clinical radiosensitivity in breast cancer patients carrying pathogenic ATM gene mutations: No observation of increased radiation-induced acute or late effects. Radiother. Oncol. 2003, 69, 155–160. [Google Scholar] [CrossRef]
- Gatti, R.A.; Boder, E.; Good, R.A. Immunodeficiency, radiosensitivity, and the XCIND syndrome. Immunol. Res. 2007, 38, 87–101. [Google Scholar] [CrossRef]
- Pollard, J.M.; Gatti, R.A. Clinical Radiation Sensitivity With DNA Repair Disorders: An Overview. Int. J. Radiat. Oncol. 2009, 74, 1323–1331. [Google Scholar] [CrossRef]
- Gonçalves, D.; Pires, A.S.; Marques, I.A.; Gomes, I.; Sousa, G.; Botelho, M.F.; Abrantes, A.M. An Overview on Radiation Sensitivity in Hereditary Breast and Ovarian Cancer Syndrome. Cancers 2022, 14, 3254. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Kim, H.S.; Kim, S.-S.; Shim, H.S.; Yang, A.J.; Lee, J.J.B.; Yoon, H.I.; Ahn, J.B.; Chang, J.S. Increased Radiosensitivity of Solid Tumors Harboring ATM and BRCA1/2 Mutations. Cancer Res. Treat. 2022, 54, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Kozlov, S.; McKay, M.J.; Woods, R.; Birrell, G.; Sprung, C.N.; Murrell, D.F.; Wangoo, K.; Teng, L.; Kearsley, J.H.; et al. Low levels of ATM in breast cancer patients with clinical radiosensitivity. Genome Integr. 2010, 1, 9. [Google Scholar] [CrossRef] [PubMed]
- Aghamohammadi, A.; Akrami, S.M.; Yaghmaie, M.; Rezaei, N.; Azizi, G.; Yaseri, M.; Nosrati, H.; Zaki-Dizaji, M. Individual Radiosensitivity Assessment of the Families of Ataxia-Telangiectasia Patients by G2-Checkpoint Abrogation. Sultan Qaboos Univ. Med J. [SQUMJ] 2019, 18, e440–e446. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, M.; Bi, N.; Fang, M.; Sun, T.; Ji, W.; Tan, W.; Zhao, L.; Yu, D.; Lin, D.; et al. ATM Polymorphisms Are Associated With Risk of Radiation-Induced Pneumonitis. Int. J. Radiat. Oncol. 2010, 77, 1360–1368. [Google Scholar] [CrossRef]
- Iannuzzi, C.M.; Atencio, D.P.; Green, S.; Stock, R.G.; Rosenstein, B.S. ATM mutations in female breast cancer patients predict for an increase in radiation-induced late effects. Int. J. Radiat. Oncol. 2002, 52, 606–613. [Google Scholar] [CrossRef]
- Alsbeih, G.; El-Sebaie, M.; Al-Rajhi, N.; Al-Harbi, N.; Al-Hadyan, K.; Al-Qahtani, S.; Alsubael, M.; Al-Shabanah, M.; Moftah, B. Among 45 variants in 11 genes, HDM2 promoter polymorphisms emerge as new candidate biomarker associated with radiation toxicity. 3 Biotech 2013, 4, 137–148. [Google Scholar] [CrossRef]
- Pitter, K.L.; Casey, D.L.; Lu, Y.C.; Hannum, M.; Zhang, Z.; Song, X.; Pecorari, I.; McMillan, B.; Ma, J.; Samstein, R.M.; et al. Pathogenic ATM Mutations in Cancer and a Genetic Basis for Radiotherapeutic Efficacy. JNCI J. Natl. Cancer Inst. 2020, 113, 266–273. [Google Scholar] [CrossRef]
- Andreassen, C.N.; Rosenstein, B.S.; Kerns, S.L.; Ostrer, H.; De Ruysscher, D.; Cesaretti, J.A.; Barnett, G.C.; Dunning, A.M.; Dorling, L.; West, C.M.L.; et al. Individual patient data meta-analysis shows a significant association between the ATM rs1801516 SNP and toxicity after radiotherapy in 5456 breast and prostate cancer patients. Radiother. Oncol. 2016, 121, 431–439. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, Y.; Chang, H.; Hu, T.; Wang, J.; Xie, Y.; Cheng, J. The Role and Mechanism of ATM-Mediated Autophagy in the Transition From Hyper-Radiosensitivity to Induced Radioresistance in Lung Cancer Under Low-Dose Radiation. Front. Cell Dev. Biol. 2021, 9. [Google Scholar] [CrossRef]
- Le Reun, E.; Bodgi, L.; Granzotto, A.; Sonzogni, L.; Ferlazzo, M.L.; Al-Choboq, J.; El-Nachef, L.; Restier-Verlet, J.; Berthel, E.; Devic, C.; et al. Quantitative Correlations between Radiosensitivity Biomarkers Show That the ATM Protein Kinase Is Strongly Involved in the Radiotoxicities Observed after Radiotherapy. Int. J. Mol. Sci. 2022, 23, 10434. [Google Scholar] [CrossRef] [PubMed]
- Kühne, M.; Riballo, E.; Rief, N.; Rothkamm, K.; Jeggo, P.A.; Löbrich, M. A Double-Strand Break Repair Defect in ATM-Deficient Cells Contributes to Radiosensitivity. Cancer Res 2004, 64, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Hashimoto, T.; Urushihara, Y.; Shiga, S.; Takeda, K.; Jingu, K.; Hosoi, Y. Knockdown of AMPKα decreases ATM expression and increases radiosensitivity under hypoxia and nutrient starvation in an SV40-transformed human fibroblast cell line, LM217. Biochem. Biophys. Res. Commun. 2018, 495, 2566–2572. [Google Scholar] [CrossRef] [PubMed]
- Royba, E.; Miyamoto, T.; Akutsu, S.N.; Hosoba, K.; Tauchi, H.; Kudo, Y.; Tashiro, S.; Yamamoto, T.; Matsuura, S. Evaluation of ATM heterozygous mutations underlying individual differences in radiosensitivity using genome editing in human cultured cells. Sci. Rep. 2017, 7, 5996. [Google Scholar] [CrossRef]
- Gutiérrez-Enríquez, S.; Fernet, M.; Dörk, T.; Bremer, M.; Lauge, A.; Stoppa-Lyonnet, D.; Moullan, N.; Angèle, S.; Hall, J. Functional consequences of ATM sequence variants for chromosomal radiosensitivity. Genes Chromosom. Cancer 2004, 40, 109–119. [Google Scholar] [CrossRef]
- Williams, J.R.; Zhang, Y.; Russell, J.; Koch, C.; Little, J.B. Human tumor cells segregate into radiosensitivity groups that associate with ATM and TP53 status. Acta Oncol. 2007, 46, 628–638. [Google Scholar] [CrossRef]
- Williams, J.R.; Zhang, Y.; Zhou, H.; Russell, J.; Gridley, D.S.; Koch, C.J.; Little, J.B. Genotype-dependent radiosensitivity: Clonogenic survival, apoptosis and cell-cycle redistribution. Int. J. Radiat. Biol. 2008, 84, 151–164. [Google Scholar] [CrossRef]
- Distel, L.V.; Neubauer, S.; Keller, U.; Sprung, C.N.; Sauer, R.; Grabenbauer, G.G. Individual differences in chromosomal aberrations after in vitro irradiation of cells from healthy individuals, cancer and cancer susceptibility syndrome patients. Radiother. Oncol. 2006, 81, 257–263. [Google Scholar] [CrossRef]
- Strasser, H.; Grabenbauer, G.G.; Sprung, C.N.; Sauer, R.; Distel, L.V.R. DNA Double-Strand Break Induction and Repair in Irradiated Lymphoblastoid, Fibroblast Cell Lines and White Blood Cells from ATM, NBS and Radiosensitive Patients. Strahlenther. Onkol. 2007, 183, 447–453. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Powell, S.N.; Iliakis, G.; Wang, Y. ATR Affecting Cell Radiosensitivity Is Dependent on Homologous Recombination Repair but Independent of Nonhomologous End Joining. Cancer Res 2004, 64, 7139–7143. [Google Scholar] [CrossRef]
- Kataoka, M.; Kawamura, M.; Hamamoto, K.; Takemiya, M.; Miki, Y. Radiation-induced oesophageal stricture in a case of Bloom’s syndrome. Clin. Oncol. 1989, 1, 47–48. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.J.; Marchese, M.J.; Astor, M.B.; Morse, T. Response of cells of human origin, normal and malignant, to acute and low dose rate irradiation. Int. J. Radiat. Oncol. 1986, 12, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Aurias, A.; Antoine, J.-L.; Assathiany, R.; Odievre, M.; Dutrillaux, B. Radiation sensitivity of bloom’s syndrome lymphocytes during S and G2 phases. Cancer Genet. Cytogenet. 1985, 16, 131–136. [Google Scholar] [CrossRef]
- Parshad, R.; Sanford, K.K.; Jones, G.M. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer. Proc. Natl. Acad. Sci. USA 1985, 82, 5400–5403. [Google Scholar] [CrossRef] [PubMed]
- Huszno, J.; Budryk, M.; Kołosza, Z.; Nowara, E. The Influence of BRCA1/BRCA2 Mutations on Toxicity Related to Chemotherapy and Radiotherapy in Early Breast Cancer Patients. Oncology 2013, 85, 278–282. [Google Scholar] [CrossRef]
- Zhao, W.; Hu, H.; Mo, Q.; Guan, Y.; Li, Y.; Du, Y.; Li, L. Function and mechanism of combined PARP-1 and BRCA genes in regulating the radiosensitivity of breast cancer cells. Int. J. Clin. Exp. Pathol. 2019, 12, 3915–3920. [Google Scholar]
- Baert, A.; Depuydt, J.; Van Maerken, T.; Poppe, B.; Malfait, F.; Van Damme, T.; De Nobele, S.; Perletti, G.; De Leeneer, K.; Claes, K.B.; et al. Analysis of chromosomal radiosensitivity of healthy BRCA2 mutation carriers and non-carriers in BRCA families with the G2 micronucleus assay. Oncol. Rep. 2017, 37, 1379–1386. [Google Scholar] [CrossRef]
- Ernestos, B.; Nikolaos, P.; Koulis, G.; Eleni, R.; Konstantinos, B.; Alexandra, G.; Michael, K. Increased Chromosomal Radiosensitivity in Women Carrying BRCA1/BRCA2 Mutations Assessed With the G2 Assay. Int. J. Radiat. Oncol. 2010, 76, 1199–1205. [Google Scholar] [CrossRef]
- Baeyens, A.; Thierens, H.; Claes, K.; Poppe, B.; De Ridder, L.; Vral, A. Chromosomal radiosensitivity in BRCA1 and BRCA2 mutation carriers. Int. J. Radiat. Biol. 2004, 80, 745–756. [Google Scholar] [CrossRef]
- Beucher, A.; Deckbar, D.; Schumann, E.; Krempler, A.; Frankenberg-Schwager, M.; Löbrich, M. Elevated radiation-induced γH2AX foci in G2 phase heterozygous BRCA2 fibroblasts. Radiother. Oncol. 2011, 101, 46–50. [Google Scholar] [CrossRef]
- Zhou, Z.-R.; Yang, Z.-Z.; Wang, S.-J.; Zhang, L.; Luo, J.-R.; Feng, Y.; Yu, X.-L.; Chen, X.-X.; Guo, X.-M. The Chk1 inhibitor MK-8776 increases the radiosensitivity of human triple-negative breast cancer by inhibiting autophagy. Acta Pharmacol. Sin. 2017, 38, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ma, Z.; Xiao, Z.; Liu, H.; Dou, Z.; Feng, X.; Shi, H. Chk1 knockdown confers radiosensitization in prostate cancer stem cells. Oncol. Rep. 2012, 28, 2247–2254. [Google Scholar] [CrossRef]
- Borst, G.R.; McLaughlin, M.; Kyula, J.N.; Neijenhuis, S.; Khan, A.; Good, J.; Zaidi, S.; Powell, N.G.; Meier, P.; Collins, I.; et al. Targeted Radiosensitization by the Chk1 Inhibitor SAR-020106. Int. J. Radiat. Oncol. 2013, 85, 1110–1118. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Lai, G.; Wan, F.; Xiao, Z.; Zeng, L.; Wang, X.; Ye, F.; Lei, T. Knockdown of Checkpoint Kinase 1 Is Associated with the Increased Radiosensitivity of Glioblastoma Stem-Like Cells. Tohoku J. Exp. Med. 2012, 226, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Bridges, K.A.; Chen, X.; Liu, H.; Rock, C.; Buchholz, T.A.; Shumway, S.D.; Skinner, H.D.; Meyn, R.E. MK-8776, a novel chk1 kinase inhibitor, radiosensitizes p53-defective human tumor cells. Oncotarget 2016, 7, 71660–71672. [Google Scholar] [CrossRef]
- Choi, C.; Cho, W.K.; Park, S.; Shin, S.-W.; Park, W.; Kim, H.; Choi, D.H. Checkpoint Kinase 1 (CHK1) Inhibition Enhances the Sensitivity of Triple-Negative Breast Cancer Cells to Proton Irradiation via Rad51 Downregulation. Int. J. Mol. Sci. 2020, 21, 2691. [Google Scholar] [CrossRef]
- Ma, Z.; Yao, G.; Zhou, B.; Fan, Y.; Gao, S.; Feng, X. The Chk1 inhibitor AZD7762 sensitises p53 mutant breast cancer cells to radiation in vitro and in vivo. Mol. Med. Rep. 2012, 6, 897–903. [Google Scholar] [CrossRef]
- Liu, X.-Q.; Chen, W.; Qiao, T.; Yuan, S. Impact of CHK2-small interfering RNA on CpG ODN7909-enhanced radiosensitivity in lung cancer A549 cells. OncoTargets Ther. 2012, 5, 425–431. [Google Scholar] [CrossRef]
- Riesterer, O.; Matsumoto, F.; Wang, L.; Pickett, J.; Molkentine, D.; Giri, U.; Milas, L.; Raju, U. A novel Chk inhibitor, XL-844, increases human cancer cell radiosensitivity through promotion of mitotic catastrophe. Investig. New Drugs 2009, 29, 514–522. [Google Scholar] [CrossRef]
- Bremer, M.; Schindler, D.; Groß, M.; Dörk, T.; Morlot, S.; Karstens, J.H. Fanconi’s Anemia and Clinical Radiosensitivity. Strahlenther. Onkol. 2003, 179, 748–753. [Google Scholar] [CrossRef]
- Birkeland, A.C.; Auerbach, A.D.; Sanborn, E.; Parashar, B.; Kuhel, W.I.; Chandrasekharappa, S.C.; Smogorzewska, A.; Kutler, D.I. Postoperative Clinical Radiosensitivity in Patients with Fanconi Anemia and Head and Neck Squamous Cell Carcinoma. Arch. Otolaryngol. Neck Surg. 2011, 137, 930–934. [Google Scholar] [CrossRef] [PubMed]
- Marcou, Y.; D’Andrea, A.; A Jeggo, P.; Plowman, P.N. Normal cellular radiosensitivity in an adult Fanconi anaemia patient with marked clinical radiosensitivity. Radiother. Oncol. 2001, 60, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Djuzenova, C.; Flentje, M.; Plowman, P.N. Radiation Response in Vitro of Fibroblasts from a Fanconi Anemia Patient with Marked Clinical Radiosensitivity. Strahlenther. Onkol. 2004, 180, 789–797. [Google Scholar] [CrossRef]
- Bigelow, S.B.; Rary, J.; Bender, M. G2 chromosomal radiosensitivity in Fanconi’s anemia. Mutat. Res. Mol. Mech. Mutagen. 1979, 63, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Berhane, H.; Epperly, M.W.; Goff, J.; Kalash, R.; Cao, S.; Franicola, D.; Zhang, X.; Shields, D.; Houghton, F.; Wang, H.; et al. Radiologic Differences between Bone Marrow Stromal and Hematopoietic Progenitor Cell Lines from Fanconi Anemia (Fancd2–/–) Mice. Radiat. Res. 2014, 181, 76–89. [Google Scholar] [CrossRef]
- Mohseni-Meybodi, A.; Mozdarani, H.; Mozdarani, S. DNA damage and repair of leukocytes from Fanconi anaemia patients, carriers and healthy individuals as measured by the alkaline comet assay. Mutagenesis 2008, 24, 67–73. [Google Scholar] [CrossRef]
- Djuzenova, C.S.; Rothfuss, A.; Oppitz, U.; Speit, G.; Schindler, D.; Hoehn, H.; Flentje, M. Response to X-Irradiation of Fanconi Anemia Homozygous and Heterozygous Cells Assessed by the Single-Cell Gel Electrophoresis (Comet) Assay. Lab. Investig. 2001, 81, 185–192. [Google Scholar] [CrossRef]
- Kim, D.H.; Oh, S.Y.; Kim, S.Y.; Lee, S.; Koh, M.S.; Lee, J.H.; Lee, S.; Kim, S.-H.; Park, H.S.; Hur, W.J.; et al. DNA Ligase4 as a Prognostic Marker in Nasopharyngeal Cancer Patients Treated with Radiotherapy. Asian Pac. J. Cancer Prev. 2015, 15, 10985–10989. [Google Scholar] [CrossRef]
- O’Driscoll, M.; Cerosaletti, K.M.; Girard, P.-M.; Dai, Y.; Stumm, M.; Kysela, B.; Hirsch, B.; Gennery, A.; Palmer, S.E.; Seidel, J.; et al. DNA Ligase IV Mutations Identified in Patients Exhibiting Developmental Delay and Immunodeficiency. Mol. Cell 2001, 8, 1175–1185. [Google Scholar] [CrossRef]
- Riballo, E.; Critchlow, S.; Teo, S.-H.; Doherty, A.; Priestley, A.; Broughton, B.; Kysela, B.; Beamish, H.; Plowman, N.; Arlett, C.; et al. Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient. Curr. Biol. 1999, 9, 699–702. [Google Scholar] [CrossRef]
- Van der Burg, M.; van Veelen, L.R.; Verkaik, N.S.; Wiegant, W.W.; Hartwig, N.G.; Barendregt, B.H.; Brugmans, L.; Raams, A.; Jaspers, N.G.; Zdzienicka, M.Z.; et al. A new type of radiosensitive T-B-NK+ severe combined immunodeficiency caused by a LIG4 mutation. J. Clin. Investig. 2005, 116, 137–145. [Google Scholar] [CrossRef]
- Tokairin, Y.; Kakinuma, S.; Arai, M.; Nishimura, M.; Okamoto, M.; Ito, E.; Akashi, M.; Miki, Y.; Kawano, T.; Iwai, T.; et al. Accelerated growth of intestinal tumours after radiation exposure in Mlh1-knockout mice: Evaluation of the late effect of radiation on a mouse model of HNPCC. Int. J. Exp. Pathol. 2006, 87, 89–99. [Google Scholar] [CrossRef] [PubMed]
- Martin, L.M.; Marples, B.; Davies, A.M.; Atzberger, A.; Edwards, C.; Lynch, T.H.; Hollywood, D.; Marignol, L. DNA mismatch repair protein MSH2 dictates cellular survival in response to low dose radiation in endometrial carcinoma cells. Cancer Lett. 2013, 335, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Mishima, K.; Mishima-Kaneko, M.; Kawata, T.; Saya, H.; Ishimaru, N.; Yamada, K.; Nishikawa, R.; Shigematsu, N. MRE11-RAD50-NBS1 COMPLEX INHIBITOR MIRIN ENHANCES RADIOSENSITIVITY IN HUMAN GLIOBLASTOMA CELLS. Neuro-Oncology 2014, 16, iii36. [Google Scholar] [CrossRef]
- Bahreyni-Toossi, M.-T.; Azimian, H.; Aghaee-Bakhtiari, S.H.; Mahmoudi, M.; Darbandi, M.S.; Zafari, N. Radiation-induced DNA damage and altered expression of p21, cyclin D1 and Mre11 genes in human fibroblast cell lines with different radiosensitivity. Mutat. Res. Mol. Mech. Mutagen. 2021, 823, 111760. [Google Scholar] [CrossRef] [PubMed]
- Distel, L.; Neubauer, S.; Varon, R.; Holter, W.; Grabenbauer, G. Fatal toxicity following radio- and chemotherapy of medulloblastoma in a child with unrecognized Nijmegen Breakage Syndrome. Med Pediatr. Oncol. 2003, 41, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Tupler, R.; Marseglia, G.L.; Stefanini, M.; Prosperi, E.; Chessa, L.; Nardo, T.; Marchi, A.; Maraschio, P. A variant of the Nijmegen breakage syndrome with unusual cytogenetic features and intermediate cellular radiosensitivity. J. Med Genet. 1997, 34, 196–202. [Google Scholar] [CrossRef]
- Tomioka, K.; Miyamoto, T.; Akutsu, S.N.; Yanagihara, H.; Fujita, K.; Royba, E.; Tauchi, H.; Yamamoto, T.; Koh, I.; Hirata, E.; et al. NBS1 I171V variant underlies individual differences in chromosomal radiosensitivity within human populations. Sci. Rep. 2021, 11, 19661. [Google Scholar] [CrossRef]
- Girard, P.M.; Foray, N.; Stumm, M.; Waugh, A.; Riballo, E.; Maser, R.S.; Phillips, W.P.; Petrini, J.; Arlett, C.F.; A Jeggo, P. Radiosensitivity in Nijmegen Breakage Syndrome cells is attributable to a repair defect and not cell cycle checkpoint defects. Cancer Res. 2000, 60, 4881–4888. [Google Scholar]
- Shimura, T.; Kobayashi, J.; Komatsu, K.; Kunugita, N. Severe mitochondrial damage associated with low-dose radiation sensitivity in ATM- and NBS1-deficient cells. Cell Cycle 2016, 15, 1099–1107. [Google Scholar] [CrossRef]
- Bürger, S.; Schindler, D.; Fehn, M.; Mühl, B.; Mahrhofer, H.; Flentje, M.; Hoehn, H.; Seemanová, E.; Djuzenova, C.S. Radiation-induced DNA damage and repair in peripheral blood mononuclear cells from Nijmegen breakage syndrome patients and carriers assessed by the Comet assay. Environ. Mol. Mutagen. 2006, 47, 260–270. [Google Scholar] [CrossRef] [PubMed]
- Perez, A.; Grabenbauer, G.G.; Sprung, C.N.; Sauer, R.; Distel, L.V.R. Potential for the G2/M Arrest Assay to Predict Patient Susceptibility to Severe Reactions Following Radiotherapy. Strahlenther. Onkol. 2007, 183, 99–106. [Google Scholar] [CrossRef]
- Bakhshi, S.; Cerosaletti, K.M.; Concannon, P.; Bawle, E.V.; Fontanesi, J.; Gatti, R.A.; Bhambhani, K. Medulloblastoma With Adverse Reaction to Radiation Therapy in Nijmegen Breakage Syndrome. J. Pediatr. Hematol. 2003, 25, 248–251. [Google Scholar] [CrossRef] [PubMed]
- Hannan, M.A.; Sackey, K.; Sigut, D. Cellular radiosensitivity of patients with different types of neurofibromatosis. Cancer Genet. Cytogenet. 1993, 66, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Combemale, P.; Sonzogni, L.; Devic, C.; Bencokova, Z.; Ferlazzo, M.L.; Granzotto, A.; Burlet, S.F.; Pinson, S.; Amini-Adle, M.; Al-Choboq, J.; et al. Individual Response to Radiation of Individuals with Neurofibromatosis Type I: Role of the ATM Protein and Influence of Statins and Bisphosphonates. Mol. Neurobiol. 2021, 59, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Xie, H.; Wang, S.; Zhao, J.; Gao, Y.; Chen, J.; Zhao, Y.; Guo, G. PARP-1 genetic polymorphism associated with radiation sensitivity of non-small cell lung cancer. Pathol. Oncol. Res. 2022, 28, 1610751. [Google Scholar] [CrossRef]
- Pu, J.; Li, T.; Liu, N.; Luo, C.; Quan, Z.; Li, L.; Wu, X. PLCε knockdown enhances the radiosensitivity of castration-resistant prostate cancer via the AR/PARP1/DNA-PKcs axis. Oncol. Rep. 2020, 43, 1397–1412. [Google Scholar] [CrossRef]
- Sun, X.; Bai, C.; Li, H.; Xie, D.; Chen, S.; Han, Y.; Luo, J.; Li, Y.; Ye, Y.; Jia, J.; et al. PARP1 modulates METTL3 promoter chromatin accessibility and associated LPAR5 RNA m6A methylation to control cancer cell radiosensitivity. Mol. Ther. 2023, 31, 2633–2650. [Google Scholar] [CrossRef]
- Senra, J.M.; Telfer, B.A.; Cherry, K.E.; McCrudden, C.M.; Hirst, D.G.; O’Connor, M.J.; Wedge, S.R.; Stratford, I.J. Inhibition of PARP-1 by Olaparib (AZD2281) Increases the Radiosensitivity of a Lung Tumor Xenograft. Mol. Cancer Ther. 2011, 10, 1949–1958. [Google Scholar] [CrossRef]
- Luo, J.; Dai, X.; Hu, H.; Chen, J.; Zhao, L.; Yang, C.; Sun, J.; Zhang, L.; Wang, Q.; Xu, S.; et al. Fluzoparib increases radiation sensitivity of non-small cell lung cancer (NSCLC) cells without BRCA1/2 mutation, a novel PARP1 inhibitor undergoing clinical trials. J. Cancer Res. Clin. Oncol. 2019, 146, 721–737. [Google Scholar] [CrossRef]
- Noguchi, S.; Ogusu, R.; Wada, Y.; Matsuyama, S.; Mori, T. PTEN, A Target of Microrna-374b, Contributes to the Radiosensitivity of Canine Oral Melanoma Cells. Int. J. Mol. Sci. 2019, 20, 4631. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Xu, J.; Fu, J.; Yuan, D.; Guo, F.; Zhou, C.; Shao, C. MiR-29a Regulates Radiosensitivity in Human Intestinal Cells by Targeting PTEN Gene. Radiat Res. 2016, 186, 292–301. [Google Scholar] [CrossRef] [PubMed]
- Inaba, N.; Kimura, M.; Fujioka, K.; Ikeda, K.; Somura, H.; Akiyoshi, K.; Inoue, Y.; Nomura, M.; Saito, Y.; Saito, H.; et al. The effect of PTEN on proliferation and drug-, and radiosensitivity in malignant glioma cells. Anticancer Res. 2011, 31, 1653–1658. [Google Scholar]
- Pei, X.; Mladenov, E.; Soni, A.; Li, F.; Stuschke, M.; Iliakis, G. PTEN Loss Enhances Error-Prone DSB Processing and Tumor Cell Radiosensitivity by Suppressing RAD51 Expression and Homologous Recombination. Int. J. Mol. Sci. 2022, 23, 12876. [Google Scholar] [CrossRef] [PubMed]
- Vulin, A.; Sedkaoui, M.; Moratille, S.; Sevenet, N.; Soularue, P.; Rigaud, O.; Guibbal, L.; Dulong, J.; Jeggo, P.; Deleuze, J.-F.; et al. Severe PATCHED1 Deficiency in Cancer-Prone Gorlin Patient Cells Results in Intrinsic Radiosensitivity. Int. J. Radiat. Oncol. 2018, 102, 417–425. [Google Scholar] [CrossRef]
- De Stefano, I.; Leonardi, S.; Casciati, A.; Pasquali, E.; Giardullo, P.; Antonelli, F.; Novelli, F.; Babini, G.; Tanori, M.; Tanno, B.; et al. Contribution of Genetic Background to the Radiation Risk for Cancer and Non-Cancer Diseases in Ptch1+/– Mice. Radiat. Res. 2021, 197, 43–56. [Google Scholar] [CrossRef]
- Hahn, H.; Wojnowski, L.; Zimmer, A.M.; Hall, J.; Miller, G.; Zimmer, A. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat. Med. 1998, 4, 619–622. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Mei, J.; Li, S.; Xu, H.; Xiong, H.; Wang, X.; He, X. Targeting RAD50 increases sensitivity to radiotherapy in colorectal cancer cells. Neoplasma 2018, 65, 75–80. [Google Scholar] [CrossRef]
- Waltes, R.; Kalb, R.; Gatei, M.; Kijas, A.W.; Stumm, M.; Sobeck, A.; Wieland, B.; Varon, R.; Lerenthal, Y.; Lavin, M.F.; et al. Human RAD50 Deficiency in a Nijmegen Breakage Syndrome-like Disorder. Am. J. Hum. Genet. 2009, 84, 605–616. [Google Scholar] [CrossRef]
- Pratesi, N.; Mangoni, M.; Mancini, I.; Paiar, F.; Simi, L.; Livi, L.; Cassani, S.; Buglione, M.; Grisanti, S.; Almici, C.; et al. Association between single nucleotide polymorphisms in the XRCC1 and RAD51 genes and clinical radiosensitivity in head and neck cancer. Radiother. Oncol. 2011, 99, 356–361. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, K.F.; Du, G.; Wang, J.; Zhao, J. Berberine enhances the radiosensitivity of osteosarcoma by targeting Rad51 and epithelial–mesenchymal transition. J. Cancer Res. Ther. 2020, 16, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Rajput, M.; Singh, R.; Singh, N.; Singh, R.P. EGFR-mediated Rad51 expression potentiates intrinsic resistance in prostate cancer via EMT and DNA repair pathways. Life Sci. 2021, 286, 120031. [Google Scholar] [CrossRef] [PubMed]
- Takia, T.; Ohnishia, T.; Yamamotob, A.; Hiragaa, S.; Aritaa, N.; Izumotoa, S.; Hayakawaa, T.; Moritab, T. Antisense Inhibition of the RAD51 Enhances Radiosensitivity. Biochem. Biophys. Res. Commun. 1996, 223, 434–438. [Google Scholar] [CrossRef]
- Russell, J.S.; Brady, K.; E Burgan, W.; A Cerra, M.; A Oswald, K.; Camphausen, K.; Tofilon, P.J. Gleevec-mediated inhibition of Rad51 expression and enhancement of tumor cell radiosensitivity. Cancer Res. 2003, 63, 7377–7383. [Google Scholar] [PubMed]
- Ohnishi, T.; Takia, T.; Hiragaa, S.; Aritaa, N.; Moritab, T. In Vitroandin VivoPotentiation of Radiosensitivity of Malignant Gliomas by Antisense Inhibition of the RAD51 Gene. Biochem. Biophys. Res. Commun. 1998, 245, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Navarra, G.; Pagano, C.; Pacelli, R.; Crescenzi, E.; Longobardi, E.; Gazzerro, P.; Fiore, D.; Pastorino, O.; Pentimalli, F.; Laezza, C.; et al. N6-Isopentenyladenosine Enhances the Radiosensitivity of Glioblastoma Cells by Inhibiting the Homologous Recombination Repair Protein RAD51 Expression. Front. Oncol. 2020, 9, 1498. [Google Scholar] [CrossRef]
- Lakhdar, I.M.; Ferlazzo, M.L.; Al Choboq, J.; Berthel, E.; Sonzogni, L.; Devic, C.; Granzotto, A.; Thariat, J.; Foray, N. Fibroblasts from Retinoblastoma Patients Show Radiosensitivity Linked to Abnormal Localization of the ATM Protein. Curr. Eye Res. 2020, 46, 546–557. [Google Scholar] [CrossRef]
- Wilson, P.F.; Nagasawa, H.; Warner, C.L.; Fitzek, M.M.; Little, J.B.; Bedford, J.S. Radiation Sensitivity of Primary Fibroblasts from Hereditary Retinoblastoma Family Members and Some Apparently Normal Controls: Colony Formation Ability during Continuous Low-Dose-Rate Gamma Irradiation. Radiat Res. 2008, 169, 483–494. [Google Scholar] [CrossRef]
- Bosco, E.E.; Wang, Y.; Xu, H.; Zilfou, J.T.; Knudsen, K.E.; Aronow, B.J.; Lowe, S.W.; Knudsen, E.S. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J. Clin. Investig. 2007, 117, 218–228. [Google Scholar] [CrossRef]
- Bohgaki, T.; Bohgaki, M.; Cardoso, R.; Panier, S.; Zeegers, D.; Li, L.; Stewart, G.S.; Sanchez, O.; Hande, M.P.; Durocher, D.; et al. Genomic Instability, Defective Spermatogenesis, Immunodeficiency, and Cancer in a Mouse Model of the RIDDLE Syndrome. PLoS Genet. 2011, 7, e1001381. [Google Scholar] [CrossRef]
- Devgan, S.S.; Sanal, O.; Doil, C.; Nakamura, K.; A Nahas, S.; Pettijohn, K.; Bartek, J.; Lukas, C.; Lukas, J.; A Gatti, R. Homozygous deficiency of ubiquitin-ligase ring-finger protein RNF168 mimics the radiosensitivity syndrome of ataxia-telangiectasia. Cell Death Differ. 2011, 18, 1500–1506. [Google Scholar] [CrossRef] [PubMed]
- Pietrucha, B.; Heropolitańska-Pliszka, E.; Geffers, R.; Enßen, J.; Wieland, B.; Bogdanova, N.V.; Dörk, T. Clinical and Biological Manifestation of RNF168 Deficiency in Two Polish Siblings. Front. Immunol. 2017, 8, 1683. [Google Scholar] [CrossRef] [PubMed]
- Xiu, D.; Liu, L.; Cheng, M.; Sun, X.; Ma, X. Knockdown of lncRNA TUG1 Enhances Radiosensitivity of Prostate Cancer via the TUG1/miR-139-5p/SMC1A Axis. OncoTargets Ther. 2020, ume 13, 2319–2331. [Google Scholar] [CrossRef]
- Cekic, S.; Huriyet, H.; Hortoglu, M.; Kasap, N.; Ozen, A.; Karakoc-Aydiner, E.; Metin, A.; Ocakoglu, G.; Abakay, C.D.; Temel, S.G.; et al. Increased radiosensitivity and impaired DNA repair in patients with STAT3-LOF and ZNF341 deficiency, potentially contributing to malignant transformations. Clin. Exp. Immunol. 2022, 209, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Kandioler, D.; Zwrtek, R.; Ludwig, C.; Janschek, E.; Ploner, M.; Hofbauer, F.; Kührer, I.; Kappel, S.; Wrba, F.; Horvath, M.; et al. TP53 Genotype but Not p53 Immunohistochemical Result Predicts Response to Preoperative Short-Term Radiotherapy in Rectal Cancer. Ann. Surg. 2002, 235, 493–498. [Google Scholar] [CrossRef]
- Williams, J.R.; Zhang, Y.; Zhou, H.; Gridley, D.S.; Koch, C.J.; Russell, J.; Slater, J.S.; Little, J.B. A quantitative overview of radiosensitivity of human tumor cells across histological type and TP53 status. Int. J. Radiat. Biol. 2008, 84, 253–264. [Google Scholar] [CrossRef]
- O’Connor, P.M.; Jackman, J.; Bae, I.; Myers, T.G.; Fan, S.; Mutoh, M.; A Scudiero, D.; Monks, A.; A Sausville, E.; Weinstein, J.N.; et al. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997, 57, 4285–4300. [Google Scholar]
- Ferlazzo, M.; Berthel, E.; Granzotto, A.; Devic, C.; Sonzogni, L.; Bachelet, J.-T.; Pereira, S.; Bourguignon, M.; Sarasin, A.; Mezzina, M.; et al. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int. J. Radiat. Biol. 2019, 96, 394–410. [Google Scholar] [CrossRef]
- Ma, H.; Lian, R.; Wu, Z.; Li, X.; Yu, W.; Shang, Y.; Guo, X. MiR-503 enhances the radiosensitivity of laryngeal carcinoma cells via the inhibition of WEE1. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef]
- PosthumaDeBoer, J.; Würdinger, T.; Graat, H.C.; van Beusechem, V.W.; Helder, M.N.; van Royen, B.J.; Kaspers, G.J. WEE1 inhibition sensitizes osteosarcoma to radiotherapy. BMC Cancer 2011, 11, 156. [Google Scholar] [CrossRef]
- Cetin, M.H.; Rieckmann, T.; Hoffer, K.; Riepen, B.; Christiansen, S.; Gatzemeier, F.; Feyerabend, S.; Schoof, M.; Schüller, U.; Petersen, C.; et al. G2 checkpoint targeting via Wee1 inhibition radiosensitizes EGFRvIII-positive glioblastoma cells. Radiat. Oncol. 2023, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Jamaei, A.H.; de Visscher, J.G.A.M.; Subramanyam, V.R.; Forouzanfar, T.; Sminia, P.; Doulabi, B.Z.; Helder, M.N. WEE1 kinase inhibitor MK-1775 sensitizes oral tongue squamous cell carcinoma cells to radiation irrespective of TP53 status. Oral Dis. 2022, 29, 2640–2649. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Shen, C.; Pettit, C.J.; Li, T.; Hu, A.J.; Miller, E.D.; Zhang, J.; Lin, S.H.; Williams, T.M. Wee1 Kinase Inhibitor AZD1775 Effectively Sensitizes Esophageal Cancer to Radiotherapy. Clin. Cancer Res. 2020, 26, 3740–3750. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K. Genetic variations affecting response of radiotherapy. J. Genet. Med. 2022, 19, 1–6. [Google Scholar] [CrossRef]
- Fachal, L.; Gómez-Caamaño, A.; Sánchez-García, M.; Carballo, A.; Peleteiro, P.; Lobato-Busto, R.; Carracedo, A.; Vega, A. TGFβ1 SNPs and radio-induced toxicity in prostate cancer patients. Radiother. Oncol. 2012, 103, 206–209. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.J.; Wasserman, I.; Milgrom, S.A.; Chow, O.S.; Chen, C.-T.; Patil, S.; Goodman, K.A.; Garcia-Aguilar, J. Single Nucleotide Polymorphism TGFβ1 R25P Correlates with Acute Toxicity during Neoadjuvant Chemoradiotherapy in Rectal Cancer Patients. Int. J. Radiat. Oncol. 2016, 97, 924–930. [Google Scholar] [CrossRef]
- Seibold, P.; Behrens, S.; Schmezer, P.; Helmbold, I.; Barnett, G.; Coles, C.; Yarnold, J.; Talbot, C.J.; Imai, T.; Azria, D.; et al. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients. Int. J. Radiat. Oncol. 2015, 92, 1084–1092. [Google Scholar] [CrossRef]
- Kerns, S.L.; Fachal, L.; Dorling, L.; Barnett, G.C.; Baran, A.; Peterson, D.R.; Hollenberg, M.; Hao, K.; Narzo, A.D.; Ahsen, M.E.; et al. Radiogenomics Consortium Genome-Wide Association Study Meta-Analysis of Late Toxicity After Prostate Cancer Radiotherapy. J. Natl. Cancer Inst. 2020, 112, 179–190. [Google Scholar] [CrossRef]
- Pawlik, T.M.; Keyomarsi, K. Role of cell cycle in mediating sensitivity to radiotherapy. Int. J. Radiat. Oncol. 2004, 59, 928–942. [Google Scholar] [CrossRef]
- Lee, C.-L.; Blum, J.M.; Kirsch, D.G. Role of p53 in regulating tissue response to radiation by mechanisms independent of apoptosis. Transl. Cancer Res. 2013, 2, 412–421. [Google Scholar]
- Guha, T.; Malkin, D. Inherited TP53 Mutations and the Li–Fraumeni Syndrome. Cold Spring Harb. Perspect. Med. 2017, 7, a026187. [Google Scholar] [CrossRef] [PubMed]
- Tchelebi, L.; Ashamalla, H.; Graves, P.R. Mutant P53 and the Response to Chemotherapy and Radiation. In Mutant p53 and MDM2 in Cancer; Deb, S.P., Deb, S., Eds.; Subcellular Biochemistry; Springer: Dordrecht, The Netherlands, 2014; pp. 133–159. [Google Scholar] [CrossRef]
- Walter, D.M.; Yates, T.J.; Ruiz-Torres, M.; Kim-Kiselak, C.; Gudiel, A.A.; Deshpande, C.; Wang, W.Z.; Cicchini, M.; Stokes, K.L.; Tobias, J.W.; et al. RB constrains lineage fidelity and multiple stages of tumour progression and metastasis. Nature 2019, 569, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Uxa, S.; Bernhart, S.H.; Mages, C.F.S.; Fischer, M.; Kohler, R.; Hoffmann, S.; Stadler, P.F.; Engeland, K.; A Müller, G. DREAM and RB cooperate to induce gene repression and cell-cycle arrest in response to p53 activation. Nucleic Acids Res. 2019, 47, 9087–9103. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Vlatkovic, T.; Li, M.; Zhan, T.; Veldwijk, M.R.; Herskind, C. Targeting the DNA Damage Response and DNA Repair Pathways to Enhance Radiosensitivity in Colorectal Cancer. Cancers 2022, 14, 4874. [Google Scholar] [CrossRef]
- Cuneo, K.C.; Morgan, M.A.; Sahai, V.; Schipper, M.J.; Parsels, L.A.; Parsels, J.D.; Devasia, T.; Al-Hawaray, M.; Cho, C.S.; Nathan, H.; et al. Dose Escalation Trial of the Wee1 Inhibitor Adavosertib (AZD1775) in Combination With Gemcitabine and Radiation for Patients With Locally Advanced Pancreatic Cancer. J. Clin. Oncol. 2019, 37, 2643–2650. [Google Scholar] [CrossRef]
- Levitt, N.C.; Hickson, I.D. Caretaker tumour suppressor genes that defend genome integrity. Trends Mol. Med. 2002, 8, 179–186. [Google Scholar] [CrossRef]
- Broustas, C.G.; Lieberman, H.B. DNA Damage Response Genes and the Development of Cancer Metastasis. Radiat. Res. 2014, 181, 111–130. [Google Scholar] [CrossRef]
- Borrego-Soto, G.; Ortiz-López, R.; Rojas-Martínez, A. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer. Genet. Mol. Biol. 2015, 38, 420–432. [Google Scholar] [CrossRef]
- Lynch, H.T.; De La Chapelle, A. Hereditary Colorectal Cancer. N. Engl. J. Med. 2003, 348, 919–932. [Google Scholar] [CrossRef]
- Pal, T.; Permuth-Wey, J.; Sellers, T.A. A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 2008, 113, 733–742. [Google Scholar] [CrossRef]
- Kastrinos, F.; Mukherjee, B.; Tayob, N.; Wang, F.; Sparr, J.; Raymond, V.M.; Bandipalliam, P.; Stoffel, E.M.; Gruber, S.B.; Syngal, S. Risk of Pancreatic Cancer in Families With Lynch Syndrome. JAMA 2009, 302, 1790–1795. [Google Scholar] [CrossRef]
- Sun, M.; Moquet, J.; Ellender, M.; Bouffler, S.; Badie, C.; Baldwin-Cleland, R.; Monahan, K.; Latchford, A.; Lloyd, D.; Clark, S.; et al. Potential risks associated with the use of ionizing radiation for imaging and treatment of colorectal cancer in Lynch syndrome patients. Fam. Cancer 2022, 22, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, B.; Hengel, S.R.; Grundy, M.K.; Bernstein, K.A. RAD51 Gene Family Structure and Function. Annu. Rev. Genet. 2020, 54, 25–46. [Google Scholar] [CrossRef] [PubMed]
- Symington, L.S.; Gautier, J. Double-Strand Break End Resection and Repair Pathway Choice. Annu. Rev. Genet. 2011, 45, 247–271. [Google Scholar] [CrossRef] [PubMed]
- Petrucelli, N.; Daly, M.B.; Pal, T. BRCA1- and BRCA2-Associated Hereditary Breast and Ovarian Cancer. In GeneReviews®; Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- De la Torre, C.; Pincheira, J.; López-Sáez, J.F. Human Syndromes with Genomic Instability and Multiprotein Machines That Repair DNA Double-Strand Breaks. Histol. Histopathol. 2003, 18, 225–243. [Google Scholar] [CrossRef]
- Foo, T.K.; Xia, B. BRCA1-Dependent and Independent Recruitment of PALB2–BRCA2–RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022, 82, 3191–3197. [Google Scholar] [CrossRef]
- Pierce, L.J.; Strawderman, M.; Narod, S.A.; Oliviotto, I.; Eisen, A.; Dawson, L.; Gaffney, D.; Solin, L.J.; Nixon, A.; Garber, J.; et al. Effect of Radiotherapy After Breast-Conserving Treatment in Women With Breast Cancer and Germline BRCA1/2 Mutations. J. Clin. Oncol. 2000, 18, 3360–3369. [Google Scholar] [CrossRef]
- Zahnreich, S.; Weber, B.; Rösch, G.; Schindler, D.; Schmidberger, H. Compromised repair of radiation-induced DNA double-strand breaks in Fanconi anemia fibroblasts in G2. DNA Repair 2020, 96, 102992. [Google Scholar] [CrossRef]
- Manolio, T.A. Genomewide Association Studies and Assessment of the Risk of Disease. N. Engl. J. Med. 2010, 363, 166–176. [Google Scholar] [CrossRef]
- Forte, G.I.; Minafra, L.; Bravatà, V.; Cammarata, F.P.; Lamia, D.; Pisciotta, P.; Cirrone, G.A.P.; Cuttone, G.; Gilardi, M.C.; Russo, G. Radiogenomics: The utility in patient selection. Transl. Cancer Res. 2017, 6, S852–S874. [Google Scholar] [CrossRef]
- Barnett, G.C.; E Coles, C.; Elliott, R.M.; Baynes, C.; Luccarini, C.; Conroy, D.; Wilkinson, J.S.; Tyrer, J.; Misra, V.; Platte, R.; et al. Independent validation of genes and polymorphisms reported to be associated with radiation toxicity: A prospective analysis study. Lancet Oncol. 2012, 13, 65–77. [Google Scholar] [CrossRef] [PubMed]
- Barnett, G.C.; Thompson, D.; Fachal, L.; Kerns, S.; Talbot, C.; Elliott, R.M.; Dorling, L.; Coles, C.E.; Dearnaley, D.P.; Rosenstein, B.S.; et al. A genome wide association study (GWAS) providing evidence of an association between common genetic variants and late radiotherapy toxicity. Radiother. Oncol. 2014, 111, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kerns, S.L.; Dorling, L.; Fachal, L.; Bentzen, S.; Pharoah, P.D.; Barnes, D.R.; Gómez-Caamaño, A.; Carballo, A.M.; Dearnaley, D.P.; Peleteiro, P.; et al. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer. EBioMedicine 2016, 10, 150–163. [Google Scholar] [CrossRef] [PubMed]
- Kerns, S.L.; Stock, R.G.; Stone, N.N.; Blacksburg, S.R.; Rath, L.; Vega, A.; Fachal, L.; Gómez-Caamaño, A.; De Ruysscher, D.; Lammering, G.; et al. Genome-wide association study identifies a region on chromosome 11q14.3 associated with late rectal bleeding following radiation therapy for prostate cancer. Radiother. Oncol. 2013, 107, 372–376. [Google Scholar] [CrossRef]
- Kerns, S.L.; de Ruysscher, D.; Andreassen, C.N.; Azria, D.; Barnett, G.C.; Chang-Claude, J.; Davidson, S.; Deasy, J.O.; Dunning, A.M.; Ostrer, H.; et al. STROGAR – STrengthening the Reporting Of Genetic Association studies in Radiogenomics. Radiother. Oncol. 2014, 110, 182–188. [Google Scholar] [CrossRef]
- Ahmed, M.; Dorling, L.; Kerns, S.; Fachal, L.; Elliott, R.; Partliament, M.; Rosenstein, B.S.; Vega, A.; Gómez-Caamaño, A.; Barnett, G.; et al. Common genetic variation associated with increased susceptibility to prostate cancer does not increase risk of radiotherapy toxicity. Br. J. Cancer 2016, 114, 1165–1174. [Google Scholar] [CrossRef]
- Gilissen, C.; Hoischen, A.; Brunner, H.G.; A Veltman, J. Disease gene identification strategies for exome sequencing. Eur. J. Hum. Genet. 2012, 20, 490–497. [Google Scholar] [CrossRef]
- Mighton, C.; Lerner-Ellis, J.P. Principles of molecular testing for hereditary cancer. Genes, Chromosom. Cancer 2022, 61, 356–381. [Google Scholar] [CrossRef]
- Murdock, D.R. Enhancing Diagnosis Through RNA Sequencing. Clin. Lab. Med. 2020, 40, 113–119. [Google Scholar] [CrossRef]
- Carlson, R.W.; Moench, S.J.; Hammond, M.E.H.; Perez, E.A.; Burstein, H.J.; Allred, D.C.; Vogel, C.L.; Goldstein, L.J.; Somlo, G.; Gradishar, W.J.; et al. HER2 Testing in Breast Cancer: NCCN Task Force Report and Recommendations. J. Natl. Compr. Cancer Netw. 2006, 4, S-1–S-22. [Google Scholar] [CrossRef]
- Thariat, J.; Chevalier, F.; Orbach, D.; Ollivier, L.; Marcy, P.-Y.; Corradini, N.; Beddok, A.; Foray, N.; Bougeard, G. Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol. 2021, 22, e562–e574. [Google Scholar] [CrossRef]
- NCCN. National Comprehensive Cancer Network Clinical Practice Guidelines in Oncology. Genetic/Familial High-Risk Assessment. Version 3.2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/genetics_bop.pdf. (accessed on 21 June 2023).
- Scott, J.G.; Sedor, G.; Scarborough, J.A.; Kattan, M.W.; Peacock, J.; Grass, G.D.; Mellon, E.A.; Thapa, R.; Schell, M.; Waller, A.; et al. Personalizing Radiotherapy Prescription Dose Using Genomic Markers of Radiosensitivity and Normal Tissue Toxicity in NSCLC. J. Thorac. Oncol. 2020, 16, 428–438. [Google Scholar] [CrossRef]
- Chera, B.S.; Amdur, R.J.; Tepper, J.; Qaqish, B.; Green, R.; Aumer, S.L.; Hayes, N.; Weiss, J.; Grilley-Olson, J.; Zanation, A.; et al. Phase 2 Trial of De-intensified Chemoradiation Therapy for Favorable-Risk Human Papillomavirus–Associated Oropharyngeal Squamous Cell Carcinoma. Int. J. Radiat. Oncol. 2015, 93, 976–985. [Google Scholar] [CrossRef]
- Yom, S.S.; Torres-Saavedra, P.; Caudell, J.J.; Waldron, J.N.; Gillison, M.L.; Xia, P.; Truong, M.T.; Kong, C.; Jordan, R.; Subramaniam, R.M.; et al. Reduced-Dose Radiation Therapy for HPV-Associated Oropharyngeal Carcinoma (NRG Oncology HN002). J. Clin. Oncol. 2021, 39, 956–965. [Google Scholar] [CrossRef]
- PROTOCOL NRG-HN005 – TEMPORARY CLOSURE. NRG Oncology. Available online: https://myemail.constantcontact.com/PROTOCOL-NRG-HN005---TEMPORARY-CLOSURE.html?soid=1139396743412&aid=YHEDCt657NI (accessed on 6 June 2023).
- Scott, J.G.; Berglund, A.; Schell, M.J.; Mihaylov, I.; Fulp, W.J.; Yue, B.; Welsh, E.; Caudell, J.J.; Ahmed, K.; Strom, T.S.; et al. A genome-based model for adjusting radiotherapy dose (GARD): A retrospective, cohort-based study. Lancet Oncol. 2016, 18, 202–211. [Google Scholar] [CrossRef]
- Ahmed, K.A.; Liveringhouse, C.L.; Mills, M.N.; Figura, N.B.; Grass, G.D.; Washington, I.R.; Harris, E.E.; Czerniecki, B.J.; Blumencranz, P.W.; Eschrich, S.A.; et al. Utilizing the genomically adjusted radiation dose (GARD) to personalize adjuvant radiotherapy in triple negative breast cancer management. EBioMedicine 2019, 47, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Bratman, S.V.; Berthelet, E.; Butler, J.B.; de Almeida, J.R.; Karam, I.; Metser, U.; Olson, R.A.; Pochini, C.; Waldron, J.; Yu, E.; et al. CCTG HN.10: A phase II single-arm trial of elective volume adjusted de-escalation radiotherapy (EVADER) in patients with low-risk HPV-related oropharyngeal squamous cell carcinoma (NCT03822897). J. Clin. Oncol. 2020, 38, TPS6592. [Google Scholar] [CrossRef]
- Li, X.; O’neil, N.J.; Moshgabadi, N.; Hieter, P. Synthetic Cytotoxicity: Digenic Interactions with TEL1/ATM Mutations Reveal Sensitivity to Low Doses of Camptothecin. Genetics 2014, 197, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Barreto-Andrade, J.C.; Efimova, E.V.; Mauceri, H.J.; Beckett, M.A.; Sutton, H.G.; Darga, T.E.; Vokes, E.E.; Posner, M.C.; Kron, S.J.; Weichselbaum, R.R. Response of Human Prostate Cancer Cells and Tumors to Combining PARP Inhibition with Ionizing Radiation. Mol. Cancer Ther. 2011, 10, 1185–1193. [Google Scholar] [CrossRef]
- Ohnishi, K.; Scuric, Z.; Schiestl, R.H.; Okamoto, N.; Takahashi, A.; Ohnishi, T. siRNA Targeting NBS1 or XIAP Increases Radiation Sensitivity of Human Cancer Cells Independent of TP53 Status. Radiation Res. 2006, 166, 454–462. [Google Scholar] [CrossRef]
- Liu, X.; Paila, U.D.; Teraoka, S.N.; Wright, J.A.; Huang, X.; Quinlan, A.R.; Gatti, R.A.; Concannon, P. Identification of ATIC as a Novel Target for Chemoradiosensitization. Int. J. Radiat. Oncol. 2017, 100, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.-J. Therapeutic siRNA: State of the art. Signal Transduct. Target. Ther. 2020, 5, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Paik, S.; Shak, S.; Tang, G.; Kim, C.; Baker, J.; Cronin, M.; Baehner, F.L.; Walker, M.G.; Watson, D.; Park, T.; et al. A Multigene Assay to Predict Recurrence of Tamoxifen-Treated, Node-Negative Breast Cancer. N. Engl. J. Med. 2004, 351, 2817–2826. [Google Scholar] [CrossRef]
- Geyer, C.; Gelber, R.; Yothers, G.; Taboada, M.; Ross, L.; Rastogi, P.; Cui, K.; Arahmani, A.; Aktan, G.; Arnedos, M.; et al. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high-risk, early breast cancer. Ann. Oncol. 2022, 33, 1250–1268. [Google Scholar] [CrossRef] [PubMed]
- André, F.; Ciruelos, E.; Rubovszky, G.; Campone, M.; Loibl, S.; Rugo, H.S.; Iwata, H.; Conte, P.; Mayer, I.A.; Kaufman, B.; et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor–Positive Advanced Breast Cancer. N. Engl. J. Med. 2019, 380, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Whelan, T.J.; Smith, S.; Nielsen, T.O.; Parpia, S.; Fyles, A.W.; Bane, A.; Liu, F.-F.; Grimard, L.; Stevens, C.; Bowen, J.; et al. LUMINA: A prospective trial omitting radiotherapy (RT) following breast conserving surgery (BCS) in T1N0 luminal A breast cancer (BC). J. Clin. Oncol. 2022, 40, LBA501. [Google Scholar] [CrossRef]
- Torres-Roca, J.F.; Fulp, W.J.; Caudell, J.J.; Servant, N.; Bollet, M.A.; van de Vijver, M.; Naghavi, A.O.; Harris, E.E.; Eschrich, S.A. Integration of a Radiosensitivity Molecular Signature Into the Assessment of Local Recurrence Risk in Breast Cancer. Int. J. Radiat. Oncol. 2015, 93, 631–638. [Google Scholar] [CrossRef]
- Sjöström, M.; Fyles, A.; Liu, F.-F.; McCready, D.; Shi, W.; Rey-McIntyre, K.; Chang, S.L.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; et al. Development and Validation of a Genomic Profile for the Omission of Local Adjuvant Radiation in Breast Cancer. J. Clin. Oncol. 2023, 41, 1533–1540. [Google Scholar] [CrossRef]
- Sjöström, M.; Chang, S.L.; Fishbane, N.; Davicioni, E.; Zhao, S.G.; Hartman, L.; Holmberg, E.; Feng, F.Y.; Speers, C.W.; Pierce, L.J.; et al. Clinicogenomic Radiotherapy Classifier Predicting the Need for Intensified Locoregional Treatment After Breast-Conserving Surgery for Early-Stage Breast Cancer. J. Clin. Oncol. 2019, 37, 3340–3349. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Defraene, G.; Ramaekers, B.L.; Lambin, P.; Briers, E.; Stobart, H.; Ward, T.; Bentzen, S.M.; Van Staa, T.; Azria, D.; et al. Optimal design and patient selection for interventional trials using radiogenomic biomarkers: A REQUITE and Radiogenomics consortium statement. Radiother. Oncol. 2016, 121, 440–446. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tam, A.; Mercier, B.D.; Thomas, R.M.; Tizpa, E.; Wong, I.G.; Shi, J.; Garg, R.; Hampel, H.; Gray, S.W.; Williams, T.; et al. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers 2023, 15, 5314. https://doi.org/10.3390/cancers15225314
Tam A, Mercier BD, Thomas RM, Tizpa E, Wong IG, Shi J, Garg R, Hampel H, Gray SW, Williams T, et al. Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers. 2023; 15(22):5314. https://doi.org/10.3390/cancers15225314
Chicago/Turabian StyleTam, Andrew, Benjamin D. Mercier, Reeny M. Thomas, Eemon Tizpa, Irene G. Wong, Juncong Shi, Rishabh Garg, Heather Hampel, Stacy W. Gray, Terence Williams, and et al. 2023. "Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment" Cancers 15, no. 22: 5314. https://doi.org/10.3390/cancers15225314
APA StyleTam, A., Mercier, B. D., Thomas, R. M., Tizpa, E., Wong, I. G., Shi, J., Garg, R., Hampel, H., Gray, S. W., Williams, T., Bazan, J. G., & Li, Y. R. (2023). Moving the Needle Forward in Genomically-Guided Precision Radiation Treatment. Cancers, 15(22), 5314. https://doi.org/10.3390/cancers15225314