Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Data Recovery and TERT Sequencing
2.2. Radiomics
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koelsche, C.; Sahm, F.; Capper, D.; Reuss, D.; Sturm, D.; Jones, D.T.; Kool, M.; Northcott, P.A.; Wiestler, B.; Bohmer, K.; et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 2013, 126, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Mirian, C.; Duun-Henriksen, A.K.; Juratli, T.; Sahm, F.; Spiegl-Kreinecker, S.; Peyre, M.; Biczok, A.; Tonn, J.C.; Goutagny, S.; Bertero, L.; et al. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: An individual patient data meta-analysis. J. Neurol. Neurosurg. Psychiatry 2020, 91, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Sahm, F.; Schrimpf, D.; Olar, A.; Koelsche, C.; Reuss, D.; Bissel, J.; Kratz, A.; Capper, D.; Schefzyk, S.; Hielscher, T.; et al. TERT Promoter Mutations and Risk of Recurrence in Meningioma. J. Natl. Cancer Inst. 2016, 108, djv370. [Google Scholar] [CrossRef] [PubMed]
- Sahm, F.; Brastianos, P.K.; Claus, E.B.; Mawrin, C.; Perry, A.; Santagata, S.; von Deimlig, A.; Meningioma; Brat, D.J.; Ellison, D.W.; et al. Central Nervous System Tumours, 5th ed.; International Agency for Research on Cancer: Lyon, France, 2021; pp. 284–297. [Google Scholar]
- Forghani, R. Precision Digital Oncology: Emerging Role of Radiomics-based Biomarkers and Artificial Intelligence for Advanced Imaging and Characterization of Brain Tumors. Radiol. Imaging Cancer 2020, 2, e190047. [Google Scholar] [CrossRef]
- Liao, J.; Li, X.; Gan, Y.; Han, S.; Rong, P.; Wang, W.; Li, W.; Zhou, L. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 2022, 12, 998222. [Google Scholar] [CrossRef]
- He, A.; Wang, P.; Zhu, A.; Liu, Y.; Chen, J.; Liu, L. Predicting IDH Mutation Status in Low-Grade Gliomas Based on Optimal Radiomic Features Combined with Multi-Sequence Magnetic Resonance Imaging. Diagnostics 2022, 12, 2995. [Google Scholar] [CrossRef]
- Musigmann, M.; Nacul, N.G.; Kasap, D.N.; Heindel, W.; Mannil, M. Use Test of Automated Machine Learning in Cancer Diagnostics. Diagnostics 2023, 13, 2315. [Google Scholar] [CrossRef]
- Bhandari, A.P.; Liong, R.; Koppen, J.; Murthy, S.V.; Lasocki, A. Noninvasive Determination of IDH and 1p19q Status of Lower-grade Gliomas Using MRI Radiomics: A Systematic Review. Am. J. Neuroradiol. 2021, 42, 94–101. [Google Scholar] [CrossRef]
- Mora, N.G.N.; Akkurt, B.H.; Kasap, D.; Blomer, D.; Heindel, W.; Mannil, M.; Musigmann, M. Comparison of MRI Sequences to Predict ATRX Status Using Radiomics-Based Machine Learning. Diagnostics 2023, 13, 2216. [Google Scholar] [CrossRef]
- Huang, H.; Wang, F.F.; Luo, S.; Chen, G.; Tang, G. Diagnostic performance of radiomics using machine learning algorithms to predict MGMT promoter methylation status in glioma patients: A meta-analysis. Diagn. Interv. Radiol. 2021, 27, 716–724. [Google Scholar] [CrossRef]
- Jiang, C.; Kong, Z.; Zhang, Y.; Liu, S.; Liu, Z.; Chen, W.; Liu, P.; Liu, D.; Wang, Y.; Lyu, Y.; et al. Conventional magnetic resonance imaging-based radiomic signature predicts telomerase reverse transcriptase promoter mutation status in grade II and III gliomas. Neuroradiology 2020, 62, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Ugga, L.; Spadarella, G.; Pinto, L.; Cuocolo, R.; Brunetti, A. Meningioma Radiomics: At the Nexus of Imaging, Pathology and Biomolecular Characterization. Cancers 2022, 14, 2605. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Angenstein, F.; Werner, J.M.; Bauer, E.K.; Gutsche, R.; Fink, G.R.; Langen, K.J.; Lohmann, P. Use of advanced neuroimaging and artificial intelligence in meningiomas. Brain Pathol. 2022, 32, e13015. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Stichel, D.; Jones, D.T.W.; Hielscher, T.; Schefzyk, S.; Okonechnikov, K.; Koelsche, C.; Reuss, D.E.; Capper, D.; et al. DNA methylation-based classification and grading system for meningioma: A multicentre, retrospective analysis. Lancet Oncol. 2017, 18, 682–694. [Google Scholar] [CrossRef] [PubMed]
- Youngblood, M.W.; Duran, D.; Montejo, J.D.; Li, C.; Omay, S.B.; Ozduman, K.; Sheth, A.H.; Zhao, A.Y.; Tyrtova, E.; Miyagishima, D.F.; et al. Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas. J. Neurosurg. 2019, 133, 1345–1354. [Google Scholar] [CrossRef]
- Abedalthagafi, M.; Bi, W.L.; Aizer, A.A.; Merrill, P.H.; Brewster, R.; Agarwalla, P.K.; Listewnik, M.L.; Dias-Santagata, D.; Thorner, A.R.; Van Hummelen, P.; et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016, 18, 649–655. [Google Scholar] [CrossRef]
- Youngblood, M.W.; Miyagishima, D.F.; Jin, L.; Gupte, T.; Li, C.; Duran, D.; Montejo, J.D.; Zhao, A.; Sheth, A.; Tyrtova, E.; et al. Associations of meningioma molecular subgroup and tumor recurrence. Neuro Oncol. 2021, 23, 783–794. [Google Scholar] [CrossRef]
- Peetz-Dienhart, S.; Spille, D.C.; Sporns, P.B.; Adeli, A.; Bunk, E.C.; Wagner, A.; Paulus, W.; Stummer, W.; Hess, K.; Brokinkel, B. Letter: Parasagittal/Falcine Tumor Location Strongly Predicts Human Telomerase Reverse Transcriptase Promoter Mutations in High-Grade Meningiomas. Neurosurgery 2020, 86, E362–E365. [Google Scholar] [CrossRef]
- von Spreckelsen, N.; Waldt, N.; Timmer, M.; Goertz, L.; Reinecke, D.; Laukamp, K.; Pennig, L.; Grau, S.; Deckert, M.; Kirches, E.; et al. Clinical Characteristics and Magnetic Resonance Imaging-Based Prediction of the KLF4(K409Q) Mutation in Meningioma. World Neurosurg. 2021, 154, e665–e670. [Google Scholar] [CrossRef]
- Kopf, L.; Warneke, N.; Grauer, O.; Thomas, C.; Hess, K.; Schwake, M.; Mannil, M.; Akkurt, B.H.; Paulus, W.; Stummer, W.; et al. Prognosis and histology of sporadic synchronous and metachronous meningiomas and comparative analyses with singular lesions. Neurosurg. Rev. 2023, 46, 55. [Google Scholar] [CrossRef]
- Luthge, S.; Spille, D.C.; Steinbicker, A.U.; Schipmann, S.; Streckert, E.M.S.; Hess, K.; Grauer, O.M.; Paulus, W.; Stummer, W.; Brokinkel, B. The applicability of established clinical and histopathological risk factors for tumor recurrence during long-term postoperative care in meningioma patients. Neurosurg. Rev. 2022, 45, 1635–1643. [Google Scholar] [CrossRef]
- Spille, D.C.; Hess, K.; Bormann, E.; Sauerland, C.; Brokinkel, C.; Warneke, N.; Mawrin, C.; Paulus, W.; Stummer, W.; Brokinkel, B. Risk of tumor recurrence in intracranial meningiomas: Comparative analyses of the predictive value of the postoperative tumor volume and the Simpson classification. J. Neurosurg. 2020, 134, 1764–1771. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Shi, L.; Wang, D.; Zhang, B.; Yang, Q.; Ji, M.; Shi, B.; Hou, P. Low frequency of TERT promoter mutations in a large cohort of gallbladder and gastric cancers. Int. J. Cancer 2014, 134, 2993–2994. [Google Scholar] [CrossRef] [PubMed]
- Musigmann, M.; Akkurt, B.H.; Krahling, H.; Nacul, N.G.; Remonda, L.; Sartoretti, T.; Henssen, D.; Brokinkel, B.; Stummer, W.; Heindel, W.; et al. Testing the applicability and performance of Auto ML for potential applications in diagnostic neuroradiology. Sci. Rep. 2022, 12, 13648. [Google Scholar] [CrossRef] [PubMed]
- Spille, D.C.; Sporns, P.B.; Hess, K.; Stummer, W.; Brokinkel, B. Prediction of High-Grade Histology and Recurrence in Meningiomas Using Routine Preoperative Magnetic Resonance Imaging: A Systematic Review. World Neurosurg. 2019, 128, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Brastianos, P.K.; Horowitz, P.M.; Santagata, S.; Jones, R.T.; McKenna, A.; Getz, G.; Ligon, K.L.; Palescandolo, E.; Van Hummelen, P.; Ducar, M.D.; et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat. Genet. 2013, 45, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Mawrin, C.; Koch, R.; Waldt, N.; Sandalcioglu, I.E.; Braunsdorf, W.E.K.; Warnke, J.P.; Goehre, F.; Meisel, H.J.; Ewald, C.; Neyazii, S.; et al. A new amplicon-based gene panel for next generation sequencing characterization of meningiomas. Brain Pathol. 2022, 32, e13046. [Google Scholar] [CrossRef]
- Won, S.Y.; Lee, J.H.; Lee, N.; Park, Y.W.; Ahn, S.S.; Kim, J.; Chang, J.H.; Kim, S.H.; Lee, S.K. Three-dimensional fractal dimension and lacunarity features may noninvasively predict TERT promoter mutation status in grade 2 meningiomas. PLoS ONE 2022, 17, e0276342. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging—“How-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Spiegl-Kreinecker, S.; Lotsch, D.; Neumayer, K.; Kastler, L.; Gojo, J.; Pirker, C.; Pichler, J.; Weis, S.; Kumar, R.; Webersinke, G.; et al. TERT promoter mutations are associated with poor prognosis and cell immortalization in meningioma. Neuro Oncol. 2018, 20, 1584–1593. [Google Scholar] [CrossRef]
- Juratli, T.A.; Thiede, C.; Koerner, M.V.A.; Tummala, S.S.; Daubner, D.; Shankar, G.M.; Williams, E.A.; Martinez-Lage, M.; Soucek, S.; Robel, K.; et al. Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas. Oncotarget 2017, 8, 109228–109237. [Google Scholar] [CrossRef] [PubMed]
- Kasgari, A.B.; Safavi, S.; Nouri, M.; Hou, J.; Sarshar, N.T.; Ranjbarzadeh, R. Point-of-Interest Preference Model Using an Attention Mechanism in a Convolutional Neural Network. Bioengineering 2023, 10, 495. [Google Scholar] [CrossRef] [PubMed]
- Anari, S.; Sarshar, N.T.; Mahjoori, N.; Dorosti, S.; Rezaie, A. Review of Deep Learning Approaches for Thyroid Cancer Diagnosis. Math. Probl. Eng. 2022, 2022, 5052435. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akkurt, B.H.; Spille, D.C.; Peetz-Dienhart, S.; Kiolbassa, N.M.; Mawrin, C.; Musigmann, M.; Heindel, W.L.; Paulus, W.; Stummer, W.; Mannil, M.; et al. Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas. Cancers 2023, 15, 4415. https://doi.org/10.3390/cancers15174415
Akkurt BH, Spille DC, Peetz-Dienhart S, Kiolbassa NM, Mawrin C, Musigmann M, Heindel WL, Paulus W, Stummer W, Mannil M, et al. Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas. Cancers. 2023; 15(17):4415. https://doi.org/10.3390/cancers15174415
Chicago/Turabian StyleAkkurt, Burak Han, Dorothee Cäcilia Spille, Susanne Peetz-Dienhart, Nora Maren Kiolbassa, Christian Mawrin, Manfred Musigmann, Walter Leonhard Heindel, Werner Paulus, Walter Stummer, Manoj Mannil, and et al. 2023. "Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas" Cancers 15, no. 17: 4415. https://doi.org/10.3390/cancers15174415
APA StyleAkkurt, B. H., Spille, D. C., Peetz-Dienhart, S., Kiolbassa, N. M., Mawrin, C., Musigmann, M., Heindel, W. L., Paulus, W., Stummer, W., Mannil, M., & Brokinkel, B. (2023). Radiomics-Based Prediction of TERT Promotor Mutations in Intracranial High-Grade Meningiomas. Cancers, 15(17), 4415. https://doi.org/10.3390/cancers15174415