Depression, Inflammation, and Intestinal Permeability: Associations with Subjective and Objective Cognitive Functioning throughout Breast Cancer Survivorship
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedure
2.3. Measures
2.3.1. Subjective Tests
2.3.2. Objective Tests
2.3.3. Depression
2.3.4. Biological Markers
2.3.5. Covariates
2.4. Analytic Method
3. Results
3.1. Demographic Information
3.2. Subjective Tests
3.2.1. Depression and Inflammation
3.2.2. Depression and Intestinal Permeability
3.3. Objective Tests
3.3.1. Depression and Inflammation
3.3.2. Depression and Intestinal Permeability
4. Discussion
5. Strengths: Limitations, and Future Directions
6. Clinical Implications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Joly, F.; Lange, M.; Dos Santos, M.; Vaz-Luis, I.; Di Meglio, A. Long-Term Fatigue and Cognitive Disorders in Breast Cancer Survivors. Cancers 2019, 11, 1896. [Google Scholar] [PubMed]
- Dijkshoorn, A.B.; van Stralen, H.E.; Sloots, M.; Schagen, S.B.; Visser-Meily, J.M.; Schepers, V.P. Prevalence of Cognitive Impairment and Change in Patients with Breast Cancer: A Systematic Review of Longitudinal Studies. Psycho-Oncology 2021, 30, 635–648. [Google Scholar] [PubMed]
- Bernstein, L.J.; McCreath, G.A.; Komeylian, Z.; Rich, J.B. Cognitive Impairment in Breast Cancer Survivors Treated with Chemotherapy Depends on Control Group Type and Cognitive Domains Assessed: A Multilevel Meta-Analysis. Neurosci. Biobehav. Rev. 2017, 83, 417–428. [Google Scholar] [PubMed]
- Whittaker, A.L.; George, R.P.; O’Malley, L. Prevalence of Cognitive Impairment Following Chemotherapy Treatment for Breast Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2022, 12, 2135. [Google Scholar] [PubMed]
- Boscher, C.; Joly, F.; Clarisse, B.; Humbert, X.; Grellard, J.-M.; Binarelli, G.; Tron, L.; Licaj, I.; Lange, M. Perceived Cognitive Impairment in Breast Cancer Survivors and Its Relationships with Psychological Factors. Cancers 2020, 12, 3000. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, A.D.; Hosking, J.R.; Kichenadasse, G.; Mattiske, J.K.; Wilson, C. Objective and Subjective Cognitive Impairment Following Chemotherapy for Cancer: A Systematic Review. Cancer Treat. Rev. 2012, 38, 926–934. [Google Scholar] [CrossRef]
- Pullens, M.J.; De Vries, J.; Roukema, J.A. Subjective Cognitive Dysfunction in Breast Cancer Patients: A Systematic Review. Psycho-Oncology 2010, 19, 1127–1138. [Google Scholar]
- Von Ah, D.; Habermann, B.; Carpenter, J.S.; Schneider, B.L. Impact of Perceived Cognitive Impairment in Breast Cancer Survivors. Eur. J. Oncol. Nurs. 2013, 17, 236–241. [Google Scholar]
- Savard, J.; Ganz, P.A. Subjective or Objective Measures of Cognitive Functioning—What’s More Important? JAMA Oncol. 2016, 2, 1263–1264. [Google Scholar] [CrossRef]
- Kohli, S.; Griggs, J.J.; Roscoe, J.A.; Jean-Pierre, P.; Bole, C.; Mustian, K.M.; Hill, R.; Smith, K.; Gross, H.; Morrow, G.R. Self-Reported Cognitive Impairment in Patients with Cancer. J. Oncol. Pract. 2007, 3, 54–59. [Google Scholar]
- Von Ah, D.; Tallman, E.F. Perceived Cognitive Function in Breast Cancer Survivors: Evaluating Relationships with Objective Cognitive Performance and Other Symptoms Using the Functional Assessment of Cancer Therapy—Cognitive Function Instrument. J. Pain Symptom Manag. 2015, 49, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Charles, C.; Bardet, A.; Larive, A.; Gorwood, P.; Ramoz, N.; Thomas, E.; Viari, A.; Rousseau-Tsangaris, M.; Dumas, A.; Menvielle, G. Characterization of Depressive Symptoms Trajectories after Breast Cancer Diagnosis in Women in France. JAMA Netw. Open 2022, 5, e225118. [Google Scholar] [CrossRef]
- Rock, P.L.; Roiser, J.P.; Riedel, W.J.; Blackwell, A. Cognitive Impairment in Depression: A Systematic Review and Meta-Analysis. Psychol. Med. 2014, 44, 2029–2040. [Google Scholar] [CrossRef] [PubMed]
- Seliktar, N.; Polek, C.; Brooks, A.; Hardie, T. Cognition in Breast Cancer Survivors: Hormones versus Depression. Psycho-Oncology 2015, 24, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.T.; Hawkley, L.C.; Thisted, R.A. Perceived Social Isolation Makes Me Sad: 5-Year Cross-Lagged Analyses of Loneliness and Depressive Symptomatology in the Chicago Health, Aging, and Social Relations Study. Psychol. Aging 2010, 25, 453. [Google Scholar] [CrossRef] [PubMed]
- Jaremka, L.M.; Peng, J.; Bornstein, R.; Alfano, C.M.; Andridge, R.R.; Povoski, S.P.; Lipari, A.M.; Agnese, D.M.; Farrar, W.B.; Yee, L.D. Cognitive Problems among Breast Cancer Survivors: Loneliness Enhances Risk. Psycho-Oncology 2014, 23, 1356–1364. [Google Scholar] [CrossRef]
- American Psychiatric Association, D.; American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5; American Psychiatric Association: Washington, DC, USA, 2013; Volume 5. [Google Scholar]
- Zimmerman, M.; Ellison, W.; Young, D.; Chelminski, I.; Dalrymple, K. How Many Different Ways Do Patients Meet the Diagnostic Criteria for Major Depressive Disorder? Compr. Psychiatry 2015, 56, 29–34. [Google Scholar] [CrossRef]
- Osimo, E.F.; Baxter, L.J.; Lewis, G.; Jones, P.B.; Khandaker, G.M. Prevalence of Low-Grade Inflammation in Depression: A Systematic Review and Meta-Analysis of CRP Levels. Psychol. Med. 2019, 49, 1958–1970. [Google Scholar] [CrossRef]
- Mac Giollabhui, N.; Ng, T.H.; Ellman, L.M.; Alloy, L.B. The Longitudinal Associations of Inflammatory Biomarkers and Depression Revisited: Systematic Review, Meta-Analysis, and Meta-Regression. Mol. Psychiatry 2020, 26, 3302–3314. [Google Scholar] [CrossRef]
- Chang, H.H.; Lee, I.H.; Gean, P.W.; Lee, S.-Y.; Chi, M.H.; Yang, Y.K.; Lu, R.-B.; Chen, P.S. Treatment Response and Cognitive Impairment in Major Depression: Association with C-Reactive Protein. Brain Behav. Immun. 2012, 26, 90–95. [Google Scholar] [CrossRef]
- Carlier, A.; Rhebergen, D.; Veerhuis, R.; Schouws, S.; Oudega, M.L.; Eikelenboom, P.; Bouckaert, F.; Sienaert, P.; Obbels, J.; Stek, M.L.; et al. Inflammation and Cognitive Functioning in Depressed Older Adults Treated with Electroconvulsive Therapy: A Prospective Cohort Study. J. Clin. Psychiatry 2021, 82, 35808. [Google Scholar] [CrossRef]
- Krogh, J.; Benros, M.E.; Jørgensen, M.B.; Vesterager, L.; Elfving, B.; Nordentoft, M. The Association between Depressive Symptoms, Cognitive Function, and Inflammation in Major Depression. Brain Behav. Immun. 2014, 35, 70–76. [Google Scholar] [CrossRef]
- Mac Giollabhui, N.; Alloy, L.B.; Schweren, L.J.S.; Hartman, C.A. Investigating Whether a Combination of Higher CRP and Depression Is Differentially Associated with Worse Executive Functioning in a Cohort of 43,896 Adults. Brain Behav. Immun. 2021, 96, 127–134. [Google Scholar] [CrossRef]
- Villasenor, A.; Flatt, S.W.; Marinac, C.; Natarajan, L.; Pierce, J.P.; Patterson, R.E. Postdiagnosis C-Reactive Protein and Breast Cancer Survivorship: Findings from the WHEL StudyC-Reactive Protein and Long-Term Breast Cancer Survival. Cancer Epidemiol. Biomark. Prev. 2014, 23, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.E.; Nakamura, Z.M.; Small, B.J.; Zhou, X.; Cohen, H.J.; Ahles, T.A.; Ahn, J.; Bethea, T.N.; Extermann, M.; Graham, D.; et al. Elevated C-Reactive Protein and Subsequent Patient-Reported Cognitive Problems in Older Breast Cancer Survivors: The Thinking and Living with Cancer Study. J. Clin. Oncol. 2023, 41, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M. Leaky Gut: Mechanisms, Measurement and Clinical Implications in Humans. Gut 2019, 68, 1516–1526. [Google Scholar] [CrossRef]
- Madison, A.A.; Andridge, R.; Padin, A.C.; Wilson, S.; Bailey, M.T.; Alfano, C.M.; Povoski, S.P.; Lipari, A.M.; Agnese, D.M.; Carson, W.E. Endotoxemia Coupled with Heightened Inflammation Predicts Future Depressive Symptoms. Psychoneuroendocrinology 2020, 122, 104864. [Google Scholar] [CrossRef] [PubMed]
- Madison, A.A.; Belury, M.A.; Andridge, R.; Shrout, M.R.; Renna, M.E.; Malarkey, W.B.; Bailey, M.T.; Kiecolt-Glaser, J.K. Afternoon Distraction: A High-Saturated-Fat Meal and Endotoxemia Impact Postmeal Attention in a Randomized Crossover Trial. Am. J. Clin. Nutr. 2020, 111, 1150–1158. [Google Scholar] [CrossRef]
- Moreno-Navarrete, J.; Blasco, G.; Puig, J.; Biarnés, C.; Rivero, M.; Gich, J.; Fernandez-Aranda, F.; Garre-Olmo, J.; Ramio-Torrenta, L.; Alberich-Bayarri, A. Neuroinflammation in Obesity: Circulating Lipopolysaccharide-Binding Protein Associates with Brain Structure and Cognitive Performance. Int. J. Obes. 2017, 41, 1627–1635. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Bennett, J.M.; Andridge, R.; Peng, J.; Shapiro, C.L.; Malarkey, W.B.; Emery, C.F.; Layman, R.; Mrozek, E.E.; Glaser, R. Yoga’s Impact on Inflammation, Mood, and Fatigue in Breast Cancer Survivors: A Randomized Controlled Trial. J. Clin. Oncol. 2014, 32, 1040. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; Renna, M.E.; Peng, J.; Sheridan, J.; Lustberg, M.; Ramaswamy, B.; Wesoloski, R.; VanDeusen, J.B.; Williams, N.O.; Sardesai, S.D.; et al. Breast Cancer Survivors’ Vaccine Responses: Chemotherapy, Obesity, and Fitness Make a Difference. Brain Behav. Immun. 2022, 103, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Brydon, L.; Harrison, N.A.; Walker, C.; Steptoe, A.; Critchley, H.D. Peripheral Inflammation Is Associated with Altered Substantia Nigra Activity and Psychomotor Slowing in Humans. Biol. Psychiatry 2008, 63, 1022–1029. [Google Scholar] [CrossRef] [PubMed]
- Madison, A.A.; Filatov, M.; Andridge, R.; Haas, G.; Povoski, S.P.; Agnese, D.M.; Lustberg, M.; Reinbolt, R.E.; Wesolowski, R.; Williams, N.O. A Troubled Heart: Mood Disorder History Longitudinally Predicts Faster Cardiopulmonary Aging in Breast Cancer Survivorship. PLoS ONE 2023, 18, e0283849. [Google Scholar] [CrossRef] [PubMed]
- Terhorst, L.; Blair-Belansky, H.; Moore, P.J.; Bender, C. Evaluation of the Psychometric Properties of the BCPT Symptom Checklist with a Sample of Breast Cancer Patients before and after Adjuvant Therapy. Psycho-Oncology 2011, 20, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Tam, F.; Churchill, N.W.; Lin, F.-H.; MacIntosh, B.J.; Schweizer, T.A.; Graham, S.J. Trail Making Test Performance Using a Touch-Sensitive Tablet: Behavioral Kinematics and Electroencephalography. Front. Hum. Neurosci. 2021, 15, 663463. [Google Scholar] [CrossRef] [PubMed]
- Kortte, K.B.; Horner, M.D.; Windham, W.K. The Trail Making Test, Part B: Cognitive Flexibility or Ability to Maintain Set? Appl. Neuropsychol. 2002, 9, 106–109. [Google Scholar] [CrossRef]
- Malek-Ahmadi, M.; Small, B.J.; Raj, A. The Diagnostic Value of Controlled Oral Word Association Test-FAS and Category Fluency in Single-Domain Amnestic Mild Cognitive Impairment. Dement. Geriatr. Cogn. Disord. 2012, 32, 235–240. [Google Scholar] [CrossRef]
- Campagna, F.; Montagnese, S.; Ridola, L.; Senzolo, M.; Schiff, S.; De Rui, M.; Pasquale, C.; Nardelli, S.; Pentassuglio, I.; Merkel, C.; et al. The Animal Naming Test: An Easy Tool for the Assessment of Hepatic Encephalopathy. Hepatology 2017, 66, 198–208. [Google Scholar] [CrossRef]
- Conners, C.K. Conners Continuous Performance Test 3rd Edition (Conners CPT 3) & Connors Continuous Auditory Test of Attention (Conners CATA): Technical Manual; MHS: Toronto, CA, USA, 2014. [Google Scholar]
- Scimeca, L.M.; Holbrook, L.; Rhoads, T.; Cerny, B.M.; Jennette, K.J.; Resch, Z.J.; Obolsky, M.A.; Ovsiew, G.P.; Soble, J.R. Examining Conners Continuous Performance Test-3 (CPT-3) Embedded Performance Validity Indicators in an Adult Clinical Sample Referred for ADHD Evaluation. Dev. Neuropsychol. 2021, 46, 347–359. [Google Scholar] [CrossRef]
- Rabin, L.A.; Barr, W.B.; Burton, L.A. Assessment Practices of Clinical Neuropsychologists in the United States and Canada: A Survey of INS, NAN, and APA Division 40 Members. Arch. Clin. Neuropsychol. 2005, 20, 33–65. [Google Scholar] [CrossRef]
- Benedict, R.H.B.; Schretlen, D.; Groninger, L.; Brandt, J. Hopkins Verbal Learning Test–Revised: Normative Data and Analysis of Inter-Form and Test-Retest Reliability. Clin. Neuropsychol. 1998, 12, 43–55. [Google Scholar] [CrossRef]
- Chiaravalloti, N.D.; DeLuca, J.; Moore, N.B.; Ricker, J.H. Treating Learning Impairments Improves Memory Performance in Multiple Sclerosis: A Randomized Clinical Trial. Mult. Scler. J. 2005, 11, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Kane, M.J.; Conway, A.R.A.; Miura, T.K.; Colflesh, G.J.H. Working Memory, Attention Control, and the N-Back Task: A Question of Construct Validity. J. Exp. Psychol. Learn. Mem. Cogn. 2007, 33, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, W.K. Age Differences in Short-Term Retention of Rapidly Changing Information. J. Exp. Psychol. 1958, 55, 352–358. [Google Scholar] [CrossRef] [PubMed]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Weissman, M.M.; Sholomskas, D.; Pottenger, M.; Prusoff, B.A.; Locke, B.Z. Assessing Depressive Symptoms in Five Psychiatric Populations: A Validation Study. Am. J. Epidemiol. 1977, 106, 203–214. [Google Scholar] [CrossRef]
- Fontes, J.D.; Yamamoto, J.F.; Larson, M.G.; Wang, N.; Dallmeier, D.; Rienstra, M.; Schnabel, R.B.; Vasan, R.S.; Keaney Jr, J.F.; Benjamin, E.J. Clinical Correlates of Change in Inflammatory Biomarkers: The Framingham Heart Study. Atherosclerosis 2013, 228, 217–223. [Google Scholar] [CrossRef]
- Kell, D.B.; Pretorius, E. On the Translocation of Bacteria and Their Lipopolysaccharides between Blood and Peripheral Locations in Chronic, Inflammatory Diseases: The Central Roles of LPS and LPS-Induced Cell Death. Integr. Biol. 2015, 7, 1339–1377. [Google Scholar] [CrossRef]
- Brenchley, J.M.; Price, D.A.; Schacker, T.W.; Asher, T.E.; Silvestri, G.; Rao, S.; Kazzaz, Z.; Bornstein, E.; Lambotte, O.; Altmann, D. Microbial Translocation Is a Cause of Systemic Immune Activation in Chronic HIV Infection. Nat. Med. 2006, 12, 1365–1371. [Google Scholar] [CrossRef]
- Gonzalez-Quintela, A.; Alonso, M.; Campos, J.; Vizcaino, L.; Loidi, L.; Gude, F. Determinants of Serum Concentrations of Lipopolysaccharide-Binding Protein (LBP) in the Adult Population: The Role of Obesity. PLoS ONE 2013, 8, e54600. [Google Scholar] [CrossRef]
- Abad-Fernández, M.; Vallejo, A.; Hernández-Novoa, B.; Díaz, L.; Gutiérrez, C.; Madrid, N.; Muñoz, M.Á.; Moreno, S. Correlation Between Different Methods to Measure Microbial Translocation and Its Association with Immune Activation in Long-Term Suppressed HIV-1–Infected Individuals. JAIDS J. Acquir. Immune Defic. Syndr. 2013, 64, 149–153. [Google Scholar] [CrossRef]
- Uhde, M.; Ajamian, M.; Caio, G.; De Giorgio, R.; Indart, A.; Green, P.H.; Verna, E.C.; Volta, U.; Alaedini, A. Intestinal Cell Damage and Systemic Immune Activation in Individuals Reporting Sensitivity to Wheat in the Absence of Coeliac Disease. Gut 2016, 65, 1930–1937. [Google Scholar] [CrossRef] [PubMed]
- Tremellen, K.; Pearce, K. Small Intestinal Bacterial Overgrowth (SIBO) as a Potential Cause of Impaired Spermatogenesis. Gut 2020, 69, 2058–2059. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, P.L.; Kiss, L.S.; Palatka, K.; Altorjay, I.; Antal-Szalmas, P.; Palyu, E.; Udvardy, M.; Molnar, T.; Farkas, K.; Veres, G. Serum Lipopolysaccharide-Binding Protein and Soluble CD14 Are Markers of Disease Activity in Patients with Crohn’s Disease. Inflamm. Bowel Dis. 2010, 17, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Vander Zee, K.I.; Sanderman, R.; Heyink, J.W.; de Haes, H. Psychometric Qualities of the RAND 36-Item Health Survey 1.0: A Multidimensional Measure of General Health Status. Int. J. Behav. Med. 1996, 3, 104–122. [Google Scholar]
- Walker, K.A.; Gottesman, R.F.; Wu, A.; Knopman, D.S.; Gross, A.L.; Mosley, T.H.; Selvin, E.; Windham, B.G. Systemic Inflammation during Midlife and Cognitive Change over 20 Years: The ARIC Study. Neurology 2019, 92, e1256–e1267. [Google Scholar]
- Mac Giollabhui, N.; Ellman, L.M.; Coe, C.L.; Byrne, M.L.; Abramson, L.Y.; Alloy, L.B. To Exclude or Not to Exclude: Considerations and Recommendations for C-Reactive Protein Values Higher than 10 Mg/L. Brain Behav. Immun. 2020, 87, 898. [Google Scholar] [CrossRef]
- Ballinger, G.A. Using Generalized Estimating Equations for Longitudinal Data Analysis. Organ. Res. Methods 2004, 7, 127–150. [Google Scholar] [CrossRef]
- Zeger, S.L.; Liang, K.-Y. Longitudinal Data Analysis for Discrete and Continuous Outcomes. Biometrics 1986, 42, 121–130. [Google Scholar] [CrossRef]
- Capuron, L.; Gumnick, J.F.; Musselman, D.L.; Lawson, D.H.; Reemsnyder, A.; Nemeroff, C.B.; Miller, A.H. Neurobehavioral Effects of Interferon-α in Cancer Patients: Phenomenology and Paroxetine Responsiveness of Symptom Dimensions. Neuropsychopharmacology 2002, 26, 643–652. [Google Scholar] [CrossRef]
- Sundermann, E.E.; Biegon, A.; Rubin, L.H.; Lipton, R.B.; Landau, S.; Maki, P.M.; Alzheimer’s Disease Neuroimaging Initiative. Does the Female Advantage in Verbal Memory Contribute to Underestimating Alzheimer’s Disease Pathology in Women versus Men? J. Alzheimer’s Dis. 2017, 56, 947–957. [Google Scholar] [CrossRef]
- Oliver, M.D.; Morrison, C.; Kamal, F.; Graham, J.; Dadar, M. Subjective Cognitive Decline Is a Better Marker for Future Cognitive Decline in Females than in Males. Alzheimer’s Res. Ther. 2022, 14, 197. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Razazan, A.; Nagpal, R.; Jain, S.; Wang, B.; Mishra, S.P.; Wang, S.; Justice, J.; Ding, J.; McClain, D.A. Metformin Reduces Aging-Related Leaky Gut and Improves Cognitive Function by Beneficially Modulating Gut Microbiome/Goblet Cell/Mucin Axis. J. Gerontol. Ser. A 2020, 75, e9–e21. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, G.; Gao, Q.; Li, N.; Wang, R. C-type Lectin-like Receptor 2 and Zonulin Are Associated with Mild Cognitive Impairment and Alzheimer’s Disease. Acta Neurol. Scand. 2020, 141, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Ryan, L.A.; Zheng, J.; Brester, M.; Bohac, D.; Hahn, F.; Anderson, J.; Ratanasuwan, W.; Gendelman, H.E.; Swindells, S. Plasma Levels of Soluble CD14 and Tumor Necrosis Factor-α Type II Receptor Correlate with Cognitive Dysfunction during Human Immunodeficiency Virus Type 1 Infection. J. Infect. Dis. 2001, 184, 699–706. [Google Scholar] [CrossRef]
- Lyons, J.L.; Uno, H.; Ancuta, P.; Kamat, A.; Moore, D.J.; Singer, E.J.; Morgello, S.; Gabuzda, D. Plasma SCD14 Is a Biomarker Associated with Impaired Neurocognitive Test Performance in Attention and Learning Domains in HIV Infection. J. Acquir. Immune Defic. Syndr. 2011, 57, 371. [Google Scholar] [CrossRef] [PubMed]
- Rundek, T.; Roy, S.; Hornig, M.; Cheung, Y.K.; Gardener, H.; DeRosa, J.; Levin, B.; Wright, C.B.; Del Brutto, V.J.; Elkind, M.S. Gut Permeability and Cognitive Decline: A Pilot Investigation in the Northern Manhattan Study. Brain Behav. Immun.-Health 2021, 12, 100214. [Google Scholar] [CrossRef]
- Ufnal, M.; Pham, K. The Gut-Blood Barrier Permeability—A New Marker in Cardiovascular and Metabolic Diseases? Med. Hypotheses 2017, 98, 35–37. [Google Scholar] [CrossRef]
- Zanoli, L.; Briet, M.; Empana, J.P.; Cunha, P.G.; Mäki-Petäjä, K.M.; Protogerou, A.D.; Tedgui, A.; Touyz, R.M.; Schiffrin, E.; Spronck, B. Vascular Consequences of Inflammation: A Position Statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J. Hypertens. 2020, 38, 1682. [Google Scholar] [CrossRef]
- Bradshaw, P.T.; Stevens, J.; Khankari, N.; Teitelbaum, S.L.; Neugut, A.I.; Gammon, M.D. Cardiovascular Disease Mortality among Breast Cancer Survivors. Epidemiology 2016, 27, 6. [Google Scholar] [CrossRef]
- Felger, J.C.; Haroon, E.; Patel, T.A.; Goldsmith, D.R.; Wommack, E.C.; Woolwine, B.J.; Le, N.-A.; Feinberg, R.; Tansey, M.G.; Miller, A.H. What Does Plasma CRP Tell Us about Peripheral and Central Inflammation in Depression? Mol. Psychiatry 2018, 25, 1301–1311. [Google Scholar] [CrossRef]
- McAfoose, J.; Baune, B.T. Evidence for a Cytokine Model of Cognitive Function. Neurosci. Biobehav. Rev. 2009, 33, 355–366. [Google Scholar] [CrossRef]
- Turkheimer, F.E.; Veronese, M.; Mondelli, V.; Cash, D.; Pariante, C.M. Sickness Behaviour and Depression: An Updated Model of Peripheral-Central Immunity Interactions. Brain Behav. Immun. 2023, 111, 202–210. [Google Scholar] [CrossRef]
- Derry, H.M.; Padin, A.C.; Kuo, J.L.; Hughes, S.; Kiecolt-Glaser, J.K. Sex Differences in Depression: Does Inflammation Play a Role? Curr. Psychiatry Rep. 2015, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xue, Y.; Cao, S.; Xie, Y.; Wu, C.; Ruffaner-Hanson, C.D.; Tang, H.; Teng, Z.; Chen, J.; Tang, M. Sex Differences in the Cognitive Function of First-Diagnosed, Drug-Naïve Depressed Patients: An Observational Case-Control Study. J. Affect. Disord. 2020, 276, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K.; Belury, M.A.; Andridge, R.; Malarkey, W.B.; Hwang, B.S.; Glaser, R. Omega-3 Supplementation Lowers Inflammation in Healthy Middle-Aged and Older Adults: A Randomized Controlled Trial. Brain Behav. Immun. 2012, 26, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Madison, A.A.; Belury, M.A.; Andridge, R.; Renna, M.E.; Shrout, M.R.; Malarkey, W.B.; Lin, J.; Epel, E.S.; Kiecolt-Glaser, J.K. Omega-3 Supplementation and Stress Reactivity of Cellular Aging Biomarkers: An Ancillary Substudy of a Randomized, Controlled Trial in Midlife Adults. Mol. Psychiatry 2021, 26, 3034–3042. [Google Scholar] [CrossRef]
- Kaliannan, K.; Wang, B.; Li, X.-Y.; Kim, K.-J.; Kang, J.X. A Host-Microbiome Interaction Mediates the Opposing Effects of Omega-6 and Omega-3 Fatty Acids on Metabolic Endotoxemia. Sci. Rep. 2015, 5, 11276. [Google Scholar] [CrossRef] [PubMed]
- Barnes, S.; Chowdhury, S.; Gatto, N.M.; Fraser, G.E.; Lee, G.J. Omega-3 Fatty Acids Are Associated with Blood–Brain Barrier Integrity in a Healthy Aging Population. Brain Behav. 2021, 11, e2273. [Google Scholar] [CrossRef]
Study 1 | Study 2 | Study 3 | Study 4 | |
---|---|---|---|---|
Any other cancer besides basal or squamous cell carcinomas | X | X | X | X |
Significant visual, auditory, or cognitive impairment that would limit study participation | X | X | X | X |
Inflammatory breast cancer | X | |||
Diabetes | X | X | X | |
Stroke | X | |||
Current heart disease | X | X | ||
Uncontrolled hypertension | X | X | X | |
Prior heart attack | X | |||
Heart failure | X | |||
Age (<21 or >75) | X | |||
Heart transplant | X | |||
Other major cardiovascular surgery | X | |||
Liver disease | X | X | ||
Autoimmune and/or inflammatory disease | X | X | X | |
Alcohol/drug abuse | X | X | X | |
Steroid use | X | |||
Recent (<3 month) initiation of antidepressant medication | X | |||
Other medical conditions that would limit study participation | X | |||
Distance from lab (>100 miles) | X | |||
Neoadjuvant chemotherapy or radiation treatment | X | |||
Peripheral vascular disease | X | |||
Liver or kidney failure | X | |||
Symptomatic ischemic heart disease | X | |||
Anemia | X | X | ||
Chronic obstructive pulmonary disease | X | |||
Current yoga practice (within past 6 months) | X | |||
Previous yoga practice for >3 months | X | |||
Five or more hours of vigorous physical activity per week | X | |||
A prior typhoid vaccination | X | |||
Smoking | X | |||
Steroids, statins, or other anti-inflammatory meds | X |
Study 1 | Study 2 | Study 3 | Study 4 | ||
---|---|---|---|---|---|
CRP | Intra-assay CoV | 3.10% | 3.10% | 7.23% | 7.23% |
Inter-assay CoV | 7.30% | 7.30% | 2.87% | 2.87% | |
Sensitivity | 0.30 mg/L | 0.30 mg/L | 27.60 pg/mL | 27.60 pg/mL | |
IL-6 | Intra-assay CoV | 1.43% | 1.43% | 4.10% | 4.10% |
Inter-assay CoV | 4.42% | 4.42% | 6.50% | 6.50% | |
Sensitivity | 0.37 pg/mL | 0.37 pg/mL | 0.03 pg/mL | 0.03 pg/mL | |
TNF-α | Intra-assay CoV | 4.32% | 4.32% | 8.85% | 8.85% |
Inter-assay CoV | 5.30% | 5.30% | 3.30% | 3.30% | |
Sensitivity | 0.26 pg/mL | 0.26 pg/mL | 0.04 pg/mL | 0.04 pg/mL | |
LBP | Intra-assay CoV | 2.74% | 2.74% | 10.80% | 10.80% |
Inter-assay CoV | 8.33% | 8.33% | 4.25% | 4.25% | |
Sensitivity | 0.04 ng/mL | 0.04 ng/mL | 0.04 ng/mL | 0.04 ng/mL |
Kohli | BCPT | 1-Back | 2-Back | ||||||
---|---|---|---|---|---|---|---|---|---|
Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | ||
Study 1 | Total | 202 | 202 | 0 | 0 | 0 | 0 | 0 | 0 |
Visit 1 | 199 | 196 | 0 | 0 | 0 | 0 | 0 | 0 | |
Visit 2 | 128 | 124 | 0 | 0 | 0 | 0 | 0 | 0 | |
Visit 3 | 108 | 106 | 0 | 0 | 0 | 0 | 0 | 0 | |
Study 2 | Total | 63 | 56 | 100 | 89 | 0 | 0 | 0 | 0 |
Visit 1 | 52 | 46 | 98 | 88 | 0 | 0 | 0 | 0 | |
Visit 2 | 51 | 50 | 88 | 87 | 0 | 0 | 0 | 0 | |
Visit 3 | 49 | 47 | 80 | 77 | 0 | 0 | 0 | 0 | |
Study 3 | Total | 162 | 161 | 74 | 74 | 0 | 0 | 0 | 0 |
Visit 1 | 85 | 84 | 0 | 0 | 0 | 0 | 0 | 0 | |
Visit 2 | 77 | 77 | 74 | 74 | 0 | 0 | 0 | 0 | |
Study 4 | Total | 0 | 0 | 148 | 140 | 145 | 137 | 145 | 137 |
Visit 1 | 0 | 0 | 146 | 137 | 143 | 134 | 143 | 134 | |
Visit 2 | 0 | 0 | 105 | 103 | 98 | 96 | 97 | 95 | |
Trail-Making Test A | Trail-Making Test B | Animal-Naming Test and FAS Test | CPT | ||||||
Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | ||
Study 4 | Total | 147 | 139 | 146 | 138 | 148 | 140 | 148 | 140 |
Visit 1 | 143 | 131 | 140 | 149 | 147 | 138 | 147 | 138 | |
Visit 2 | 99 | 97 | 99 | 99 | 99 | 97 | 98 | 96 | |
HVLT Recall and Percent Retained | HVLT Recognition | ||||||||
Depress by Inflam | Depress by LBP | Depress by Inflam | Depress by LBP | ||||||
Study 4 | Total | 148 | 140 | 146 | 139 | ||||
Visit 1 | 147 | 138 | 143 | 135 | |||||
Visit 2 | 98 | 96 | 98 | 96 |
Study 1 (n = 202) | Study 2 (n = 100) | Study 3 (n = 162) | Study 4 (n = 149) | Total (n = 613) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | <0.0001 | |||||||||||
Mean (SD) | 55.9 | (11.6) | 51.3 | (8.7) | 56.6 | (8.6) | 52.1 | (10.1) | 54.4 | (10.2) | ||
[min, max] | [26, 88] | [28, 76] | [36, 78] | [26, 75] | [26, 88] | |||||||
Months since treatment | <0.0001 | |||||||||||
Mean (SD) | −5.3 | (3.9) | 12.1 | (8.0) | 45.0 | (28.3) | −2.3 | (4.7) | 11.6 | (25.9) | ||
[min, max] | [−21.4, 0.0] | [2.1, 34.0] | [11.4, 131.3] | [−32.9, 4.6] | [−32.9, 131.3] | |||||||
Energy/Fatigue scale, RAND36 * | <0.0001 | |||||||||||
Mean (SD) | 53.3 | (23.4) | 44.4 | (20.9) | 61.0 | (19.0) | 50.7 | (19.9) | 53.3 | (21.7) | ||
[min, max] | [0, 100] | [5, 90] | [0, 95] | [0, 100] | [0, 100] | |||||||
BMI | 0.20 | |||||||||||
Mean (SD) | 28.9 | (7.3) | 27.6 | (6.0) | 27.7 | (5.8) | 28.6 | (5.7) | 28.3 | (6.4) | ||
[min, max] | [15.8, 58.7] | [16.2, 43.9] | [18.7, 45.5] | [16.8, 49.6] | [15.8, 58.7] | |||||||
Race | 0.03 ^ | |||||||||||
White | 79% | (160) | 88% | (88) | 92% | (149) | 86% | (128) | 86% | (525) | ||
Black | 15% | (30) | 10% | (10) | 6% | (10) | 9% | (13) | 10% | (63) | ||
Asian | 3% | (7) | 2% | (2) | 0.6% | (1) | 2% | (3) | 2% | (13) | ||
Native American | 2% | (4) | 0% | (0) | 0% | (0) | 1% | (1) | 1% | (5) | ||
Other | 0% | (1) | 0% | (0) | 0% | (0) | 0% | (0) | 0% | (1) | ||
Mixed | 0% | (0) | 0% | (0) | 1% | (2) | 3% | (4) | 1% | (6) | ||
Education | <0.0001 | |||||||||||
HS or less | 29% | (58) | 7% | (7) | 11% | (18) | 15% | (22) | 17% | (105) | ||
Some college | 21% | (43) | 22% | (22) | 17% | (28) | 25% | (37) | 21% | (130) | ||
College grad | 24% | (48) | 33% | (33) | 37% | (60) | 31% | (46) | 31% | (187) | ||
Grad/prof training | 26% | (53) | 38% | (38) | 35% | (56) | 30% | (44) | 31% | (191) | ||
Cancer Stage | <0.0001 | |||||||||||
Stage 0 | 18% | (37) | 9% | (9) | 0% | (0) | 0% | (0) | 8% | (46) | ||
Stage 1 | 45% | (90) | 43% | (43) | 47% | (76) | 50% | (74) | 46% | (283) | ||
Stage 2 | 27% | (55) | 38% | (38) | 48% | (77) | 47% | (70) | 39% | (240) | ||
Stage 3 | 9% | (19) | 10% | (10) | 6% | (9) | 3% | (5) | 7% | (43) | ||
Missing | -- | (1) | -- | (0) | -- | (0) | -- | (0) | -- | (1) | ||
Cancer Treatment | <0.0001 | |||||||||||
Surgery | 30% | (61) | 13% | (13) | 12% | (19) | 31% | (46) | 23% | (139) | ||
Surgery + chemo | 16% | (33) | 23% | (23) | 27% | (44) | 10% | (15) | 19% | (115) | ||
Surgery + radiation | 27% | (55) | 24% | (24) | 23% | (37) | 32% | (47) | 27% | (163) | ||
Surgery + chemo + radiation | 26% | (53) | 40% | (40) | 38% | (62) | 28% | (41) | 32% | (196) | ||
Antidepressant Use | 0.41 | |||||||||||
No | 77% | (155) | 70% | (70) | 71% | (115) | 76% | (113) | 74% | (453) | ||
Yes | 23% | (46) | 30% | (30) | 29% | (47) | 24% | (36) | 26% | (159) | ||
Missing | -- | (1) | -- | (0) | -- | (0) | -- | (0) | -- | (1) |
Study 1 (n = 435 Visits) | Study 2 (n = 266 Visits) | Study 3 (n = 162 Visits) | Study 4 (n = 252 Visits) | Total (n = 1116 Visits) | ||
---|---|---|---|---|---|---|
IL-6 | ||||||
M(SD) | 2.2 (2.3) | 2.3 (2.2) | 2.8 (6.3) | 2.9 (2.4) | 2.5 (3.2) | |
[min, max] | [0.15, 21.8] | [0.15, 15.1] | [0.44, 78.4] | [0.06, 14.0] | [0.06, 78.4] | |
TNF-α | ||||||
M(SD) | 7.4 (3.8) | 7.1 (3.2) | 2.3 (0.6) | 2.4 (0.7) | 5.5 (3.7) | |
[min, max] | [1.3, 28.4] | [2.1, 27.0] | [1.2, 4.5] | [1.0, 4.7] | [1.0, 28.4] | |
CRP | ||||||
M(SD) | 3.0 (5.2) | 2.2 (3.9) | 3.2 (4.6) | 5.4 (14.6) | 3.4 (8.2) | |
[min, max] | [0.15, 53.6] | [0.15, 34.0] | [0.10, 29.0] | [0.06, 194.6] | [0.1, 194.6] | |
LBP | ||||||
M(SD) | 5069 (2220) | 5562 (1947) | 4150 (1918) | 5225 (2368) | 5082 (2192) | |
[min, max] | [221, 14,218] | [442, 10,719] | [429, 10,504] | [890, 17,070] | [221, 17,070] | |
CES-D | ||||||
M(SD) | 13.8 (10.5) | 10.2 (8.6) | 7.7 (7.1) | 9.4 (6.7) | 11.1 (9.1) | |
[min, max] | [0, 49] | [0, 46] | [0, 41] | [0, 34] | [0, 49] | |
CES-D clinical cutoff, %(n) | ||||||
<16 | 62% (270) | 79% (211) | 87% (141) | 83% (208) | 74% (830) | |
16+ | 38% (165) | 21% (55) | 13% (21) | 17% (44) | 26% (285) |
Outcome | Study | N | Mean (SD) | [Min, Max] | ||
---|---|---|---|---|---|---|
Outcomes in Multiple Studies: | ||||||
Kohli Focus | ||||||
Study 1 | 435 | 2.30 | (2.27) | [0, 9] | ||
Study 2 | 152 | 3.05 | (2.35) | [0, 10] | ||
Study 3 | 162 | 2.07 | (1.99) | [0, 8] | ||
All Three Combined | 749 | 2.40 | (2.25) | [0, 10] | ||
Kohli Memory | ||||||
Study 1 | 435 | 2.11 | (2.24) | [0, 9] | ||
Study 2 | 152 | 3.36 | (2.25) | [0, 10] | ||
Study 3 | 162 | 2.24 | (2.03) | [0, 8] | ||
All Three Combined | 749 | 2.39 | (2.25) | [0, 10] | ||
BCPT | ||||||
Study 2 | 266 | 1.34 | (0.98) | [0, 4] | ||
Study 3 | 74 | 0.91 | (0.71) | [0, 2.7] | ||
Study 4 | 251 | 1.09 | (0.83) | [0, 4] | ||
All Three Combined | 591 | 1.18 | (0.90) | [0, 4] | ||
Study 4 Only: | ||||||
FAS Test | 246 | 38.2 | (11.0) | [10, 67] | ||
Animal-Naming Test | 246 | 20.1 | (4.7) | [7, 35] | ||
CPT Detectability | 245 | 44.3 | (8.3) | [25, 77] | ||
CPT Omissions | 245 | 46.1 | (4.8) | [44, 90] | ||
CPT Commissions | 245 | 46.3 | (8.0) | [34, 86] | ||
CPT Hit RT | 245 | 48.5 | (8.5) | [31, 81] | ||
HVLT Recall | 245 | 27.0 | (4.1) | [15, 35] | ||
HVLT Percent Retained | 245 | 92.3 | (14.9) | [0, 133.3] | ||
HVLT Recognition | 241 | 11.6 | (0.84) | [7, 12] | ||
1-back Accuracy | 241 | 0.95 | (0.07) | [0.47, 1] | ||
1-back RT | 241 | 630 | (113) | [371, 1120] | ||
2-back Accuracy | 240 | 0.87 | (0.12) | [0.30, 0.98] | ||
2-back RT | 240 | 782 | (124) | [473, 1083] | ||
Trail A Seconds to Complete | 242 | 26.9 | (9.0) | [13, 81] | ||
Trail B Seconds to Complete | 239 | 65.5 | (28.5) | [30, 260] |
Depression by Inflammation | Depression by LBP | Inflammation Main Effect | LBP Main Effect | Depression Main Effect | ||
---|---|---|---|---|---|---|
Subjective | Kohli focus | X | X | X | ||
Kohli memory | marginal | marginal | X | |||
BCPT | X | |||||
Objective | FAS number | X | ||||
Animal number | marginal | marginal | ||||
CPT detectability | X | |||||
CPT omissions | ||||||
CPT commissions | X | |||||
CPT Hit RT | ||||||
Hopkins recall total | X (in opposite direction) | marginal (in opposite direction) | X | |||
Hopkins retain percent | marginal | |||||
Hopkins recognition | marginal | |||||
1-back accuracy | ||||||
1-back RT | ||||||
2-back accuracy | marginal | X | ||||
2-back RT | X | |||||
Trail Making Test A Seconds to Complete | marginal | X | marginal | |||
Trail Making Test B Seconds to Complete | X | |||||
KEY: | ||||||
Verbal Fluency | ||||||
Attention | ||||||
Verbal Learning and Memory | ||||||
Working Memory | ||||||
Visuospatial Search |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madison, A.A.; Andridge, R.; Kantaras, A.H.; Renna, M.E.; Bennett, J.M.; Alfano, C.M.; Povoski, S.P.; Agnese, D.M.; Lustberg, M.; Wesolowski, R.; et al. Depression, Inflammation, and Intestinal Permeability: Associations with Subjective and Objective Cognitive Functioning throughout Breast Cancer Survivorship. Cancers 2023, 15, 4414. https://doi.org/10.3390/cancers15174414
Madison AA, Andridge R, Kantaras AH, Renna ME, Bennett JM, Alfano CM, Povoski SP, Agnese DM, Lustberg M, Wesolowski R, et al. Depression, Inflammation, and Intestinal Permeability: Associations with Subjective and Objective Cognitive Functioning throughout Breast Cancer Survivorship. Cancers. 2023; 15(17):4414. https://doi.org/10.3390/cancers15174414
Chicago/Turabian StyleMadison, Annelise A., Rebecca Andridge, Anthony H. Kantaras, Megan E. Renna, Jeanette M. Bennett, Catherine M. Alfano, Stephen P. Povoski, Doreen M. Agnese, Maryam Lustberg, Robert Wesolowski, and et al. 2023. "Depression, Inflammation, and Intestinal Permeability: Associations with Subjective and Objective Cognitive Functioning throughout Breast Cancer Survivorship" Cancers 15, no. 17: 4414. https://doi.org/10.3390/cancers15174414
APA StyleMadison, A. A., Andridge, R., Kantaras, A. H., Renna, M. E., Bennett, J. M., Alfano, C. M., Povoski, S. P., Agnese, D. M., Lustberg, M., Wesolowski, R., Carson, W. E., III, Williams, N. O., Reinbolt, R. E., Sardesai, S. D., Noonan, A. M., Stover, D. G., Cherian, M. A., Malarkey, W. B., & Kiecolt-Glaser, J. K. (2023). Depression, Inflammation, and Intestinal Permeability: Associations with Subjective and Objective Cognitive Functioning throughout Breast Cancer Survivorship. Cancers, 15(17), 4414. https://doi.org/10.3390/cancers15174414