Oral Complications from Oropharyngeal Cancer Therapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Oral Mucositis
3. Candidiasis
4. Salivary Gland Dysfunction
5. Taste Dysfunction
6. Radiation Caries
7. Osteoradionecrosis
8. Trismus
9. Surveillance for Recurrent and Second Primary Cancer
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- American Cancer Society Cancer Facts and Figures 2023. Available online: https://www.cancer.gov/types/head-and-neck/hp/adult/oropharyngeal-treatment-pdq#_1 (accessed on 8 June 2023).
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Holliday, E.B.; Frank, S.J. Proton radiation therapy for head and neck cancer: A review of the clinical experience to date. Int. J. Radiat. Oncol. Biol. Phys. 2014, 89, 292–302. [Google Scholar] [CrossRef] [PubMed]
- Berger, K.; Schopohl, D.; Bollig, A.; Strobach, D.; Rieger, C.; Rublee, D.; Ostermann, H. Burden of Oral Mucositis: A Systematic Review and Implications for Future Research. Oncol. Res. Treat. 2018, 41, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Rao, D.; Behzadi, F.; Le, R.T.; Dagan, R.; Fiester, P. Radiation Induced Mucositis: What the Radiologist Needs to Know. Curr. Probl. Diagn. Radiol. 2021, 50, 899–904. [Google Scholar] [CrossRef]
- Moreno, A.C.; Frank, S.J.; Garden, A.S.; Rosenthal, D.I.; Fuller, C.D.; Gunn, G.B.; Reddy, J.P.; Morrison, W.H.; Williamson, T.D.; Holliday, E.B.; et al. Intensity modulated proton therapy (IMPT)—The future of IMRT for head and neck cancer. Oral Oncol. 2019, 88, 66–74. [Google Scholar] [CrossRef]
- Sethi, S.; O’Neil, M.; Jensen, E.; Smart, G.; Poirier, B. Toxicity with proton therapy for oral and/or oropharyngeal cancers: A scoping review. J. Oral Pathol. Med. 2023, 52, 567–574. [Google Scholar] [CrossRef]
- Raber-Durlacher, J.E.; Elad, S.; Barasch, A. Oral mucositis. Oral Oncol. 2010, 46, 452–456. [Google Scholar] [CrossRef]
- Lalla, R.V.; Treister, N.; Sollecito, T.; Schmidt, B.; Patton, L.L.; Mohammadi, K.; Hodges, J.S.; Brennan, M.T.; OraRad Study, G. Oral complications at 6 months after radiation therapy for head and neck cancer. Oral Dis. 2017, 23, 1134–1143. [Google Scholar] [CrossRef]
- Elad, S.; Zadik, Y. Chronic oral mucositis after radiotherapy to the head and neck: A new insight. Support. Care Cancer 2016, 24, 4825–4830. [Google Scholar] [CrossRef]
- Anderson, C.M.; Lee, C.M.; Saunders, D.; Curtis, A.E.; Dunlap, N.E.; Nangia, C.; Lee, A.S.; Kovoor, P.; Bar-Ad, V.; Pedadda, A.V., Jr.; et al. Two-Year Tumor Outcomes of a Phase 2B, Randomized, Double-Blind Trial of Avasopasem Manganese (GC4419) Versus Placebo to Reduce Severe Oral Mucositis Owing to Concurrent Radiation Therapy and Cisplatin for Head and Neck Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 416–421. [Google Scholar] [CrossRef]
- Klein, B.A.; Alves, F.A.; de Santana Rodrigues Velho, J.; Vacharotayangul, P.; Hanna, G.J.; LeBoeuf, N.R.; Shazib, M.A.; Villa, A.; Woo, S.B.; Sroussi, H.; et al. Oral manifestations of immune-related adverse events in cancer patients treated with immune checkpoint inhibitors. Oral Dis. 2022, 28, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, M.; Chiu, M.N.; Pilkhwal Sah, S. Adverse cutaneous toxicities by PD-1/PD-L1 immune checkpoint inhibitors: Pathogenesis, treatment, and surveillance. Cutan. Ocul. Toxicol. 2022, 41, 73–90. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wen, N.; Sonis, S.T.; Villa, A. Oral side effects of immune checkpoint inhibitor therapy (ICIT): An analysis of 4683 patients receiving ICIT for malignancies at Massachusetts General Hospital, Brigham & Women’s Hospital, and the Dana-Farber Cancer Institute, 2011 to 2019. Cancer 2021, 127, 1796–1804. [Google Scholar] [CrossRef] [PubMed]
- Lorini, L.; Perri, F.; Vecchio, S.; Belgioia, L.; Vinches, M.; Brana, I.; Elad, S.; Bossi, P. Confounding factors in the assessment of oral mucositis in head and neck cancer. Support. Care Cancer 2022, 30, 8455–8463. [Google Scholar] [CrossRef]
- Elad, S.; Yarom, N.; Zadik, Y.; Kuten-Shorrer, M.; Sonis, S.T. The broadening scope of oral mucositis and oral ulcerative mucosal toxicities of anticancer therapies. CA Cancer J. Clin. 2022, 72, 57–77. [Google Scholar] [CrossRef] [PubMed]
- Bowen, J.; Al-Dasooqi, N.; Bossi, P.; Wardill, H.; Van Sebille, Y.; Al-Azri, A.; Bateman, E.; Correa, M.E.; Raber-Durlacher, J.; Kandwal, A.; et al. The pathogenesis of mucositis: Updated perspectives and emerging targets. Support. Care Cancer 2019, 27, 4023–4033. [Google Scholar] [CrossRef]
- Sonis, S.T. The pathobiology of mucositis. Nat. Rev. Cancer 2004, 4, 277–284. [Google Scholar] [CrossRef]
- Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020, 126, 4423–4431. [Google Scholar] [CrossRef]
- Lalla, R.V.; Bowen, J.; Barasch, A.; Elting, L.; Epstein, J.; Keefe, D.M.; McGuire, D.B.; Migliorati, C.; Nicolatou-Galitis, O.; Peterson, D.E.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2014, 120, 1453–1461. [Google Scholar] [CrossRef]
- Villa, A.; Sonis, S.T. Radiotherapy-induced severe oral mucositis: Pharmacotherapies in recent and current clinical trials. Expert. Opin. Investig. Drugs 2023, 32, 301–310. [Google Scholar] [CrossRef]
- Napenas, J.J.; Brennan, M.T.; Elad, S. Oral Manifestations of Systemic Diseases. Dermatol. Clin. 2020, 38, 495–505. [Google Scholar] [CrossRef]
- Bonar-Alvarez, P.; Padin-Iruegas, E.; Chamorro-Petronacci, C.; Gandara-Vila, P.; Lorenzo-Pouso, A.I.; Somoza-Martin, M.; Blanco-Carrion, A.; Garcia-Garcia, A.; Perez-Sayans, M. Assessment of saliva and oral candidiasis levels 12, 24 and 36 months after radiotherapy in patients with head and neck cancer. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Nishii, M.; Soutome, S.; Kawakita, A.; Yutori, H.; Iwata, E.; Akashi, M.; Hasegawa, T.; Kojima, Y.; Funahara, M.; Umeda, M.; et al. Factors associated with severe oral mucositis and candidiasis in patients undergoing radiotherapy for oral and oropharyngeal carcinomas: A retrospective multicenter study of 326 patients. Support. Care Cancer 2020, 28, 1069–1075. [Google Scholar] [CrossRef] [PubMed]
- Tarapan, S.; Matangkasombut, O.; Trachootham, D.; Sattabanasuk, V.; Talungchit, S.; Paemuang, W.; Phonyiam, T.; Chokchaitam, O.; Mungkung, O.O.; Lam-Ubol, A. Oral Candida colonization in xerostomic postradiotherapy head and neck cancer patients. Oral Dis. 2019, 25, 1798–1808. [Google Scholar] [CrossRef]
- Makinen, A.; Nawaz, A.; Makitie, A.; Meurman, J.H. Role of Non-Albicans Candida and Candida Albicans in Oral Squamous Cell Cancer Patients. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2018, 76, 2564–2571. [Google Scholar] [CrossRef]
- Kawashita, Y.; Funahara, M.; Yoshimatsu, M.; Nakao, N.; Soutome, S.; Saito, T.; Umeda, M. A retrospective study of factors associated with the development of oral candidiasis in patients receiving radiotherapy for head and neck cancer: Is topical steroid therapy a risk factor for oral candidiasis? Medicine 2018, 97, e13073. [Google Scholar] [CrossRef]
- Jahanshiri, Z.; Manifar, S.; Moosa, H.; Asghari-Paskiabi, F.; Mahmoodzadeh, H.; Shams-Ghahfarokhi, M.; Razzaghi-Abyaneh, M. Oropharyngeal candidiasis in head and neck cancer patients in Iran: Species identification, antifungal susceptibility and pathogenic characterization. J. Mycol. Med. 2018, 28, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, I.D. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. Curr. Clin. Microbiol. Rep. 2023, 10, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Shen Loo, Y.; Yee Wong, T.; Veettil, S.K.; Se Wong, P.; Gopinath, D.; Mooi Ching, S.; Kunnath Menon, R. Antifungal agents in preventing oral candidiasis in clinical oncology: A network meta-analysis. Oral Dis. 2021, 27, 1631–1643. [Google Scholar] [CrossRef] [PubMed]
- Rao, N.G.; Han, G.; Greene, J.N.; Tanvetyanon, T.; Kish, J.A.; De Conti, R.C.; Chuong, M.D.; Shridhar, R.; Biagioli, M.C.; Caudell, J.J.; et al. Effect of prophylactic fluconazole on oral mucositis and candidiasis during radiation therapy for head-and-neck cancer. Pract. Radiat. Oncol. 2013, 3, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Pispero, A.; Lombardi, N.; Manfredi, M.; Varoni, E.M.; Sardella, A.; Lodi, G. Oral infections in oral cancer survivors: A mini-review. Front. Oral Health 2022, 3, 970074. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, A.; Ouanounou, A. Fungal infections in dentistry: Clinical presentations, diagnosis, and treatment alternatives. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2020, 130, 533–546. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.B.; Mouridsen, H.T.; Reibel, J.; Brünner, N.; Nauntofte, B. Adjuvant chemotherapy in breast cancer patients induces temporary salivary gland hypofunction. Oral Oncol. 2008, 44, 162–173. [Google Scholar] [CrossRef] [PubMed]
- Dawes, C.; Pedersen, A.M.; Villa, A.; Ekström, J.; Proctor, G.B.; Vissink, A.; Aframian, D.; McGowan, R.; Aliko, A.; Narayana, N.; et al. The functions of human saliva: A review sponsored by the World Workshop on Oral Medicine VI. Arch. Oral Biol. 2015, 60, 863–874. [Google Scholar] [CrossRef] [PubMed]
- Valstar, M.H.; de Bakker, B.S.; Steenbakkers, R.; de Jong, K.H.; Smit, L.A.; Klein Nulent, T.J.W.; van Es, R.J.J.; Hofland, I.; de Keizer, B.; Jasperse, B.; et al. The tubarial salivary glands: A potential new organ at risk for radiotherapy. Radiother. Oncol. 2021, 154, 292–298. [Google Scholar] [CrossRef]
- Murdoch-Kinch, C.A.; Kim, H.M.; Vineberg, K.A.; Ship, J.A.; Eisbruch, A. Dose-effect relationships for the submandibular salivary glands and implications for their sparing by intensity modulated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 373–382. [Google Scholar] [CrossRef]
- Krishnan, M.; Tennavan, A.; Saraswathy, S.; Sekhri, T.; Singh, A.K.; Nair, V. Acute Radiation-Induced Changes in Sprague-Dawley Rat Submandibular Glands: A Histomorphometric Analysis. World J. Oncol. 2017, 8, 45–52. [Google Scholar] [CrossRef]
- Jensen, S.B.; Pedersen, A.M.; Vissink, A.; Andersen, E.; Brown, C.G.; Davies, A.N.; Dutilh, J.; Fulton, J.S.; Jankovic, L.; Lopes, N.N.; et al. A systematic review of salivary gland hypofunction and xerostomia induced by cancer therapies: Prevalence, severity and impact on quality of life. Support. Care Cancer 2010, 18, 1039–1060. [Google Scholar] [CrossRef]
- Jensen, S.B.; Vissink, A.; Limesand, K.H.; Reyland, M.E. Salivary Gland Hypofunction and Xerostomia in Head and Neck Radiation Patients. J. Natl. Cancer Inst. Monogr. 2019, 2019, lgz016. [Google Scholar] [CrossRef]
- Jasmer, K.J.; Gilman, K.E.; Muñoz Forti, K.; Weisman, G.A.; Limesand, K.H. Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J. Clin. Med. 2020, 9, 4095. [Google Scholar] [CrossRef]
- van Luijk, P.; Pringle, S.; Deasy, J.O.; Moiseenko, V.V.; Faber, H.; Hovan, A.; Baanstra, M.; van der Laan, H.P.; Kierkels, R.G.; van der Schaaf, A.; et al. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Sci. Transl. Med. 2015, 7, 305ra147. [Google Scholar] [CrossRef] [PubMed]
- Mercadante, V.; Jensen, S.B.; Smith, D.K.; Bohlke, K.; Bauman, J.; Brennan, M.T.; Coppes, R.P.; Jessen, N.; Malhotra, N.K.; Murphy, B.; et al. Salivary Gland Hypofunction and/or Xerostomia Induced by Nonsurgical Cancer Therapies: ISOO/MASCC/ASCO Guideline. J. Clin. Oncol. 2021, 39, 2825–2843. [Google Scholar] [CrossRef]
- Larsen, A.K.; Thomsen, C.; Sanden, M.; Skadhauge, L.B.; Anker, C.B.; Mortensen, M.N.; Bredie, W.L.P. Taste alterations and oral discomfort in patients receiving chemotherapy. Support. Care Cancer 2021, 29, 7431–7439. [Google Scholar] [CrossRef]
- Epstein, J.B.; de Andrade, E.S.S.M.; Epstein, G.L.; Leal, J.H.S.; Barasch, A.; Smutzer, G. Taste disorders following cancer treatment: Report of a case series. Support. Care Cancer 2019, 27, 4587–4595. [Google Scholar] [CrossRef] [PubMed]
- Gunn, L.; Gilbert, J.; Nenclares, P.; Soliman, H.; Newbold, K.; Bhide, S.; Wong, K.H.; Harrington, K.; Nutting, C. Taste dysfunction following radiotherapy to the head and neck: A systematic review. Radiother. Oncol. 2021, 157, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Amosson, C.M.; Teh, B.S.; Van, T.J.; Uy, N.; Huang, E.; Mai, W.Y.; Frolov, A.; Woo, S.Y.; Chiu, J.K.; Carpenter, L.S.; et al. Dosimetric predictors of xerostomia for head-and-neck cancer patients treated with the smart (simultaneous modulated accelerated radiation therapy) boost technique. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Ripamonti, C.; Fulfaro, F. Taste alterations in cancer patients. J. Pain Symptom Manag. 1998, 16, 349–351. [Google Scholar] [CrossRef]
- Galaniha, L.T.; Nolden, A.A. The role of saliva in taste dysfunction among cancer patients: Mechanisms and potential treatment. Oral Oncol. 2022, 133, 106030. [Google Scholar] [CrossRef]
- Baillie, P.; Dawes, G.S.; Merlet, C.L.; Richards, R. Maternal hyperventilation and foetal hypocapnia in sheep. J. Physiol. 1971, 218, 635–650. [Google Scholar] [CrossRef]
- Matsuo, R. Role of saliva in the maintenance of taste sensitivity. Crit. Rev. Oral Biol. Med. 2000, 11, 216–229. [Google Scholar] [CrossRef]
- Heinzerling, C.I.; Stieger, M.; Bult, J.H.; Smit, G. Individually Modified Saliva Delivery Changes the Perceived Intensity of Saltiness and Sourness. Chemosens. Percept. 2011, 4, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Sroussi, H.Y.; Epstein, J.B.; Bensadoun, R.J.; Saunders, D.P.; Lalla, R.V.; Migliorati, C.A.; Heaivilin, N.; Zumsteg, Z.S. Common oral complications of head and neck cancer radiation therapy: Mucositis, infections, saliva change, fibrosis, sensory dysfunctions, dental caries, periodontal disease, and osteoradionecrosis. Cancer Med. 2017, 6, 2918–2931. [Google Scholar] [CrossRef] [PubMed]
- Douchy, L.; Gauthier, R.; Abouelleil-Sayed, H.; Colon, P.; Grosgogeat, B.; Bosco, J. The effect of therapeutic radiation on dental enamel and dentin: A systematic review. Dent. Mater. 2022, 38, e181–e201. [Google Scholar] [CrossRef] [PubMed]
- Dobros, K.; Hajto-Bryk, J.; Wroblewska, M.; Zarzecka, J. Radiation-induced caries as the late effect of radiation therapy in the head and neck region. Contemp. Oncol. 2016, 20, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, G.P.; Jham, B.C.; Magalhaes, C.S.; Sensi, L.G.; Freire, A.R. A review of the biological and clinical aspects of radiation caries. J. Contemp. Dent. Pract. 2009, 10, 83–89. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Q.; Meng, X.; Yu, H.; Jiang, D.; Chen, G.; Hu, X.; Hua, X.; Wang, X.; Wang, D.; et al. Oral pH value predicts the incidence of radiotherapy related caries in nasopharyngeal carcinoma patients. Sci. Rep. 2021, 11, 12283. [Google Scholar] [CrossRef]
- Moore, C.; McLister, C.; Cardwell, C.; O’Neill, C.; Donnelly, M.; McKenna, G. Dental caries following radiotherapy for head and neck cancer: A systematic review. Oral Oncol. 2020, 100, 104484. [Google Scholar] [CrossRef]
- Brennan, M.T.; Treister, N.S.; Sollecito, T.P.; Schmidt, B.L.; Patton, L.L.; Lin, A.; Elting, L.S.; Helgeson, E.S.; Lalla, R.V. Dental Caries Postradiotherapy in Head and Neck Cancer. JDR Clin. Trans. Res. 2023, 8, 234–243. [Google Scholar] [CrossRef]
- Pedroso, C.M.; Migliorati, C.A.; Epstein, J.B.; Ribeiro, A.C.P.; Brandão, T.B.; Lopes, M.A.; de Goes, M.F.; Santos-Silva, A.R. Over 300 Radiation Caries Papers: Reflections from the Rearview Mirror. Front. Oral Health 2022, 3, 961594. [Google Scholar] [CrossRef]
- Lu, H.; Zhao, Q.; Guo, J.; Zeng, B.; Yu, X.; Yu, D.; Zhao, W. Direct radiation-induced effects on dental hard tissue. Radiat. Oncol. 2019, 14, 5. [Google Scholar] [CrossRef]
- Duruk, G.; Acar, B.; Temelli, Ö. Effect of different doses of radiation on morphogical, mechanical and chemical properties of primary and permanent teeth-an in vitro study. BMC Oral Health 2020, 20, 242. [Google Scholar] [CrossRef] [PubMed]
- Kataoka, S.H.; Setzer, F.C.; Gondim-Junior, E.; Fregnani, E.R.; Moraes, C.J.; Pessoa, O.F.; Gavini, G.; Caldeira, C.L. Late Effects of Head and Neck Radiotherapy on Pulp Vitality Assessed by Pulse Oximetry. J. Endod. 2016, 42, 886–889. [Google Scholar] [CrossRef] [PubMed]
- Polce, S.; Gogineni, E.; Antone, J.; Ghaly, M.; Keith Frank, D.; Segal, J.D.; Parashar, B. Dental radiation dosimetric maps from intensity-modulated radiation therapy planning for head and neck cancers. Head. Neck 2021, 43, 1428–1439. [Google Scholar] [CrossRef]
- Rivero, J.A.; Shamji, O.; Kolokythas, A. Osteoradionecrosis: A review of pathophysiology, prevention and pharmacologic management using pentoxifylline, alpha-tocopherol, and clodronate. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2017, 124, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Nabil, S.; Samman, N. Incidence and prevention of osteoradionecrosis after dental extraction in irradiated patients: A systematic review. Int. J. Oral Maxillofac. Surg. 2011, 40, 229–243. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, X.; Yang, P.; Blanchard, P.; Garden, A.S.; Gunn, B.; Fuller, C.D.; Chambers, M.; Hutcheson, K.A.; Ye, R.; et al. Intensity-modulated proton therapy and osteoradionecrosis in oropharyngeal cancer. Radiother. Oncol. 2017, 123, 401–405. [Google Scholar] [CrossRef]
- Yang, Y.; Muller, O.M.; Shiraishi, S.; Harper, M.; Amundson, A.C.; Wong, W.W.; McGee, L.A.; Rwigema, J.M.; Schild, S.E.; Bues, M.; et al. Empirical Relative Biological Effectiveness (RBE) for Mandible Osteoradionecrosis (ORN) in Head and Neck Cancer Patients Treated with Pencil-Beam-Scanning Proton Therapy (PBSPT): A Retrospective, Case-Matched Cohort Study. Front. Oncol. 2022, 12, 843175. [Google Scholar] [CrossRef]
- Singh, A.; Kitpanit, S.; Neal, B.; Yorke, E.; White, C.; Yom, S.K.; Randazzo, J.D.; Wong, R.J.; Huryn, J.M.; Tsai, C.J.; et al. Osteoradionecrosis of the Jaw Following Proton Radiation Therapy for Patients with Head and Neck Cancer. JAMA Otolaryngol. Head Neck Surg. 2023, 149, 151–159. [Google Scholar] [CrossRef]
- Chronopoulos, A.; Zarra, T.; Ehrenfeld, M.; Otto, S. Osteoradionecrosis of the jaws: Definition, epidemiology, staging and clinical and radiological findings. A concise review. Int. Dent. J. 2018, 68, 22–30. [Google Scholar] [CrossRef]
- Topkan, E.; Kucuk, A.; Somay, E.; Yilmaz, B.; Pehlivan, B.; Selek, U. Review of Osteoradionecrosis of the Jaw: Radiotherapy Modality, Technique, and Dose as Risk Factors. J. Clin. Med. 2023, 12, 3025. [Google Scholar] [CrossRef]
- Carr, C.M.; Benson, J.C.; DeLone, D.R.; Diehn, F.E.; Kim, D.K.; Ma, D.; Nagelschneider, A.A.; Madhavan, A.A.; Johnson, D.R. Manifestations of radiation toxicity in the head, neck, and spine: An image-based review. Neuroradiol. J. 2022, 35, 427–436. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, S.S.; Thakur, M.H.; Dholam, K.; Mahajan, A.; Arya, S.; Juvekar, S. Osteoradionecrosis of the mandible: Through a radiologist’s eyes. Clin. Radiol. 2015, 70, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.; Tesfaye, B.; Bickerstaff, M.; Silcocks, P.; Butterworth, C. Refining the definition of mandibular osteoradionecrosis in clinical trials: The cancer research UK HOPON trial (Hyperbaric Oxygen for the Prevention of Osteoradionecrosis). Oral Oncol. 2017, 64, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Notani, K.; Yamazaki, Y.; Kitada, H.; Sakakibara, N.; Fukuda, H.; Omori, K.; Nakamura, M. Management of mandibular osteoradionecrosis corresponding to the severity of osteoradionecrosis and the method of radiotherapy. Head Neck 2003, 25, 181–186. [Google Scholar] [CrossRef]
- Lyons, A.; Osher, J.; Warner, E.; Kumar, R.; Brennan, P.A. Osteoradionecrosis--a review of current concepts in defining the extent of the disease and a new classification proposal. Br. J. Oral Maxillofac. Surg. 2014, 52, 392–395. [Google Scholar] [CrossRef]
- Yong, C.W.; Robinson, A.; Hong, C. Dental Evaluation Prior to Cancer Therapy. Front. Oral Health 2022, 3, 876941. [Google Scholar] [CrossRef]
- Arqueros-Lemus, M.; Marino-Recabarren, D.; Niklander, S.; Martinez-Flores, R.; Moraga, V. Pentoxifylline and tocopherol for the treatment of osteoradionecrosis of the jaws. A systematic review. Med. Oral Patol. Oral Cir. Bucal 2023, 28, e293–e300. [Google Scholar] [CrossRef]
- Lombardi, N.; Varoni, E.; Villa, G.; Salis, A.; Lodi, G. Pentoxifylline and tocopherol for prevention of osteoradionecrosis in patients who underwent oral surgery: A clinical audit. Spec. Care Dent. 2023, 43, 136–143. [Google Scholar] [CrossRef]
- Paiva, G.L.A.; de Campos, W.G.; Rocha, A.C.; Junior, C.A.L.; Migliorati, C.A.; Dos Santos Silva, A.R. Can the prophylactic use of pentoxifylline and tocopherol before dental extractions prevent osteoradionecrosis? A systematic review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 136, 33–41. [Google Scholar] [CrossRef]
- Schroter, G.T.; Stopiglia, R.M.M.; Carvalho, G.L.; Morimoto, S.; Mota, M.E.; Alves, F.A.; Jaguar, G.C.; Moreira, M.S. Osteoradionecrosis treatment in head and neck cancer patients: An overview of systematic reviews. Spec. Care Dent. 2023; ahead of pub. [Google Scholar] [CrossRef]
- Raj, R.; Nair, A.H.; Krishnan, N.A.; Balasubramanian, D.; Iyer, S.; Thankappan, K. Advances and Controversies in the Management of Osteoradionecrosis After Head and Neck Cancer Treatment: A Narrative Review. J. Maxillofac. Oral Surg. 2022, 21, 836–844. [Google Scholar] [CrossRef]
- Dijkstra, P.U.; Huisman, P.M.; Roodenburg, J.L. Criteria for trismus in head and neck oncology. Int. J. Oral Maxillofac. Surg. 2006, 35, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Bensadoun, R.J.; Riesenbeck, D.; Lockhart, P.B.; Elting, L.S.; Spijkervet, F.K.; Brennan, M.T.; Trismus Section, Oral Care Study Group, Multinational Association for Supportive Care in Cancer (MASCC)/International Society of Oral Oncology (ISOO). A systematic review of trismus induced by cancer therapies in head and neck cancer patients. Support. Care Cancer 2010, 18, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, R.C.; Kamal, M.; Zaveri, J.; Chambers, M.S.; Gunn, G.B.; Fuller, C.D.; Lai, S.Y.; Mott, F.E.; McMillan, H.; Hutcheson, K.A. Self-Reported Trismus: Prevalence, severity and impact on quality of life in oropharyngeal cancer survivorship: A cross-sectional survey report from a comprehensive cancer center. Support. Care Cancer 2021, 29, 1825–1835. [Google Scholar] [CrossRef]
- McMillan, H.; Barbon, C.E.A.; Cardoso, R.; Sedory, A.; Buoy, S.; Porsche, C.; Savage, K.; Mayo, L.; Hutcheson, K.A. Manual Therapy for Patients with Radiation-Associated Trismus After Head and Neck Cancer. JAMA Otolaryngol. Head Neck Surg. 2022, 148, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Chee, S.; Byrnes, Y.M.; Chorath, K.T.; Rajasekaran, K.; Deng, J. Interventions for Trismus in Head and Neck Cancer Patients: A Systematic Review of Randomized Controlled Trials. Integr. Cancer Ther. 2021, 20, 15347354211006474. [Google Scholar] [CrossRef]
- Blatt, S.; Kruger, M.; Sagheb, K.; Barth, M.; Kammerer, P.W.; Al-Nawas, B.; Sagheb, K. Tumor Recurrence and Follow-Up Intervals in Oral Squamous Cell Carcinoma. J. Clin. Med. 2022, 11, 7061. [Google Scholar] [CrossRef] [PubMed]
- Ritoe, S.C.; Krabbe, P.F.; Kaanders, J.H.; van den Hoogen, F.J.; Verbeek, A.L.; Marres, H.A. Value of routine follow-up for patients cured of laryngeal carcinoma. Cancer 2004, 101, 1382–1389. [Google Scholar] [CrossRef]
- Hanna, G.J.; Patel, N.; Tedla, S.G.; Baugnon, K.L.; Aiken, A.; Agrawal, N. Personalizing Surveillance in Head and Neck Cancer. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e389718. [Google Scholar] [CrossRef]
- Chuang, S.C.; Scelo, G.; Tonita, J.M.; Tamaro, S.; Jonasson, J.G.; Kliewer, E.V.; Hemminki, K.; Weiderpass, E.; Pukkala, E.; Tracey, E.; et al. Risk of second primary cancer among patients with head and neck cancers: A pooled analysis of 13 cancer registries. Int. J. Cancer 2008, 123, 2390–2396. [Google Scholar] [CrossRef]
- Matsui, M.; Kawamura, K.; Kano, K.; Yoshimatsu, H.; Doi, T.; Miyake, T. Incidence of second primary cancers in oral and pharyngeal cancer patients using a large medical claims database in Japan. J. Dent. Sci. 2023, 18, 1047–1054. [Google Scholar] [CrossRef]
- Ermer, M.A.; Kirsch, K.; Bittermann, G.; Fretwurst, T.; Vach, K.; Metzger, M.C. Recurrence rate and shift in histopathological differentiation of oral squamous cell carcinoma—A long-term retrospective study over a period of 13.5 years. J. Cranio-Maxillofac. Surg. 2015, 43, 1309–1313. [Google Scholar] [CrossRef]
- Brands, M.T.; Swinkels, I.J.; Aarts, A.; Verbeek, A.L.M.; Merkx, M.A.W.; Marres, H.A.M.; Kaanders, J.; Melchers, W.J.G.; van Engen-van Grunsven, I.; Takes, R.P.; et al. Value of routine follow-up in oropharyngeal squamous cell cancer patients treated with curative intent. Head Neck 2023, 45, 586–594. [Google Scholar] [CrossRef] [PubMed]
- Stepan, K.; Craig, E.; Skillington, S.A.; Deutsch, B.C.; Chen, S.; Wamkpah, N.S.; Bollig, C.A.; Kallogjeri, D.; Thorstad, W.L.; Puram, S.V.; et al. Development of second primary malignancies after transoral surgery in human papilloma virus-positive oropharyngeal squamous cell carcinoma. Head Neck 2022, 44, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.; Jakobsen, K.K.; Carlander, A.F.; Garset-Zamani, M.; Friborg, J.; Kiss, K.; Marvig, R.L.; Olsen, C.; Nielsen, F.C.; Andersen, E.; et al. The Incidence, Survival, and HPV Impact of Second Primary Cancer following Primary Oropharyngeal Squamous Cell Carcinoma: A 20-Year Retrospective and Population-Based Study. Viruses 2022, 15, 34. [Google Scholar] [CrossRef] [PubMed]
- Fukumoto, C.; Oshima, R.; Sawatani, Y.; Shiraishi, R.; Hyodo, T.; Kamimura, R.; Hasegawa, T.; Komiyama, Y.; Izumi, S.; Fujita, A.; et al. Surveillance for Patients with Oral Squamous Cell Carcinoma after Complete Surgical Resection as Primary Treatment: A Single-Center Retrospective Cohort Study. Cancers 2021, 13, 5843. [Google Scholar] [CrossRef]
Stage | Description |
---|---|
Initiation |
|
Up-regulation and Activation |
|
Signal-Amplification |
|
Ulcerative |
|
Healing |
|
Grade | WHO Oral Mucositis Scale | CTCAE V5 Oral Mucositis Scale | RTOG Oral Mucositis Scale |
---|---|---|---|
1 | Soreness/erythema | Asymptomatic or mild symptoms Intervention not indicated | Erythema |
2 | Soreness/erythema + ulceration + ability to eat solid foods | Moderate pain or ulcer with no interference with oral intake Modified diet indicated | Patchy reaction (<1.5 cm, non-contiguous) |
3 | Soreness/erythema + ulceration + ability to use a liquid diet only | Severe pain, interfering with oral intake | Confluent mucositis (>1.5 cm, contiguous) |
4 | Soreness/erythema + ulceration + no possible oral alimentation | Life-threatening consequences Urgent intervention indicated | Ulceration, necrosis, bleeding |
5 | Death |
Class/Drugs | Form | Dose |
---|---|---|
Topical | ||
Nystatin | Suspension (100,000 U/mL) | 4–6 mL PO rinse 4–5 min QID for 10 days |
Pastille (200,000 U each) | Dissolve 1 pastille after meals QID for 7–14 days | |
Cream (100,000 U/g) | Apply directly to area of infection TID–QID | |
Amphotericin B | Suspension (100 mg/mL) | 100–200 mg PO swish QID for 14 days |
Lozenge (10 mg) | Dissolve after meals TID for 14 days | |
Ketoconazole | Cream (2%) | BID–TID for 14–28 days |
Miconazole | Gel (2%); Cream (2%) | Apply directly to the area of infection TID–QID for 14–21 days |
Mucoadhesive tablets | 50 mg QID 14 days | |
Clotrimazole | Troche (10 mg) | 10 mg dissolved PO 5×/day for 14 days |
Cream (1%) | Apply directly to the area of infection BID–TID for 21–28 days | |
Systemic | ||
Fluconazole | Tablet (100 mg) | Loading dose of 200 mg followed by 100 mg QID for 7–14 days |
Itraconazole | Capsule (100 mg) | 100 mg QID for 14 days |
Ketoconazole | Tablet (200 mg) | 200–400 mg QD for 14 days |
Recommendation | Evidence Quality/Strength |
---|---|
Preventive approaches to reduce the risk of salivary gland hypofunction | |
IMRT to spare salivary glands from higher dose radiation | High/Strong |
Other radiation modalities that limit cumulative dose to salivary glands | Low/Strong |
Acupuncture during RT | Intermediate/Moderate |
Systemic administration of bethanechol during RT | Low/Weak |
Vitamin E/other antioxidants to reduce the risk of radiation-induced salivary gland hypofunction | Low/weak |
Submandibular gland transfer before head and neck cancer treatment | Insufficient |
Use of oral pilocarpine, amifostine (with contemporary radiation modalities), or low-level laser therapy | Insufficient |
Other interventions * | Insufficient |
Treatments to improve xerostomia/hyposalivation | |
Topical mucosal lubricants or artificial saliva | Intermediate/Strong |
Gustatory and masticatory salivary reflex stimulation by sugar-free lozenges, acidic candies, or sugar-free, nonacidic chewing gum | Intermediate/Moderate |
Oral pilocarpine, and cevimeline | High/Strong |
Acupuncture | Low/weak |
Transcutaneous electrostimulation or acupuncture-like transcutaneous electrostimulation | Low/Weak |
Extract of ginger and mesenchymal stem cell therapy | Insufficient |
Stage | Notani Classification [75] | Lyons Classification [76] |
---|---|---|
1 | ORN confined to dentoalveolar bone | <2.5 cm length of bone affected (asymptomatic); medical treatment only |
2 | ORN is limited to the dentoalveolar bone or mandible above the inferior dental canal, or both. | >2.5 cm length of bone, asymptomatic (including pathological fracture or involvement of inferior dental nerve); medical treatment only unless there is dental sepsis or obviously loose, necrotic bone |
3 | ORN involving the mandible below the inferior dental canal with pathological fracture, or a skin fistula | >2.5 cm length of bone, symptomatic (but no other features); consider debridement of loose or necrotic bone, and local pedicled flap |
4 | >2.5 cm length of bone, pathological fracture, involvement of the inferior dental nerve, or cutaneous fistula, or a combination;reconstruction with free flap if patient’s overall condition allows |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankar, V.; Xu, Y. Oral Complications from Oropharyngeal Cancer Therapy. Cancers 2023, 15, 4548. https://doi.org/10.3390/cancers15184548
Sankar V, Xu Y. Oral Complications from Oropharyngeal Cancer Therapy. Cancers. 2023; 15(18):4548. https://doi.org/10.3390/cancers15184548
Chicago/Turabian StyleSankar, Vidya, and Yuanming Xu. 2023. "Oral Complications from Oropharyngeal Cancer Therapy" Cancers 15, no. 18: 4548. https://doi.org/10.3390/cancers15184548
APA StyleSankar, V., & Xu, Y. (2023). Oral Complications from Oropharyngeal Cancer Therapy. Cancers, 15(18), 4548. https://doi.org/10.3390/cancers15184548