Health-Related Quality of Life Outcomes in Meningioma Patients Based upon Tumor Location and Treatment Modality: A Systematic Review and Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
- PubMed: ((Quality of life)) AND meningioma resection: 144 results (19 included).
- PubMed: ((Quality of life)) AND meningioma therapy: 288 results (3 included).
- PubMed: (“meningioma*”[Title/Abstract] AND (“postoperative KPS”[All Fields] OR “postoperative Karnofsky performance”[All Fields])): 43 results (5 included).
- PubMed: (“meningioma*”[Title/Abstract] AND (“postoperative SF-36”[All Fields]) OR “postoperative 36-Item Short Form Survey”[All Fields])): 3 results (0 included).
- PubMed: (“meningioma*”[Title/Abstract] AND (“endoscopic endonasal approach”[All Fields]) OR “postoperative SNOT-22”[All Fields])): 22 results (0 included).
- PubMed: (“meningioma*”[Title/Abstract] AND (“instrument”[All Fields] OR “postoperative EORTC QLQ-BN20”[All Fields] OR “postoperative SNOT-22”[All Fields] OR “postoperative ASBQ”[All Fields] OR “postoperative EORTC QLQ-C30”[All Fields] OR “postoperative EQ-5D”[All Fields] OR “postoperative IHD”[All Fields] OR “postoperative NHP”[All Fields] OR “postoperative FACT-BR”[All Fields] OR “postoperative HADS”[All Fields] OR “cognitive function”[All Fields])): 72 results (6 duplicates, 0 included).
- Google Scholar: meningioma AND quality of life assessment OR quality of life questionnaire OR KPS or SF-36: 217 results (1 included).
- Google Scholar: meningioma AND endoscopic endonasal approach OR postoperative SNOT-22: 406 results (3 duplicates, 0 included).
- Google Scholar: meningioma AND postoperative SF-36 OR postoperative 36-Item Short Form Survey: 212 results (8 duplicates, 0 included).
- Google Scholar: ((health-related quality of life)) AND meningioma craniotomy: (16 duplicates, 0 included).
3. Results
3.1. Overview
3.2. QoL Metrics
4. Discussion
4.1. Skull Base vs. Non-Skull Base Meningiomas
4.2. Anterior/Middle Skull Base Meningiomas
4.3. Posterior Skull Base Meningiomas
4.4. Therapeutic Strategies
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Appendix A
Author/Year | Confounding | Selection of Participants into the Study | Classification of Intervention | Deviations from Intended Intervention | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall |
---|---|---|---|---|---|---|---|---|
Barrash et al., 2020 [30] | Serious | Moderate | Low | Low | Low | Low | Low | Serious |
Batish et al., 2022 [20] | Moderate | Serious | Low | Low | Moderate | Low | Low | Serious |
Chan et al., 1984 [44] | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate |
Combs et al., 2013 [60] | Low | Low | Low | Low | Low | Low | Low | Low |
Fisher et al., 2022 [16] | Low | Low | Low | Low | Low | Low | Low | Low |
Kirsbaum et al., 2021 [39] | Moderate | Low | Low | Low | Low | Low | Low | Moderate |
Jesus et al., 1996 [31] | Serious | No Info | Low | Low | Low | Low | Low | Serious |
Henzel et al., 2013 [46] | Low | Low | Low | Low | Moderate | Low | Low | Moderate |
Jones et al., 2016 [38] | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate |
Kalasauskas et al., 2021 [18] | Moderate | Low | Low | Low | Moderate | Low | Low | Moderate |
Karsy et al., 2019 [64] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Konglund et al., 2012 [32] | Low | Low | Low | Low | Moderate | Low | Low | Moderate |
Krupp et al., 2008 [33] | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate |
Mathiesen et al., 2007 [19] | Serious | No Information | Low | Low | Low | Low | Low | Serious |
Maio et al., 2009 [34] | Moderate | No Information | Low | Low | Low | Low | Low | Moderate |
Mohsenipour et al., 2001 [35] | Moderate | No Info | Low | Low | Serious | Low | Low | Serious |
Neil-Dwyer et al., 2000 [65] | Serious | Low | Low | Low | Low | Low | Low | Serious |
Pintea et al., 2018 [12] | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate |
Tariciotti et al., 2022 [23] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Timmer et al., 2019 [36] | Serious | Moderate | Low | Low | Moderate | Low | Low | Serious |
Wirsching et al., 2020 [37] | Moderate | Moderate | Low | Low | Moderate | Low | Low | Moderate |
Zhao et al., 2020 [21] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Locatelli et al., 2020 [25] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Gao et al., 2021 [42] | Serious | Moderate | Low | Low | Low | Low | Low | Serious |
Qiao et al., 2019 [66] | Low | Moderate | Low | Low | Low | Low | Low | Moderate |
Koutourousiou et al., 2017 [26] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Li et al., 2016 [40] | Moderate | Moderate | Low | Low | Low | Low | Low | Moderate |
Kalani et al., 2015 [24] | Serious | Moderate | Low | Low | Low | Low | Low | Serious |
Investigator | Number of Patients | WHO Grade | Average Nidus Size (mm) | Treatment Type | Intracranial Fossa Location | Extent of Resection | QOL Metric(s) | Median Follow-Up (mo) | Postoperative Deficits (Transient, Permanent, or Unspecified) | Average Time (mo) of QOL Metric Administered after Intervention |
---|---|---|---|---|---|---|---|---|---|---|
Barrash et al., 2020 [30] | 18 | Grade I n = 17 Grade II n = 1 | 40.7 | Craniotomy n = 18 | Anterior n = 18 | GTR = 17 | ISPC; institution-specific | 46.6 | None | 46.6 months |
Battish et al., 2022 [20] | 32 | NR | 40 | Craniotomy n = 29 Adjuvant GKRS n = 7 | Posterior n = 32 | GTR = 13 NTR = 17 STE n = 2 | KPS; SF-36 | 34.7 | All Unspecified IV deficit n = 3 VI deficit n = 4 VII deficit n = 4 IX-XI deficit n = 1 Motor weakness n = 5 | 34.7 months |
Chan et al., 1984 [44] | 257 | NR | 70, n = 63 45–70, n = 71 <45 = n = 123 | Craniotomy n = 257 | Anterior n = 32 Middle n = 47 Posterior n = 41 NSB = 137 | Grade I = 89 Grade II = 118 Grade III = 6 Grade IV = 43 Grade V = 1 | KPS | 108 | Transient motor deficit n = 28 Transient dysphasia n = 6 Permanent motor deficit = 4 Seizure n = 1 Other n = 21 | NR |
Combs et al., 2013 [60] | 507 | Grade I n = 234 Grade II n = 20 Grade III n = 15 | NR | Craniotomy + FSRT or IMRT = 231 FST or IMRT after initial diagnosis = 145 Wait-and-see +FSRT or IMRT = 131 | Anterior n = 51 Middle = 298 Posterior = 112 | STR = 266 | Institution-specific | 107 | NR | 107 months |
Fisher et al., 2022 [16] | 173 | Grade I = 147 Grade II = 12 | 39 | Craniotomy n = 140 Craniotomy + RT = 27 RT = 7 | Anterior = 29 Middle = 33 Posterior = 27 NSB = 84 | Simpson Grade I-III = 108 Simpson Grade IV-V= 40 | SF-36; EORTC QLQ-BN20; Institution-specific | 108 | All Unspecified CN VII palsy = 2 CN III palsy = 2 Unilateral visual deficit = 3 Unilateral hearing deficit = 1 CN V palsy = 2 Sensory Deficit = 1 Motor Deficit = 1 Seizures = 2 Delirium = 1 Aphasia = 1 CN VI-CN X palsy = 3 Other = 6 | 108 months |
Castle-Kirszbau et al., 2022 [39] | 50 | NR | NR | Nasal endoscopic n = 50 | Anterior = 50 | GTR = 39 STR = 11 | ASBQ; SNOT-22 | 12 | Transient diabetes insipidus n = 3 Transient SIADH n = 6 Transient mild visual impairment n = 2 | 6 months |
Jesus et al., 1996 [31] | 119 | Grade I | NR | Craniotomy n = 119 Adjunct RT = 17 | Middle = 119 | GTR = 73 STR = 46 | KPS | 33.8 | Transient pituitary dysfunction n = 17 Unspecified Infection n = 5 | NR |
Henzel et al., 2013 [46] | 52 | Grade I = 33 Grade II = 7 Grade III = 2 | NR | RT = 44 | Anterior = 1 Middle = 29 Posterior= 17 NSB = 4 | STR = 44 | SF-36 | 24 | Is aNR | 6, 12, 18 and 24 months |
Jones et al., 2016 [38] | 56 | NR | 25.4 | Nasal endoscopic n = 34 | Anterior = 29 Middle: n = 4 Posterior = 3 | GTR = 15 | ASBQ; SNOT-22 | 24 | All Unspecified Anosmia n = 2 Worsening vision n = 2 | 42.3 months, at least 6 months |
Kalasauskas et al., 2020 [18] | 62 | Grade I n = 27 Grade II n = 4 | 24 | Craniotomy n = 62 | Anterior n = 6 Middle n = 22 Posterior n = 9 NSB n = 30 | GTR = 31 | DT; HADS; BFI; SF-36 | NR | None | NR |
Karsy et al., 2019 [64] | 52 | Grade I n = 48 Grade II n = 4 | 46 | Craniotomy n = 52 | Anterior: 17 Middle: 16 Posterior: 13 NSB: 5 | Simpson grade I–III = 28 Simpson Grade IV–V = 24 | EQ-5D-3L | 11.1 | All Transient: New or worsening cranial nerve deficit n = 22 Seizures n = 1 | 1 and 12 months |
Konglund et al., 2013 [32] | 54 | Grade 1 = 51 Grade 2 = 2 Unknown = 1 | NR | Craniotomy n = 54 | Posterior = 5 NSB = 31 SB unspecified = 18 | Simpsons grade I–III = 47 Simpsons grade IV = 7 | KPS;QLQ-C30; HAD-A; HAD-D | NR | Transient neurological deterioration n = 10 Permanent neurological deterioration n = 7 | 6 months |
Krupp et al., 2009 [33] | 91 | Grade I = 91 | NR | Craniotomy n = 91 | Anterior = 12 Middle = 19 NSB = 60 | NR | QLSS | 13.4 | Permanent hemiparesis n= 1 | 15 months |
Mathiesen, et al., 2007 [19] | 29 | NR | 44.14 | Craniotomy n = 29 Adjunct GKRS n = 7 | Posterior = 29 | Grade IV+ = 14 Grade II = 11 Grade IV = 1 Grade III = 1 Grade III+ = 1 Grade I =1 | SF-36 | 66 | Unspecified Hemiparesis n = 1 CN III dysfunction; Transient n = 7, Permanent n = 1 CN IV dysfunction Transient n = 6, Permanent n = 3 Transient CN VI dysfunction n = 6 CN V dysfunction Unspecified n = 7, Permanent n = 2 Transient Neuropathic Pain n = 2 CN VII dysfunction Transient n = 2, Permanent n = 6 Transient CN IX dysfunction n = 6 | 64.8 months |
Miao et al., 2010 [34] | 147 | NR | 49 | Craniotomy n = 147 | Anterior = 13 Middle =19 Posterior = 14 NSB = 95 | Simpson 0 = 12 Simpson I = 26 Simpson II = 30 Simpson III = 39 Simpson IV = 40 | WHOQOL-100 | NR | All unspecified n = unspecified Headache Visual disturbance Gait disturbance Cognitive function Loss of consciousness | NR |
Mohsenipour et al., 2001 [35] | 82 | NR | 27.3 | Craniotomy n = 82 | Posterior = 13 NSB = 66 | NR | IHD; NHP | NR | NR | NR |
Neil-Dwyer et al., 2000 [65] | 19 | NR | >30 | Craniotomy n = 19 Adjuvant RT = 5 | Posterior = 19 | NR | SF-36 | NR | Permanent neurological deficits n = 6 Transient neurological problems or exacerbation of existing deficits n = 10 | 12 months |
Pintea et al., 2018 [12] | 78 | NR | 40 | Craniotomy n = 66 RT = 12 | Posterior = 78 | Grade I–II = 47 | SF-36 | 59 | All Unspecified Eye Motility Impairment n = 23 Hyperacusis/Anacusis n = 6 CN VII Palsy n = 14 CN IX Dysfunction n = 12 Paresis/hemiparesis n = 12 | 59 months |
Tariciotti et al., 2022 [23] | 165 | Grade I = 126 Grade II = 31 Grade III = 2 | NR | Craniotomy n = 165 | NSB = 89 SB: Anterior = 30 Middle = 25 Posterior = 20 | GTR = 128 STR = 37 | KPS | 33 | NR | NR |
Timmer et al., 2019 [36] | 133 | Grade I = 109 Grade II = 22 Grade III = 2 | NR | Craniotomy n = 133 | NSB = 37 SB: Frontal n = 11 Middle: n = 22 Posterior = 22 | Grade I = 37 Grade II =3 8 Grade III = 2 Grade IV = 10 NR = 46 | SF-36; ASA; ADL | NR | NR | 45.6 months |
Wirsching et al., 2020 [37] | 249 | Grade I n = 219 Grade II n = 30 | NR | NR | NSB = 89 SB = 89: Posterior = 33 | GTR = 189 STR = 49 | EORTCQLQ-C30; MDASI-BT;EPICES | 12 | Unspecified n = 99 | 12 months |
Zhao et al., 2020 [21] | 168 | Grade I = 168 | 44.0 | Craniotomy n = 152 GKRS = 4 | Posterior = 168 | GTR = 119 STR = 37 | KPS | 86.5 | Unspecified Ataxia = 24 Unspecified Hemiparesis = 14 Unspecified CN III = 32 Unspecified CN IV = 38 Transient CN V = 11 Transient CN VI = 26 Transient CN VII = 34 Transient CN VIII = 20 Transient CN IX–XII = 6 | 86.5 months |
Locatelli et al., 2020 [25] | 35 | Grade I = 31 Grade II = 4 | NR | Craniotomy n = 17 endoscopic superior eyelid n = 13 combined cranioendoscopic n = 5 | anterior cranial fossa n = 18 middle cranial fossa n = 30 | GTR = 20 STR = 15 | KPS | Mean 31.5 | Early Postop Deficits Intraoperative complications n = 1 Systemic complications n = 5 Surgical scar complications n = 1 Diplopia n = 10 ocular extrinsic muscle deficits n = 7 Visual-field deficits n = 6 Visual deficits n = 10 Other CN deficits n = 7 Intracranial complications n = 4 Long-Term Deficits Visual deficits n = 1 CSF leak n = 1 Hemisyndrome n = 1 Mild hypoesthesia in V2 n = 2 | Mean 31.5 |
Gao et al., 2021 [42] | 107 | Grade I n = 95 Grade II n = 9 Grade III n = 3 | 39.1 mm | Craniotomy = 107 | Posterior cranial fossa n = 107 | Total n = 57 Subtotal n = 39 Partial n = 11 | KPS | 61 Months | CN dysfunction n = 29 intracranial infection n = 14 CSF leakage n = 9 hematoma n = 3 | NR |
Qiao et al., 2019 [66] | 176 | Grade I n = 156 Grade II n = 18 WHO grade III n = 2 | NR | Surgery n = 127 surgery + RT n = 15 surgery + GKS n = 34. | Posterior cranial fossa n = 176 | GTR n = 61 STR n = 102 PR n = 13 | KPS | NR | All Unspecified Hydrocephalus n = 64 Intracranial Infection n = 2 Tonsillar Herniation n = 15 Conjunctivitis or Keratitis or Corneal ulcer n = 3 intracranial hematoma; n = 1 Gastric ulcer n = 1 DVT of extremity n = 1 Pneumonia n = 8 subdural or subcutaneous n = 2 | 36 |
Koutourousiou et al., 2017 [26] | 32 | Grade I n = 29 Grade II n = 2 grade III n = 1 | 41.7 mm | Craniotomy = 11 Endoscopic = 17 Craniotomy + Endoscopic = 4 | Posterior cranial fossa n = 32 | GTR n = 6 Near total n = 9 STR n = 8 Partial n = 9 | KPS | 14 Months | All Unspecified CN III n = 1 CN IV n = 1 CN V n = 3 CN VI n = 14 CN VII n = 1 CN VIII n = 1 CN IX, X n = 1 CSF Leak n = 9 Hydrocephalus n = 5 Meningitis n = 3 PE/DVT n = 3 Perioperative Death n = 1 | 1 month |
Li et al., 2016 [40] | 199 | Grade I n = 199 | 47 mm | NR | Posterior cranial fossa n = 199 | GTR n = 111 STR n = 65 Partial n = 23 | KPS SF-36 | 171.6 | All Permanent CN III n = 11 CN IV n = 9 CN VI n = 10 Oculomotor deficit n = 15 CN V Facial numbness n = 4 Weak corneal reflex n = 6 CN VII n = 5 CN VIII n = 2 CN IX–XII n = 1 Hemiparesis n = 7 Ataxia n = 8 | 1 month |
Kalani et al., 2015 [24] | 25 | Grade 1 n = 25 | NR | Craniotomy = 25 | Anterior cranial fossa n = 3 Middle cranial fossa n = 5 Posterior cranial fossa n = 4 | Simpson grade; Grade I n = 4 Grade II n = 16 Grade III n = 3 Grade IV n = 2 | KPS | Mean = 101.7 months | visual disturbances such as diplopia, visual decline, and cranial nerve palsies remained more refractory to surgical treatment. | NR |
References
- Walsh, K.M. Epidemiology of Meningiomas. Handb. Clin. Neurol. 2020, 169, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Kuratsu, J.; Kochi, M.; Ushio, Y. Incidence and Clinical Features of Asymptomatic Meningiomas. J. Neurosurg. 2000, 92, 766–770. [Google Scholar] [CrossRef] [PubMed]
- van Nieuwenhuizen, D.; Ambachtsheer, N.; Heimans, J.J.; Reijneveld, J.C.; Peerdeman, S.M.; Klein, M. Neurocognitive Functioning and Health-Related Quality of Life in Patients with Radiologically Suspected Meningiomas. J. Neurooncol. 2013, 113, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, M.; van Nieuwenhuizen, D.; Stalpers, L.J.A.; Wumkes, M.; Waagemans, M.; Vandertop, W.P.; Heimans, J.J.; Leenstra, S.; Dirven, C.M.; Reijneveld, J.C.; et al. Late Neurocognitive Sequelae in Patients with WHO Grade I Meningioma. J. Neurol. Neurosurg. Psychiatry 2009, 80, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Zamanipoor Najafabadi, A.H.; Peeters, M.C.M.; Dirven, L.; Lobatto, D.J.; Groen, J.L.; Broekman, M.L.D.; Peerdeman, S.M.; Peul, W.C.; Taphoorn, M.J.B.; van Furth, W.R. Impaired Health-Related Quality of Life in Meningioma Patients—A Systematic Review. Neuro-Oncol. 2017, 19, 897–907. [Google Scholar] [CrossRef]
- van der Vossen, S.; Schepers, V.P.M.; Berkelbach van der Sprenkel, J.W.; Visser-Meily, J.M.A.; Post, M.W.M. Cognitive and Emotional Problems in Patients after Cerebral Meningioma Surgery. J. Rehabil. Med. 2014, 46, 430–437. [Google Scholar] [CrossRef]
- Whittle, I.R.; Smith, C.; Navoo, P.; Collie, D. Meningiomas. Lancet Lond. Engl. 2004, 363, 1535–1543. [Google Scholar] [CrossRef]
- Shin, Y.S.; Kim, J.H. Validation of the Korean Version of the European Organization for Research and Treatment of Cancer Brain Cancer Module (EORTC QLQ-BN20) in Patients with Brain Tumors. Health Qual. Life Outcomes 2013, 11, 145. [Google Scholar] [CrossRef]
- Jakola, A.S.; Gulati, M.; Gulati, S.; Solheim, O. The Influence of Surgery on Quality of Life in Patients with Intracranial Meningiomas: A Prospective Study. J. Neurooncol. 2012, 110, 137–144. [Google Scholar] [CrossRef]
- Li, H.; Huang, H.; Zhang, X.; Wang, Y.; Ren, X.; Cui, Y.; Sui, D.; Lin, S.; Jiang, Z.; Zhang, G. Postoperative Long-Term Independence Among the Elderly with Meningiomas: Function Evolution, Determinant Identification, and Prediction Model Development. Front. Oncol. 2021, 11, 639259. [Google Scholar] [CrossRef]
- Galhom, A.E.; Madawi, A.A.; Ellabban, M.M. Surgical Outcomes and Predictors of Complication in Elderly Patients with Meningiomas. Egypt. J. Neurol. Psychiatry Neurosurg. 2018, 54, 3. [Google Scholar] [CrossRef]
- Pintea, B.; Kandenwein, J.A.; Lorenzen, H.; Boström, J.P.; Daher, F.; Velazquez, V.; Kristof, R.A. Factors of Influence upon the SF-36-Based Health Related Quality of Life of Patients Following Surgery for Petroclival and Lateral Posterior Surface of Pyramid Meningiomas. Clin. Neurol. Neurosurg. 2018, 166, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36). I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, C.; Gillett, S.; Slack, R.; Lund, V.J.; Browne, J.P. Psychometric Validity of the 22-Item Sinonasal Outcome Test. Clin. Otolaryngol. Off. J. ENT-UK Off. J. Neth. Soc. Oto-Rhino-Laryngol. Cervico-Facial Surg. 2009, 34, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Millward, C.P.; Armstrong, T.S.; Barrington, H.; Brodbelt, A.R.; Bulbeck, H.; Byrne, A.; Dirven, L.; Gamble, C.; Grundy, P.L.; Islim, A.I.; et al. Opportunities and Challenges for the Development of “Core Outcome Sets” in Neuro-Oncology. Neuro-Oncol. 2022, 24, 1048–1055. [Google Scholar] [CrossRef]
- Fisher, F.L.; Zamanipoor Najafabadi, A.H.; van der Meer, P.B.; Boele, F.W.; Peerdeman, S.M.; Peul, W.C.; Taphoorn, M.J.B.; Dirven, L.; van Furth, W.R. Long-Term Health-Related Quality of Life and Neurocognitive Functioning after Treatment in Skull Base Meningioma Patients. J. Neurosurg. 2022, 136, 1077–1089. [Google Scholar] [CrossRef]
- Al-Mefty’s Meningiomas|9781604060539|Thieme Webshop. Available online: https://shop.thieme.com/Al-Mefty-s-Meningiomas/9781604060539 (accessed on 8 March 2023).
- Kalasauskas, D.; Keric, N.; Abu Ajaj, S.; von Cube, L.; Ringel, F.; Renovanz, M. Psychological Burden in Meningioma Patients under a Wait-and-Watch Strategy and after Complete Resection Is High-Results of a Prospective Single Center Study. Cancers 2020, 12, 3503. [Google Scholar] [CrossRef] [PubMed]
- Mathiesen, T.; Gerlich, A.; Kihlström, L.; Svensson, M.; Bagger-Sjöbäck, D. Effects of Using Combined Transpetrosal Surgical Approaches to Treat Petroclival Meningiomas. Neurosurgery 2007, 60, 982–991; discussion 991–992. [Google Scholar] [CrossRef]
- Batish, A.; Gupta, S.K.; Mohanty, M.; Tripathi, M.; Salunke, P.; Aggarwal, A. Surgical Outcome Analysis of Large and Giant Petroclival Meningiomas with Special Reference to Quality of Life Issues. Neurol. India 2022, 70, 897–904. [Google Scholar] [CrossRef]
- Zhao, Z.; Yuan, X.; Yuan, J.; Cai, L.; Jiang, W.; Xie, Y.; Wanggou, S.; Zhang, C.; Tang, G.; Li, H.; et al. Treatment Strategy for Petroclival Meningiomas Based on a Proposed Classification in a Study of 168 Cases. Sci. Rep. 2020, 10, 4655. [Google Scholar] [CrossRef]
- Tariciotti, L.; Fiore, G.; Carapella, S.; Remore, L.G.; Schisano, L.; Borsa, S.; Pluderi, M.; Canevelli, M.; Marfia, G.; Caroli, M.; et al. A Frailty-Adjusted Stratification Score to Predict Surgical Risk, Post-Operative, Long-Term Functional Outcome, and Quality of Life after Surgery in Intracranial Meningiomas. Cancers 2022, 14, 3065. [Google Scholar] [CrossRef] [PubMed]
- Kalani, M.Y.S.; Cavallo, C.; Coons, S.W.; Lettieri, S.C.; Nakaji, P.; Porter, R.W.; Spetzler, R.F.; Feiz-Erfan, I. Long-Term Follow-up of Surgical Resection of Microcystic Meningiomas. J. Clin. Neurosci. 2015, 22, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Locatelli, D.; Restelli, F.; Alfiero, T.; Campione, A.; Pozzi, F.; Balbi, S.; Arosio, A.; Castelnuovo, P. The Role of the Transorbital Superior Eyelid Approach in the Management of Selected Spheno-Orbital Meningiomas: In-Depth Analysis of Indications, Technique, and Outcomes from the Study of a Cohort of 35 Patients. J. Neurol. Surg. Part B Skull Base 2022, 83, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Koutourousiou, M.; Fernandez-Miranda, J.C.; Vaz-Guimaraes Filho, F.; De Almeida, J.R.; Wang, E.W.; Snyderman, C.H.; Gardner, P.A. Outcomes of Endonasal and Lateral Approaches to Petroclival Meningiomas. World Neurosurg. 2017, 99, 500–517. [Google Scholar] [CrossRef]
- Thomson, H.; Craig, P.; Hilton-Boon, M.; Campbell, M.; Katikireddi, S.V. Applying the ROBINS-I Tool to Natural Experiments: An Example from Public Health. Syst. Rev. 2018, 7, 15. [Google Scholar] [CrossRef]
- Schwarzer, G.; Chemaitelly, H.; Abu-Raddad, L.J.; Rücker, G. Seriously Misleading Results Using Inverse of Freeman-Tukey Double Arcsine Transformation in Meta-Analysis of Single Proportions. Res. Synth. Methods 2019, 10, 476–483. [Google Scholar] [CrossRef]
- Egger, M.; Davey Smith, G.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef]
- Barrash, J.; Abel, T.J.; Okerstrom-Jezewski, K.L.; Zanaty, M.; Bruss, J.E.; Manzel, K.; Howard, M.; Tranel, D. Acquired Personality Disturbances after Meningioma Resection Are Strongly Associated with Impaired Quality of Life. Neurosurgery 2020, 87, 276–284. [Google Scholar] [CrossRef]
- Jesús, O.D.; Sekhar, L.N.; Parikh, H.K.; Wright, D.C.; Wagner, D.P. Long-Term Follow-up of Patients with Meningiomas Involving the Cavernous Sinus: Recurrence, Progression, and Quality of Life. Neurosurgery 1996, 39, 915. [Google Scholar] [CrossRef]
- Konglund, A.; Rogne, S.G.; Lund-Johansen, M.; Scheie, D.; Helseth, E.; Meling, T.R. Outcome Following Surgery for Intracranial Meningiomas in the Aging. Acta Neurol. Scand. 2013, 127, 161–169. [Google Scholar] [CrossRef]
- Krupp, W.; Klein, C.; Koschny, R.; Holland, H.; Seifert, V.; Meixensberger, J. Assessment of Neuropsychological Parameters and Quality of Life to Evaluate Outcome in Patients with Surgically Treated Supratentorial Meningiomas. Neurosurgery 2009, 64, 40–47; discussion 47. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Lu, X.; Qiu, Y.; Jiang, J.; Lin, Y. A Multivariate Analysis of Prognostic Factors for Health-Related Quality of Life in Patients with Surgically Managed Meningioma. J. Clin. Neurosci. Off. J. Neurosurg. Soc. Australas. 2010, 17, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Mohsenipour, I.; Deusch, E.; Gabl, M.; Hofer, M.; Twerdy, K. Quality of Life in Patients after Meningioma Resection. Acta Neurochir. 2001, 143, 547–553. [Google Scholar] [CrossRef] [PubMed]
- Timmer, M.; Seibl-Leven, M.; Wittenstein, K.; Grau, S.; Stavrinou, P.; Röhn, G.; Krischek, B.; Goldbrunner, R. Long-Term Outcome and Health-Related Quality of Life of Elderly Patients after Meningioma Surgery. World Neurosurg. 2019, 125, e697–e710. [Google Scholar] [CrossRef]
- Wirsching, H.-G.; Morel, C.; Roth, P.; Weller, M. Socioeconomic Burden and Quality of Life in Meningioma Patients. Qual. Life Res. Int. J. Qual. Life Asp. Treat. Care Rehabil. 2020, 29, 1801–1808. [Google Scholar] [CrossRef]
- Jones, S.H.; Iannone, A.F.; Patel, K.S.; Anchouche, K.; Raza, S.M.; Anand, V.K.; Schwartz, T.H. The Impact of Age on Long-Term Quality of Life after Endonasal Endoscopic Resection of Skull Base Meningiomas. Neurosurgery 2016, 79, 736–745. [Google Scholar] [CrossRef]
- Castle-Kirszbaum, M.; Kam, J.; Dixon, B.; Goldschlager, T.; King, J.; Wang, Y.Y. Surgical Outcomes and Longitudinal Quality of Life after Endoscopic Endonasal Surgery for Anterior Skull Base Meningioma. J. Neurosurg. 2022, 137, 953–960. [Google Scholar] [CrossRef]
- Li, D.; Tang, J.; Ren, C.; Wu, Z.; Zhang, L.-W.; Zhang, J.-T. Surgical Management of Medium and Large Petroclival Meningiomas: A Single Institution’s Experience of 199 Cases with Long-Term Follow-Up. Acta Neurochir. 2016, 158, 409–425. [Google Scholar] [CrossRef]
- Gao, B.; Zhang, Y.; Tan, J.; Ouyang, J.; Tai, B.; Cao, X.; Li, T.; Hu, S. Surgical Treatment and Clinical Outcomes of Petroclival Meningiomas: A Single-Center Experience of 107 Patients. Front. Oncol. 2021, 11, 761284. [Google Scholar] [CrossRef]
- López-López, J.A.; Marín-Martínez, F.; Sánchez-Meca, J.; Van den Noortgate, W.; Viechtbauer, W. Estimation of the Predictive Power of the Model in Mixed-Effects Meta-Regression: A Simulation Study. Br. J. Math. Stat. Psychol. 2014, 67, 30–48. [Google Scholar] [CrossRef]
- Schiavolin, S.; Mariniello, A.; Broggi, M.; Acerbi, F.; Schiariti, M.; Franzini, A.; Di Meco, F.; Ferroli, P.; Leonardi, M. Characteristics of Patients Returning to Work after Brain Tumor Surgery. Front. Hum. Neurosci. 2021, 14, 609080. [Google Scholar] [CrossRef]
- Chan, R.C.; Thompson, G.B. Morbidity, Mortality, and Quality of Life Following Surgery for Intracranial Meningiomas. A Retrospective Study in 257 Cases. J. Neurosurg. 1984, 60, 52–60. [Google Scholar] [CrossRef]
- Henzel, M.; Fokas, E.; Sitter, H.; Wittig, A.; Engenhart-Cabillic, R. Quality of Life after Stereotactic Radiotherapy for Meningioma: A Prospective Non-Randomized Study. J. Neurooncol. 2013, 113, 135–141. [Google Scholar] [CrossRef]
- Natarajan, S.K.; Sekhar, L.N.; Schessel, D.; Morita, A. Petroclival Meningiomas: Multimodality Treatment and Outcomes at Long-Term Follow-Up. Neurosurgery 2007, 60, 965–979; discussion 979–981. [Google Scholar] [CrossRef]
- Kofoed Lauridsen, E.; Ciochon, U.M.; Tolver, A.; Bech Knudsen, M.; Giraldi, L.; Springborg, J.B.; Bøgeskov, L.; Poulsgaard, L.; Mathiesen, T.; Piil, K.; et al. Long-Term Postoperative Health-Related Quality of Life in Patients with Subfrontal Meningiomas. J. Neurosurg. 2022, 138, 1542–1551. [Google Scholar] [CrossRef] [PubMed]
- Meling, T.R.; Da Broi, M.; Scheie, D.; Helseth, E. Meningiomas: Skull Base versus Non-Skull Base. Neurosurg. Rev. 2019, 42, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Steinvorth, S.; Welzel, G.; Fuss, M.; Debus, J.; Wildermuth, S.; Wannenmacher, M.; Wenz, F. Neuropsychological Outcome after Fractionated Stereotactic Radiotherapy (FSRT) for Base of Skull Meningiomas: A Prospective 1-Year Follow-Up. Radiother. Oncol. 2003, 69, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Waagemans, M.L.; van Nieuwenhuizen, D.; Dijkstra, M.; Wumkes, M.; Dirven, C.M.F.; Leenstra, S.; Reijneveld, J.C.; Klein, M.; Stalpers, L.J.A. Long-Term Impact of Cognitive Deficits and Epilepsy on Quality of Life in Patients with Low-Grade Meningiomas. Neurosurgery 2011, 69, 72–78; discussion 78–79. [Google Scholar] [CrossRef]
- Gondar, R.; Patet, G.; Schaller, K.; Meling, T.R. Meningiomas and Cognitive Impairment after Treatment: A Systematic and Narrative Review. Cancers 2021, 13, 1846. [Google Scholar] [CrossRef]
- Constanthin, P.E.; Gondar, R.; Fellrath, J.; Wyttenbach, I.M.; Tizi, K.; Weman, L.; Vayssière, P.; Schaller, K.; Meling, T.R. Neuropsychological Outcomes after Surgery for Olfactory Groove Meningiomas. Cancers 2021, 13, 2520. [Google Scholar] [CrossRef]
- Roa Montes de Oca, J.C.; Gonçalves Estella, J.M.; Nieto-Librero, A.B.; Galindo-Villardón, P.; Roa Ramírez, C.J.; Gonçalves Sánchez, J.; Berhouma, M.; Cornelius, J.F.; Daniel, R.T.; Zazpe, I.; et al. Olfactory Groove Meningiomas: Comprehensive Assessment between the Different Microsurgical Transcranial Approaches and the Endoscopic Endonasal Approaches, Systematic Review and Metanalysis on Behalf of the EANS Skull Base Section. Brain Spine 2022, 2, 101661. [Google Scholar] [CrossRef] [PubMed]
- Giammattei, L.; Starnoni, D.; Cossu, G.; Bruneau, M.; Cavallo, L.M.; Cappabianca, P.; Meling, T.R.; Jouanneau, E.; Schaller, K.; Benes, V.; et al. Surgical Management of Tuberculum Sellae Meningiomas: Myths, Facts, and Controversies. Acta Neurochir. 2020, 162, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Song, S.W.; Kim, Y.H.; Kim, J.W.; Park, C.-K.; Kim, J.E.; Kim, D.G.; Koh, Y.-C.; Jung, H.-W. Outcomes after Transcranial and Endoscopic Endonasal Approach for Tuberculum Meningiomas-A Retrospective Comparison. World Neurosurg. 2018, 109, e434–e445. [Google Scholar] [CrossRef]
- Bander, E.D.; Singh, H.; Ogilvie, C.B.; Cusic, R.C.; Pisapia, D.J.; Tsiouris, A.J.; Anand, V.K.; Schwartz, T.H. Endoscopic Endonasal versus Transcranial Approach to Tuberculum Sellae and Planum Sphenoidale Meningiomas in a Similar Cohort of Patients. J. Neurosurg. 2018, 128, 40–48. [Google Scholar] [CrossRef]
- Couldwell, W.T.; Fukushima, T.; Giannotta, S.L.; Weiss, M.H. Petroclival Meningiomas: Surgical Experience in 109 Cases. J. Neurosurg. 1996, 84, 20–28. [Google Scholar] [CrossRef]
- Almefty, R.; Dunn, I.F.; Pravdenkova, S.; Abolfotoh, M.; Al-Mefty, O. True Petroclival Meningiomas: Results of Surgical Management. J. Neurosurg. 2014, 120, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Morota, N.; Ihara, S.; Deletis, V. Intraoperative Neurophysiology for Surgery in and around the Brainstem: Role of Brainstem Mapping and Corticobulbar Tract Motor-Evoked Potential Monitoring. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2010, 26, 513–521. [Google Scholar] [CrossRef]
- Broggi, G.; Scaioli, V.; Brock, S.; Dones, I. Neurophysiological Monitoring of Cranial Nerves during Posterior Fossa Surgery. Acta Neurochir. Suppl. 1995, 64, 35–39. [Google Scholar] [CrossRef]
- Combs, S.E.; Adeberg, S.; Dittmar, J.-O.; Welzel, T.; Rieken, S.; Habermehl, D.; Huber, P.E.; Debus, J. Skull Base Meningiomas: Long-Term Results and Patient Self-Reported Outcome in 507 Patients Treated with Fractionated Stereotactic Radiotherapy (FSRT) or Intensity Modulated Radiotherapy (IMRT). Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2013, 106, 186–191. [Google Scholar] [CrossRef]
- Lisowski, D.; Trömel, J.; Lutyj, P.; Lewitzki, V.; Hartrampf, P.E.; Polat, B.; Flentje, M.; Tamihardja, J. Health-Related Quality of Life and Clinical Outcome after Radiotherapy of Patients with Intracranial Meningioma. Sci. Rep. 2022, 12, 19730. [Google Scholar] [CrossRef]
- Zamanipoor Najafabadi, A.H.; van der Meer, P.B.; Boele, F.W.; Taphoorn, M.J.B.; Klein, M.; Peerdeman, S.M.; van Furth, W.R.; Dirven, L. Dutch Meningioma Consortium. Long-Term Disease Burden and Survivorship Issues after Surgery and Radiotherapy of Intracranial Meningioma Patients. Neurosurgery 2020, 88, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Kangas, M.; Tate, R.L.; Williams, J.R.; Smee, R.I. The Effects of Radiotherapy on Psychosocial and Cognitive Functioning in Adults with a Primary Brain Tumor: A Prospective Evaluation†. Neuro-Oncol. 2012, 14, 1485–1502. [Google Scholar] [CrossRef] [PubMed]
- Karsy, M.; Jensen, M.R.; Guan, J.; Ravindra, V.M.; Bisson, E.F.; Couldwell, W.T. EQ-5D Quality-of-Life Analysis and Cost-Effectiveness after Skull Base Meningioma Resection. Neurosurgery 2019, 85, E543–E552. [Google Scholar] [CrossRef] [PubMed]
- Neil-Dwyer, G.; Lang, D.A.; Davis, A. Outcome from Complex Neurosurgery: An Evidence Based Approach. Acta Neurochir. 2000, 142, 367–371. [Google Scholar] [CrossRef]
- Qiao, L.; Yu, C.; Zhang, H.; Zhang, M.; Qu, Y.; Ren, M.; Gu, C.; Wang, H. Clinical Outcomes and Survival Analysis for Petroclival Meningioma Patients Receiving Surgical Resection: An Analysis of 176 Cases. Cancer Manag. Res. 2019, 11, 5949–5959. [Google Scholar] [CrossRef]
Total Number of Patients | 3167 |
Mean Age a | 54.27 ± 6.33 |
Male:Female (n) | 926:2241 |
WHO GRADE b | |
I–II III | 2099 27 |
Average Nidus Size (mm) c | 39.10 ± 7.96 |
Presenting Symptoms (%) d | |
Headache CN Palsy Seizure Visual Disturbances Motor Disturbances Sensory Disturbances Exophthalmia Cerebellar Deficits Nausea/Vomiting Memory Disturbances Cognitive Deficits Ataxia Asymptomatic Other | 357 (9.72%) 1560 (42.5%) 174 (4.7%) 490 (13.3%) 104 (2.8%) 31 (0.8%) 113 (3.1%) 46 (1.3%) 33 (0.9%) 39 (1.1%) 25 (0.7%) 185 (5.0%) 75 (2.0%) 439 (12.0%) |
Treatment | |
Craniotomy Craniotomy + RT RT Endoscopic Crani + Endo Craniotomy + Radiosurgery | 2102 265 327 114 9 48 |
Location | |
SB Anterior Middle Posterior NSB | 2288 320 688 1173 664 |
EOR e | |
GTR Partial | 1582 986 |
Average Median Follow-up (months) f | 51.58 ± 43.8 |
Surgical Complications (%) g CSF leak Hydrocephalus Infection Hematoma Hemorrhage Other | 399 84 (21.1%) 83 (20.8%) 84 (21.1%) 23 (5.8%) 12 (3.0%) 113 (28.3%) |
Postop deficits h | |
Transient CN Deficit Motor/Language Deficit Neurologic Deficit Other Permanent CN Deficit Motor/Language Deficit Neurologic Deficit Eye Motility Deficit Hemiparesis Other Other/Unspecified | 189 58 (30.7%) 28 (14.8%) 26 (13.8%) 77 (40.7%) 462 297 (64.3%) 32 (6.9%) 13 (2.8%) 23 (5.0%) 35 (7.6%) 62 (13.4%) 185 |
Mortality i | 77 |
Recurrence j | 326 |
QOL Metric Used | Number of Times Utilized |
---|---|
Institution Specific | 3 |
KPS | 12 |
SF-36 | 10 |
EORTC QLQ-BN20 | 1 |
SNOT-22 | 2 |
ASBQ | 2 |
EORTC QLQ-C30 | 2 |
EQ-5D | 1 |
IHD | 1 |
NHP | 1 |
HADS | 1 |
OTHER | 9 |
Meningioma Location | Physical Functioning | Role Limitation Due to Physical Health | Role Limitation Due to Emotional Health | Energy | Social Function | Pain | General Health | Mental Health | PCS | MCS |
---|---|---|---|---|---|---|---|---|---|---|
Posterior | 69 (95% CI 57–81) | 53 (95% CI 35–71) | 73 (95% CI 65–81) | 52 (95% CI 40–64) | 72 (95% CI 62–82) | 72 (95% CI 70–75) | 55 (95% CI 37–74) | 65 (95% CI 60–70) | 43 (95% CI 38–49) | 47 (95% CI 43–52) |
Anterior/Middle | 84 | 79 | 83 | 68 | 82 | 75 | 79 | 68 | 49 | 52 |
NSB | 77 | 65 | 75 | 59 | 76 | 72 | 64 | 72 | 46 | 49 |
Treatment Modality | Anterior/Middle Skull Base | Posterior Skull Base |
---|---|---|
Craniotomy | ASBQ; SF-36 | SF-36 |
EEA | ASBQ; SNOT-22; SF-36 | SNOT-22; SF-36 |
Radiotherapy | ASBQ; QLQ BN-20; QLQ C30; SF-36 | QLQ BN-20; QLQ C30; SF-36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San, A.; Rahman, R.K.; Sanmugananthan, P.; Dubé, M.D.; Panico, N.; Ariwodo, O.; Shah, V.; D’Amico, R.S. Health-Related Quality of Life Outcomes in Meningioma Patients Based upon Tumor Location and Treatment Modality: A Systematic Review and Meta-Analysis. Cancers 2023, 15, 4680. https://doi.org/10.3390/cancers15194680
San A, Rahman RK, Sanmugananthan P, Dubé MD, Panico N, Ariwodo O, Shah V, D’Amico RS. Health-Related Quality of Life Outcomes in Meningioma Patients Based upon Tumor Location and Treatment Modality: A Systematic Review and Meta-Analysis. Cancers. 2023; 15(19):4680. https://doi.org/10.3390/cancers15194680
Chicago/Turabian StyleSan, Ali, Raphia K. Rahman, Praveen Sanmugananthan, Michael D. Dubé, Nicholas Panico, Ogechukwu Ariwodo, Vidur Shah, and Randy S. D’Amico. 2023. "Health-Related Quality of Life Outcomes in Meningioma Patients Based upon Tumor Location and Treatment Modality: A Systematic Review and Meta-Analysis" Cancers 15, no. 19: 4680. https://doi.org/10.3390/cancers15194680
APA StyleSan, A., Rahman, R. K., Sanmugananthan, P., Dubé, M. D., Panico, N., Ariwodo, O., Shah, V., & D’Amico, R. S. (2023). Health-Related Quality of Life Outcomes in Meningioma Patients Based upon Tumor Location and Treatment Modality: A Systematic Review and Meta-Analysis. Cancers, 15(19), 4680. https://doi.org/10.3390/cancers15194680