PD-L1 Expression by RNA-Sequencing in Non-Small Cell Lung Cancer: Concordance with Immunohistochemistry and Associations with Pembrolizumab Treatment Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patient Cohorts
2.2. PD-L1 Expression Testing and Clinical Reporting Cutoffs for IHC and RNA-Seq
2.3. Clinical Data and Pembrolizumab Outcomes Measures
2.4. Statistical Analysis
3. Results
3.1. Concordance between IHC 22C3 and RNA-Seq for PD-L1 Expression in NSCLC
3.2. Alternative PD-L1 RNA-Seq Cutoffs and Assay Performance
3.3. Associations with Pembrolizumab Monotherapy Outcomes
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Remon, J.; Passiglia, F.; Ahn, M.J.; Barlesi, F.; Forde, P.M.; Garon, E.B.; Gettinger, S.; Goldberg, S.B.; Herbst, R.S.; Horn, L.; et al. Immune Checkpoint Inhibitors in Thoracic Malignancies: Review of the Existing Evidence by an IASLC Expert Panel and Recommendations. J. Thorac. Oncol. 2020, 15, 914–947. [Google Scholar] [CrossRef] [PubMed]
- Shields, M.D.; Marin-Acevedo, J.A.; Pellini, B. Immunotherapy for Advanced Non–Small Cell Lung Cancer: A Decade of Progress. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, e105–e127. [Google Scholar] [CrossRef] [PubMed]
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef]
- Stenehjem, D.; Lubinga, S.; Betts, K.A.; Tang, W.; Jenkins, M.; Yuan, Y.; Hartman, J.; Rao, S.; Lam, J.; Waterhouse, D. Treatment patterns in patients with metastatic non-small-cell lung cancer in the era of immunotherapy. Futur. Oncol. 2021, 17, 2940–2949. [Google Scholar] [CrossRef]
- Dako. PD-L1 IHC 22C3 pharmDx: Non-Small Cell Lung Cancer [Interpretation Manual]; Dako: Santa Clara, CA, USA, 2021; Available online: https://www.agilent.com/cs/library/usermanuals/public/29158_pd-l1-ihc-22C3-pharmdx-nsclc-interpretation-manual.pdf (accessed on 10 May 2023).
- Ben Dori, S.; Aizic, A.; Sabo, E.; Hershkovitz, D. Spatial heterogeneity of PD-L1 expression and the risk for misclassification of PD-L1 immunohistochemistry in non-small cell lung cancer. Lung Cancer 2020, 147, 91–98. [Google Scholar] [CrossRef]
- Hwang, D.M.; Albaqer, T.; Santiago, R.C.; Weiss, J.; Tanguay, J.; Cabanero, M.; Leung, Y.; Pal, P.; Khan, Z.; Lau, S.C.M.; et al. Prevalence and Heterogeneity of PD-L1 Expression by 22C3 Assay in Routine Population-Based and Reflexive Clinical Testing in Lung Cancer. J. Thorac. Oncol. 2021, 16, 1490–1500. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Deng, J.; She, Y.; Chen, C. The detection value of PD-L1 expression in biopsy specimens and surgical resection specimens in non-small cell lung cancer: A meta-analysis. J. Thorac. Dis. 2021, 13, 4301–4310. [Google Scholar] [CrossRef]
- Xu, H.; Chen, X.; Lin, D.; Zhang, J.; Li, C.; Zhang, D.; Zhang, X. Conformance assessment of PD-L1 expression between primary tumour and nodal metastases in non-small-cell lung cancer. Onco. Targets Ther. 2019, 12, 11541–11547. [Google Scholar] [CrossRef]
- Moutafi, M.K.; Tao, W.; Huang, R.; Haberberger, J.; Alexander, B.; Ramkissoon, S.; Ross, J.S.; Syrigos, K.; Wei, W.; Pusztai, L.; et al. Comparison of programmed death-ligand 1 protein expression between primary and metastatic lesions in patients with lung cancer. J. Immunother. Cancer 2021, 9, e002230. [Google Scholar] [CrossRef]
- Naso, J.R.; Banyi, N.; Al-Hashami, Z.; Zhu, J.; Wang, G.; Ionescu, D.N.; Ho, C. Discordance in PD-L1 scores on repeat testing of non-small cell lung carcinomas. Cancer Treat. Res. Commun. 2021, 27, 100353. [Google Scholar] [CrossRef]
- McLaughlin, J.; Han, G.; Schalper, K.A.; Carvajal-Hausdorf, D.; Pelekanou, V.; Rehman, J.; Velcheti, V.; Herbst, R.; LoRusso, P.; Rimm, D.L. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non–Small-Cell Lung Cancer. JAMA Oncol. 2016, 2, 46. [Google Scholar] [CrossRef] [PubMed]
- Kowanetz, M.; Zou, W.; Gettinger, S.N.; Koeppen, H.; Kockx, M.; Schmid, P.; Kadel Iii, E.E.; Wistuba, I.; Chaft, J.; Rizvi, N.A.; et al. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1). Proc. Natl. Acad. Sci. USA 2018, 115, E10119–E10126. [Google Scholar] [CrossRef] [PubMed]
- Dolled-Filhart, M.; Roach, C.; Toland, G.; Stanforth, D.; Jansson, M.; Lubiniecki, G.M.; Ponto, G.; Emancipator, K. Development of a companion diagnostic for pembrolizumab in non-small cell lung cancer using immunohistochemistry for programmed death ligand-1. Arch. Pathol. Lab. Med. 2016, 140, 1243–1249. [Google Scholar] [CrossRef]
- Roach, C.; Zhang, N.; Corigliano, E.; Jansson, M.; Toland, G.; Ponto, G.; Dolled-Filhart, M.; Emancipator, K.; Stanforth, D.; Kulangara, K. Development of a Companion Diagnostic PD-L1 Immunohistochemistry Assay for Pembrolizumab Therapy in Non–Small-cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2016, 24, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Isaacs, J.; Clarke, J.; Ready, N. Keynote 42: Pembrolizumab, PD-L1, and where to draw the line. Ann. Transl. Med. 2020, 8, 517. [Google Scholar] [CrossRef]
- Mok, T.S.K.; Wu, Y.; Kudaba, I.; Kowalski, D.M.; Cho, B.C.; Turna, H.Z.; Castro, G.; Srimuninnimit, V.; Laktionov, K.K.; Bondarenko, I.; et al. Pembrolizumab versus chemotherapy for previously untreated, PD-L1-expressing, locally advanced or metastatic non-small-cell lung cancer (KEYNOTE-042): A randomised, open-label, controlled, phase 3 trial. Lancet 2019, 6736, 1819–1830. [Google Scholar] [CrossRef] [PubMed]
- Morgensztern, D. KEYNOTE-042 and the role for single agent pembrolizumab in patients with PD-L1 tumor proportion score 1-49. J. Thorac. Dis. 2019, 11 (Suppl. 15), S1963–S1965. [Google Scholar] [CrossRef]
- Shah, A.T.; Neal, J.W. The role of Anti-PD-1/PD-L1 monotherapy as first-line treatment of metastatic NSCLC without targetable mutations and PD-L1 TPS 1–49%. Precis. Cancer Med. 2021, 4, 9. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) Non-Small Cell Lung Cancer, Version 3.2022; National Comprehensive Cancer Network: Fort Washington, PA, USA, 2022; Available online: https://www.nccn.org/professionals/physician_gls/default.aspx (accessed on 10 May 2023).
- Genentech. Tecentriq® (Atezolizumab) [Package Insert]; U.S. Food and Drug Administration: South San Francisco, CA, USA, 2022. Available online: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=761034 (accessed on 10 May 2023).
- FDA Approves Atezolizumab for First-Line Treatment of Metastatic NSCLC with High PD-L1 Expression. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-atezolizumab-first-line-treatmentmetastatic-nsclc-high-pd-l1-expression (accessed on 10 May 2023).
- Tsimafeyeu, I.; Imyanitov, E.; Zavalishina, L.; Raskin, G.; Povilaitite, P.; Savelov, N.; Kharitonova, E.; Rumyantsev, A.; Pugach, I.; Andreeva, Y.; et al. Agreement between PDL1 immunohistochemistry assays and polymerase chain reaction in non-small cell lung cancer: CLOVER comparison study. Sci. Rep. 2020, 10, 3928. [Google Scholar] [CrossRef] [PubMed]
- Scheel, A.H.; Dietel, M.; Heukamp, L.C.; Jöhrens, K.; Kirchner, T.; Reu, S.; Rüschoff, J.; Schildhaus, H.-U.; Schirmacher, P.; Tiemann, M.; et al. Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod. Pathol. 2016, 29, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Rehman, J.A.; Han, G.; Carvajal-Hausdorf, D.E.; Wasserman, B.E.; Pelekanou, V.; Mani, N.L.; McLaughlin, J.; Schalper, K.A.; Rimm, D.L. Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod. Pathol. 2017, 30, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, L.; Spira, A.; Ballinger, M.; Kowanetz, M.; Vansteenkiste, J.; Mazieres, J.; Park, K.; Smith, D.; Artal-Cortes, A.; Lewanski, C.; et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet 2016, 387, 1837–1846. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Erber, R.; Stöhr, R.; Herlein, S.; Giedl, C.; Rieker, R.J.; Fuchs, F.; Ficker, J.H.; Hartmann, A.; Veltrup, E.; Wirtz, R.M.; et al. Comparison of PD-L1 mRNA Expression Measured with the CheckPoint Typer® Assay with PD-L1 Protein Expression Assessed with Immunohistochemistry in Non-small Cell Lung Cancer. Anticancer Res. 2017, 37, 6771–6778. [Google Scholar] [CrossRef]
- Conroy, J.M.; Pabla, S.; Nesline, M.K.; Glenn, S.T.; Papanicolau-Sengos, A.; Burgher, B.; Andreas, J.; Giamo, V.; Wang, Y.; Lenzo, F.L.; et al. Next generation sequencing of PD-L1 for predicting response to immune checkpoint inhibitors. J. Immunother. Cancer 2019, 7, 18. [Google Scholar] [CrossRef]
- Ma, W.; De Dios, I.; Antzoulatos, S.; Estella, J.; Albitar, M. Measuring PD-L1 mRNA expression using targeted next generation sequencing and correlation with interferon pathway activation genes in lung and colorectal cancers. J. Clin. Oncol. 2020, 38 (Suppl. 15), e21534. [Google Scholar] [CrossRef]
- Imyanitov, E.N.; Ivantsov, A.O.; Tsimafeyeu, I.V. Harmonization of Molecular Testing for Non-Small Cell Lung Cancer: Emphasis on PD-L1. Front. Oncol. 2020, 10, 549198. [Google Scholar] [CrossRef]
- Theelen, W.S.M.E.; Kuilman, T.; Schulze, K.; Zou, W.; Krijgsman, O.; Peters, D.D.G.C.; Cornelissen, S.; Monkhorst, K.; Sarma, P.; Sumiyoshi, T.; et al. Absence of PD-L1 expression on tumor cells in the context of an activated immune infiltrate may indicate impaired IFNγ signaling in non-small cell lung cancer. PLoS ONE 2019, 14, e0216864. [Google Scholar] [CrossRef]
- Conroy, J.M.; Pabla, S.; Glenn, S.T.; Burgher, B.; Nesline, M.; Papanicolau-Sengos, A.; Andreas, J.; Giamo, V.; Lenzo, F.L.; Hyland, F.C.L.; et al. Analytical Validation of a Next-Generation Sequencing Assay to Monitor Immune Responses in Solid Tumors. J. Mol. Diagn. 2018, 20, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Lantuejoul, S.; Sound-Tsao, M.; Cooper, W.A.; Girard, N.; Hirsch, F.R.; Roden, A.C.; Lopez-Rios, F.; Jain, D.; Chou, T.Y.; Motoi, N.; et al. PD-L1 Testing for Lung Cancer in 2019: Perspective from the IASLC Pathology Committee. J. Thorac. Oncol. 2020, 15, 499–519. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, S.; Trapani, J.A.; Neeson, P.J. Challenges of PD-L1 testing in non-small cell lung cancer and beyond. J. Thorac. Dis. 2020, 12, 4541–4548. [Google Scholar] [CrossRef] [PubMed]
- Fundytus, A.; Booth, C.M.; Tannock, I.F. How low can you go? PD-L1 expression as a biomarker in trials of cancer immunotherapy. Ann. Oncol. 2021, 32, 833–836. [Google Scholar] [CrossRef]
- Peters, S.; Gettinger, S.; Johnson, M.L.; Jänne, P.A.; Garassino, M.C.; Christoph, D.; Toh, C.K.; Rizvi, N.A.; Chaft, J.E.; Carcereny Costa, E.; et al. Phase II trial of atezolizumab as first-line or subsequent therapy for patients with programmed death-ligand 1-selected advanced non-small-cell lung cancer (BIRCH). J. Clin. Oncol. 2017, 35, 2781–2789. [Google Scholar] [CrossRef]
- Rittmeyer, A.; Barlesi, F.; Waterkamp, D.; Park, K.; Ciardiello, F.; von Pawel, J.; Gadgeel, S.M.; Hida, T.; Kowalski, D.M.; Dols, M.C.; et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): A phase 3, open-label, multicentre randomised controlled trial. Lancet 2017, 389, 255–265. [Google Scholar] [CrossRef]
- Taube, J.M.; Klein, A.; Brahmer, J.R.; Xu, H.; Pan, X.; Kim, J.H.; Chen, L.; Pardoll, D.M.; Topalian, S.L.; Anders, R.A. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin. Cancer Res. 2014, 20, 5064–5074. [Google Scholar] [CrossRef]
- Sholl, L.M. Biomarkers of response to checkpoint inhibitors beyond PD-L1 in lung cancer. Mod. Pathol. 2022, 35 (Suppl. 1), 66–74. [Google Scholar] [CrossRef]
- Pabla, S.; Seager, R.J.; Van Roey, E.; Gao, S.; Hoefer, C.; Nesline, M.K.; DePietro, P.; Burgher, B.; Andreas, J.; Giamo, V.; et al. Integration of tumor inflammation, cell proliferation, and traditional biomarkers improves prediction of immunotherapy resistance and response. Biomark. Res. 2021, 9, 56. [Google Scholar] [CrossRef]
- Ayers, M.; Nebozhyn, M.; Cristescu, R.; McClanahan, T.K.; Perini, R.; Rubin, E.; Cheng, J.D.; Kaufman, D.R.; Loboda, A. Molecular profiling of cohorts of tumor samples to guide clinical development of pembrolizumab as monotherapy. Clin. Cancer Res. 2019, 25, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.; Kwon, A.Y.; Jeong, J.Y.; Kim, S.; Kang, H.; Park, J.; Kim, J.H.; Han, O.J.; Lim, S.M.; An, H.J. Immune gene signatures for predicting durable clinical benefit of anti-PD-1 immunotherapy in patients with non-small cell lung cancer. Sci. Rep. 2020, 10, 643. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, M.; Ignatev, K.; Poddubskaya, E.; Vladimirova, U.; Gaifullin, N.; Lantsov, D.; Garazha, A.; Allina, D.; Suntsova, M.; Barbara, V.; et al. RNA sequencing in comparison to immunohistochemistry for measuring cancer biomarkers in breast cancer and lung cancer specimens. Biomedicines 2020, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Poma, A.M.; Bruno, R.; Pietrini, I.; Alì, G.; Pasquini, G.; Proietti, A.; Vasile, E.; Cappelli, S.; Chella, A.; Fontanini, G. Biomarkers and gene signatures to predict durable response to pembrolizumab in non-small cell lung cancer. Cancers 2021, 13, 3828. [Google Scholar] [CrossRef] [PubMed]
RNA High (≥75 Rank) n = 69 (67.7) | RNA Not High (<75 Rank) n = 33 (32.3) | Total (n = 102) | ||
---|---|---|---|---|
PD-L1 IHC status | High (≥50% TPS) | 64 (92.8) | 20 (60.6) | 84 (82.3) |
Low (1–49% TPS) | 5 (7.2) | 13 (29.4) | 18 (17.7) | |
Age (mean, years) | 70 | 70 | 70 | |
Sex | Female | 39 (56.5) | 20 (60.6) | 59 (57.8) |
Male | 30 (43.5) | 13 (39.4) | 43 (42.2) | |
Ever smoker (yes) | 61 (88.4) | 30 (90.9) | 91 (89.2) | |
Histology | Non-Squamous | 61 (88.4) | 22 (66.7) | 83 (81.4) |
Squamous | 8 (11.6) | 11 (33.3) | 19 (18.6) | |
Tissue Site | Primary | 34 (49.3) | 21 (63.8) | 55 (53.9) |
Metastatic | 35 (50.7) | 12 (36.4) | 47 (46.1) | |
Performance status (weighted) | <1 | 22 (31.9) | 3 (9.1) | 25 (24.5) |
1 to <2 | 39 (56.5) | 24 (72.7) | 63 (61.8) | |
2 to <4 | 6 (8.7) | 5 (15.2) | 11 (10.8) | |
Brain metastases (yes) | 11 (15.9) | 4 (12.1) | 15 (14.7) | |
Pembrolizumab line of treatment | 1 | 59 (85.5) | 27 (81.8) | 86 (84.3) |
2 | 8 (11.6) | 4 (12.1) | 12 (11.8) | |
≥3 | 2 (2.9) | 2 (6.1) | 4 (3.9) | |
Prior treatment history (yes) | Chemotherapy | 8 (11.6) | 5 (15.2) | 13 (12.7) |
Targeted therapy | 1 (1.4) | 2 (6.0) | 3 (2.9) | |
Immunotherapy | 2 (2.8) | 0 (0.0) | 2(2.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nesline, M.K.; Previs, R.A.; Dy, G.K.; Deng, L.; Lee, Y.H.; DePietro, P.; Zhang, S.; Meyers, N.; Severson, E.; Ramkissoon, S.; et al. PD-L1 Expression by RNA-Sequencing in Non-Small Cell Lung Cancer: Concordance with Immunohistochemistry and Associations with Pembrolizumab Treatment Outcomes. Cancers 2023, 15, 4789. https://doi.org/10.3390/cancers15194789
Nesline MK, Previs RA, Dy GK, Deng L, Lee YH, DePietro P, Zhang S, Meyers N, Severson E, Ramkissoon S, et al. PD-L1 Expression by RNA-Sequencing in Non-Small Cell Lung Cancer: Concordance with Immunohistochemistry and Associations with Pembrolizumab Treatment Outcomes. Cancers. 2023; 15(19):4789. https://doi.org/10.3390/cancers15194789
Chicago/Turabian StyleNesline, Mary K., Rebecca A. Previs, Grace K. Dy, Lei Deng, Yong Hee Lee, Paul DePietro, Shengle Zhang, Nathan Meyers, Eric Severson, Shakti Ramkissoon, and et al. 2023. "PD-L1 Expression by RNA-Sequencing in Non-Small Cell Lung Cancer: Concordance with Immunohistochemistry and Associations with Pembrolizumab Treatment Outcomes" Cancers 15, no. 19: 4789. https://doi.org/10.3390/cancers15194789
APA StyleNesline, M. K., Previs, R. A., Dy, G. K., Deng, L., Lee, Y. H., DePietro, P., Zhang, S., Meyers, N., Severson, E., Ramkissoon, S., Pabla, S., & Conroy, J. M. (2023). PD-L1 Expression by RNA-Sequencing in Non-Small Cell Lung Cancer: Concordance with Immunohistochemistry and Associations with Pembrolizumab Treatment Outcomes. Cancers, 15(19), 4789. https://doi.org/10.3390/cancers15194789