The Significant Impacts of Interleukin-8 Genotypes on the Risk of Colorectal Cancer in Taiwan
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genotyping Methodology of IL-8 Polymorphisms
2.3. Quantitative Reverse Transcription Polymerase Chain Reaction for Examining IL-8 Transcriptional Expression
2.4. Statistical Analysis
3. Results
3.1. Characteristics of Study Population
3.2. Interluekin-8 Rs4073 Genotypes Were Specifically Associated with CRC Risk in Taiwan
3.3. Validation of the IL-8 Alleles with CRC Risk
3.4. Stratified Analyses of Interluekin-8 Rs4073 Genotypes by Age, Gender, Smoking, Alcohol Drinking, and BMI Status
3.5. Genotype–Phenotype Correlation of IL-8 among Controls
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.H.; Wang, Y.Z.; Tu, J.; Liu, C.W.; Yuan, Y.J.; Lin, R.; He, W.L.; Cai, S.R.; He, Y.L.; Ye, J.N. Anti-EGFR therapy in metastatic colorectal cancer: Mechanisms and potential regimens of drug resistance. Gastroenterol. Rep. 2020, 8, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Malki, A.; ElRuz, R.A.; Gupta, I.; Allouch, A.; Vranic, S.; Al Moustafa, A.E. Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int. J. Mol. Sci. 2020, 22, 130. [Google Scholar] [CrossRef]
- Butterworth, A.S.; Higgins, J.P.; Pharoah, P. Relative and absolute risk of colorectal cancer for individuals with a family history: A meta-analysis. Eur. J. Cancer 2006, 42, 216–227. [Google Scholar] [CrossRef] [PubMed]
- Houlston, R.S.; Tomlinson, I.P. Polymorphisms and colorectal tumor risk. Gastroenterology 2001, 121, 282–301. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Ke, T.W.; Wang, Y.C.; Chin, Y.T.; Yueh, T.C.; Hung, Y.C.; Mong, M.C.; Yang, Y.C.; Chang, W.S.; Shen, T.C.; et al. Impact of Matrix Metalloproteinase-8 Genotypes on Colorectal Cancer Risk in Taiwan. Anticancer Res. 2023, 43, 3979–3985. [Google Scholar] [CrossRef]
- Yueh, T.C.; Wang, Y.C.; Chin, Y.T.; Hung, Y.C.; Mong, M.C.; Yang, Y.C.; Pei, J.S.; Gu, J.; Tsai, C.W.; Bau, D.T.; et al. Impact of Mir196a-2 Genotypes on Colorectal Cancer Risk in Taiwan. Int. J. Mol. Sci. 2023, 24, 11613. [Google Scholar] [CrossRef]
- Yueh, T.C.; Hung, Y.C.; Lee, H.T.; Yang, M.D.; Wang, Z.H.; Yang, Y.C.; Ke, T.W.; Pei, J.S.; Tsai, C.W.; Bau, D.T.; et al. Role of Matrix Metallopeptidase-2 Genotypes in Taiwanese Patients with Colorectal Cancer. Anticancer Res. 2022, 42, 5335–5342. [Google Scholar] [CrossRef]
- Wu, M.H.; Chen, C.H.; Chen, C.P.; Huang, T.L.; Yueh, T.C.; Wang, Z.H.; Tsai, C.W.; Pei, J.S.; Mong, M.C.; Yang, Y.C.; et al. Contribution of 5-Methyltetrahydrofolate-Homocysteine Methyltransferase Reductase Genotypes to Colorectal Cancer in Taiwan. Anticancer Res. 2022, 42, 2375–2382. [Google Scholar] [CrossRef]
- Maryam, S.; Krukiewicz, K.; Haq, I.U.; Khan, A.A.; Yahya, G.; Cavalu, S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J. Clin. Med. 2023, 12, 3127. [Google Scholar] [CrossRef]
- Najdaghi, S.; Razi, S.; Rezaei, N. An overview of the role of interleukin-8 in colorectal cancer. Cytokine 2020, 135, 155205. [Google Scholar] [CrossRef]
- Bazzichetto, C.; Milella, M.; Zampiva, I.; Simionato, F.; Amoreo, C.A.; Buglioni, S.; Pacelli, C.; Le Pera, L.; Colombo, T.; Bria, E.; et al. Interleukin-8 in Colorectal Cancer: A Systematic Review and Meta-Analysis of Its Potential Role as a Prognostic Biomarker. Biomedicines 2022, 10, 2631. [Google Scholar] [CrossRef] [PubMed]
- Barbalan, A.; Streata, I.; Ivan, E.T.; Cherciu, I.; Surlin, V.; Ioana, M.; Saftoiu, A. Interleukin-8 mRNA Expression in Locally Advanced Colorectal Cancer Patients. Curr. Health Sci. J. 2017, 43, 209–213. [Google Scholar] [PubMed]
- Tamura, Y.; Ohta, H.; Torisu, S.; Yuki, M.; Yokoyama, N.; Murakami, M.; Lim, S.Y.; Osuga, T.; Morishita, K.; Nakamura, K.; et al. Markedly increased expression of interleukin-8 in the colorectal mucosa of inflammatory colorectal polyps in miniature dachshunds. Vet. Immunol. Immunopathol. 2013, 156, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Fang, T.; Wang, K.; Mei, H.; Lv, Z.; Wang, F.; Cai, Z.; Liang, C. Association of polymorphisms in interleukin-8 gene with cancer risk: A meta-analysis of 22 case-control studies. OncoTargets Ther. 2016, 9, 3727–3737. [Google Scholar] [CrossRef] [PubMed]
- Araki, S.; Omori, Y.; Lyn, D.; Singh, R.K.; Meinbach, D.M.; Sandman, Y.; Lokeshwar, V.B.; Lokeshwar, B.L. Interleukin-8 is a molecular determinant of androgen independence and progression in prostate cancer. Cancer Res. 2007, 67, 6854–6862. [Google Scholar] [CrossRef]
- Hull, J.; Thomson, A.; Kwiatkowski, D. Association of respiratory syncytial virus bronchiolitis with the interleukin 8 gene region in UK families. Thorax 2000, 55, 1023–1027. [Google Scholar] [CrossRef]
- Miller, H.; Czigany, Z.; Lurje, I.; Reichelt, S.; Bednarsch, J.; Strnad, P.; Trautwein, C.; Roderburg, C.; Tacke, F.; Gaisa, N.T.; et al. Impact of Angiogenesis- and Hypoxia-Associated Polymorphisms on Tumor Recurrence in Patients with Hepatocellular Carcinoma Undergoing Surgical Resection. Cancers 2020, 12, 3826. [Google Scholar] [CrossRef]
- Huang, C.Y.; Chang, W.S.; Tsai, C.W.; Hsia, T.C.; Shen, T.C.; Bau, D.T.; Shui, H.A. The contribution of interleukin-8 genotypes and expression to nasopharyngeal cancer susceptibility in Taiwan. Medicine 2018, 97, e12135. [Google Scholar] [CrossRef]
- Walczak, A.; Przybylowska, K.; Dziki, L.; Sygut, A.; Chojnacki, C.; Chojnacki, J.; Dziki, A.; Majsterek, I. The lL-8 and IL-13 gene polymorphisms in inflammatory bowel disease and colorectal cancer. DNA Cell Biol. 2012, 31, 1431–1438. [Google Scholar] [CrossRef]
- Mustapha, M.A.; Shahpudin, S.N.; Aziz, A.A.; Ankathil, R. Risk modification of colorectal cancer susceptibility by interleukin-8 -251T>A polymorphism in Malaysians. World J. Gastroenterol. 2012, 18, 2668–2673. [Google Scholar] [CrossRef]
- Gunter, M.J.; Canzian, F.; Landi, S.; Chanock, S.J.; Sinha, R.; Rothman, N. Inflammation-related gene polymorphisms and colorectal adenoma. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1126–1131. [Google Scholar] [CrossRef] [PubMed]
- Tsilidis, K.K.; Helzlsouer, K.J.; Smith, M.W.; Grinberg, V.; Hoffman-Bolton, J.; Clipp, S.L.; Visvanathan, K.; Platz, E.A. Association of common polymorphisms in IL10, and in other genes related to inflammatory response and obesity with colorectal cancer. Cancer Causes Control 2009, 20, 1739–1751. [Google Scholar] [CrossRef] [PubMed]
- Cacev, T.; Loncar, B.; Seiwerth, S.; Spaventi, S.; Kapitanovic, S. Vascular endothelial growth factor polymorphisms -1154 G/A and -460 C/T are not associated with VEGF mRNA expression and susceptibility to sporadic colon cancer. DNA Cell Biol. 2008, 27, 569–574. [Google Scholar] [CrossRef]
- Kury, S.; Buecher, B.; Robiou-du-Pont, S.; Scoul, C.; Colman, H.; Le Neel, T.; Le Houerou, C.; Faroux, R.; Ollivry, J.; Lafraise, B.; et al. Low-penetrance alleles predisposing to sporadic colorectal cancers: A French case-controlled genetic association study. BMC Cancer 2008, 8, 326. [Google Scholar] [CrossRef] [PubMed]
- Wilkening, S.; Tavelin, B.; Canzian, F.; Enquist, K.; Palmqvist, R.; Altieri, A.; Hallmans, G.; Hemminki, K.; Lenner, P.; Forsti, A. Interleukin promoter polymorphisms and prognosis in colorectal cancer. Carcinogenesis 2008, 29, 1202–1206. [Google Scholar] [CrossRef]
- Vogel, U.; Christensen, J.; Dybdahl, M.; Friis, S.; Hansen, R.D.; Wallin, H.; Nexo, B.A.; Raaschou-Nielsen, O.; Andersen, P.S.; Overvad, K.; et al. Prospective study of interaction between alcohol, NSAID use and polymorphisms in genes involved in the inflammatory response in relation to risk of colorectal cancer. Mutat. Res. 2007, 624, 88–100. [Google Scholar] [CrossRef]
- Theodoropoulos, G.; Papaconstantinou, I.; Felekouras, E.; Nikiteas, N.; Karakitsos, P.; Panoussopoulos, D.; Lazaris, A.; Patsouris, E.; Bramis, J.; Gazouli, M. Relation between common polymorphisms in genes related to inflammatory response and colorectal cancer. World J. Gastroenterol. 2006, 12, 5037–5043. [Google Scholar] [CrossRef]
- Landi, S.; Moreno, V.; Gioia-Patricola, L.; Guino, E.; Navarro, M.; de Oca, J.; Capella, G.; Canzian, F.; Bellvitge Colorectal Cancer Study, G. Association of common polymorphisms in inflammatory genes interleukin (IL)6, IL8, tumor necrosis factor alpha, NFKB1, and peroxisome proliferator-activated receptor gamma with colorectal cancer. Cancer Res. 2003, 63, 3560–3566. [Google Scholar]
- Burz, C.; Bojan, A.; Balacescu, L.; Pop, V.V.; Silaghi, C.; Lupan, I.; Aldea, C.; Sur, D.; Samasca, G.; Cainap, C.; et al. Interleukin 8 as predictive factor for response to chemotherapy in colorectal cancer patients. Acta Clin. Belg. 2021, 76, 113–118. [Google Scholar] [CrossRef]
- Komura, T.; Yano, M.; Miyake, A.; Takabatake, H.; Miyazawa, M.; Ogawa, N.; Seki, A.; Honda, M.; Wada, T.; Matsui, S.; et al. Immune Condition of Colorectal Cancer Patients Featured by Serum Chemokines and Gene Expressions of CD4+ Cells in Blood. Can. J. Gastroenterol. Hepatol. 2018, 2018, 7436205. [Google Scholar] [CrossRef]
- Oladipo, O.; Conlon, S.; O’Grady, A.; Purcell, C.; Wilson, C.; Maxwell, P.J.; Johnston, P.G.; Stevenson, M.; Kay, E.W.; Wilson, R.H.; et al. The expression and prognostic impact of CXC-chemokines in stage II and III colorectal cancer epithelial and stromal tissue. Br. J. Cancer 2011, 104, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Chen, W.; Zhang, Z.; Wu, D.; Wu, P.; Chen, Z.; Li, C.; Huang, J. Prognostic value, clinicopathologic features and diagnostic accuracy of interleukin-8 in colorectal cancer: A meta-analysis. PLoS ONE 2015, 10, e0123484. [Google Scholar] [CrossRef] [PubMed]
Polymorphic Sites | Primers |
---|---|
Genotyping | |
rs4073 | F: 5′-TCATCCATGATCTTGTTCTA-3′ R: 5′-GGAAAACGCTGTAGGTCAGA-3′ |
rs2227306 | F: 5′-CTCTAACTCTTTATATAGGA-3′ R: 5′-GATTGATTTTATCAACAGGC-3′ |
rs2227543 | F: 5′-CTGATGGAAGAGAGCTCTGT-3′ R: 5′-TGTTAGAAATGCTCTATATT-3′ |
rs1126647 | F: 5’-CCAGTTAAATTTTCATTTCA-3’ R: 5’-CAACCAGCAAGAAATTACTA-3’ |
RT-PCR | |
IL-8 | F: 5′-AAACCACCGGAAGGAACCAT-3′ R: 5′-GCCAGCTTGGAAGTCATGT-3′ |
GAPDH | F: 5′-GAAATCCCATCACCATCTTCCAGG-3′ R: 5′-GAGCCCCAGCCTTCTCCATG-3′ |
Characteristic | Controls, n = 362 | Cases, n = 362 | p-Value a | ||
---|---|---|---|---|---|
n | % | n | % | ||
Age (years) | |||||
≤60 | 95 | 26.2% | 95 | 26.2% | 1.0000 |
>60 | 267 | 73.8% | 267 | 73.8% | |
Gender | |||||
Male | 203 | 56.1% | 203 | 56.1% | 1.0000 |
Female | 159 | 43.6% | 159 | 43.9% | |
Smoking | |||||
Yes | 84 | 23.2% | 91 | 25.1% | 0.5434 |
No | 278 | 76.8% | 271 | 74.9% | |
Alcohol drinking | |||||
Yes | 51 | 14.1% | 44 | 12.2% | 0.4410 |
No | 311 | 85.9% | 318 | 87.8% | |
BMI | |||||
<24 | 175 | 48.3% | 193 | 53.3% | 0.1809 |
≥24 | 187 | 51.7% | 169 | 46.7% | |
Tumor size (cm) | |||||
<5 | 195 | 53.9% | |||
≥5 | 167 | 46.1% | |||
Location | |||||
Colon | 257 | 71.0% | |||
Rectum | 105 | 29.0% | |||
Lymph node involvement | |||||
Negative | 210 | 58.0% | |||
Positive | 152 | 42.0% | |||
Stage | |||||
1 | 94 | 26.0% | |||
2 | 72 | 19.9% | |||
3 | 134 | 37.0% | |||
4 | 62 | 17.1% |
SNP | Genotype | Cases | Controls | p-Value | OR (95% CI) |
---|---|---|---|---|---|
rs4073 | TT | 102 (28.2%) | 128 (35.3%) | 1.00 (Ref) | |
AT | 162 (44.7%) | 170 (47.0%) | 0.3407 | 1.20 (0.85–1.68) | |
AA | 98 (27.1%) | 64 (17.7%) | 0.0023 * | 1.92 (1.28–2.89) | |
Ptrend | 0.0059 * | ||||
AT + AA | 260 (71.8%) | 234 (64.7%) | 0.0460 * | 1.39 (1.02–1.91) | |
rs2227306 | CC | 144 (39.8%) | 131 (36.2%) | 1.00 (Ref) | |
CT | 162 (44.8%) | 165 (45.6%) | 0.5431 | 0.89 (0.65–1.23) | |
TT | 56 (15.4%) | 66 (18.2%) | 0.2804 | 0.77 (0.50–1.18) | |
Ptrend | 0.4815 | ||||
CT + TT | 218 (60.2%) | 231 (63.8%) | 0.3582 | 0.86 (0.64–1.16) | |
rs2227543 | CC | 113 (31.2%) | 122 (33.7%) | 1.00 (Ref) | |
CT | 165 (45.6%) | 163 (45.0%) | 0.6643 | 1.09 (0.78–1.53) | |
TT | 84 (23.2%) | 77 (21.3%) | 0.4858 | 1.18 (0.79–1.76) | |
Ptrend | 0.7185 | ||||
CT + TT | 249 (68.8%) | 240 (66.3%) | 0.5254 | 1.12 (0.82–1.53) | |
rs1126647 | AA | 127 (35.1%) | 122 (33.7%) | 1.00 (Ref) | |
AT | 169 (46.7%) | 171 (47.2%) | 0.8198 | 0.95 (0.68–1.32) | |
TT | 66 (18.2%) | 69 (19.1%) | 0.7726 | 0.92 (0.60–1.40) | |
Ptrend | 0.9145 | ||||
AT + TT | 235 (64.9%) | 240 (66.3%) | 0.7543 | 0.94 (0.69–1.28) |
Allele | Cases | Controls | p-Value | OR (95% CI) |
---|---|---|---|---|
rs4073 | ||||
T | 366 (50.6%) | 426 (58.8%) | 1.00 (Ref) | |
A | 358 (49.4%) | 298 (41.2%) | 0.0018 * | 1.40 (1.14–1.72) |
rs2227306 | ||||
C | 427 (59.0%) | 450 (62.2%) | 1.00 (Ref) | |
T | 297 (41.0%) | 274 (37.8%) | 0.2368 | 1.14 (0.93–1.41) |
rs2227543 | ||||
C | 407 (56.2%) | 391 (54.0%) | 1.00 (Ref) | |
T | 317 (43.8%) | 333 (46.0%) | 0.4280 | 0.91 (0.74–1.13) |
rs1126647 | ||||
A | 415 (57.3%) | 423 (58.4%) | 1.00 (Ref) | |
T | 309 (42.7%) | 301 (41.6%) | 0.7095 | 1.05 (0.85–1.29) |
Genotype | Controls | Cases | OR (95% CI) a | aOR (95% CI) b | p-Value |
---|---|---|---|---|---|
Age | |||||
≤60 years old | |||||
TT | 32 | 26 | 1.00 (ref) | 1.00 (ref) | |
AT | 45 | 43 | 1.17 (0.60–2.29) | 1.20 (0.63–2.23) | 0.7576 |
AA | 18 | 26 | 1.78 (0.80–3.93) | 1.87 (0.83–3.76) | 0.2197 |
>60 years old | |||||
TT | 96 | 76 | 1.00 (ref) | 1.00 (ref) | |
AT | 125 | 119 | 1.20 (0.81–1.80) | 1.29 (0.78–1.94) | 0.4105 |
AA | 46 | 72 | 1.98 (1.23–3.19) | 2.06 (1.27–3.36) | 0.0070 * |
Gender | |||||
Males | |||||
TT | 69 | 55 | 1.00 (ref) | 1.00 (ref) | |
AT | 96 | 91 | 1.19 (0.75–1.88) | 1.14 (0.79–1.79) | 0.5291 |
AA | 38 | 57 | 1.88 (1.09–3.24) | 1.83 (1.14–3.08) | 0.0308 * |
Females | |||||
TT | 59 | 47 | 1.00 (ref) | 1.00 (ref) | |
AT | 74 | 71 | 1.20 (0.73–1.99) | 1.16 (0.71–2.05) | 0.5503 |
AA | 26 | 41 | 1.98 (1.06–3.69) | 2.09 (1.11–3.58) | 0.0451 * |
Smoking behaviors | |||||
Non-smokers | |||||
TT | 94 | 71 | 1.00 (ref) | 1.00 (ref) | |
AT | 133 | 122 | 1.21 (0.82–1.80) | 1.26 (0.84–1.93) | 0.3863 |
AA | 51 | 78 | 2.02 (1.27–3.24) | 2.17 (1.32–2.98) | 0.0044 * |
Smokers | |||||
TT | 34 | 31 | 1.00 (ref) | 1.00 (ref) | |
AT | 37 | 40 | 1.19 (0.61–2.30) | 1.24 (0.59–2.43) | 0.7362 |
AA | 13 | 20 | 1.69 (0.72–3.95) | 1.76 (0.77–4.08) | 0.3195 |
Alcohol drinking behaviors | |||||
Non-drinkers | |||||
TT | 101 | 84 | 1.00 (ref) | 1.00 (ref) | |
AT | 150 | 144 | 1.15 (0.80–1.67) | 1.22 (0.84–1.96) | 0.5037 |
AA | 60 | 90 | 1.80 (1.17–2.79) | 1.94 (1.19–2.93) | 0.0108 * |
Drinkers | |||||
TT | 27 | 18 | 1.00 (ref) | 1.00 (ref) | |
AT | 20 | 18 | 1.35 (0.56–3.23) | 1.39 (0.58–3.37) | 0.6508 |
AA | 4 | 8 | 3.00 (0.79–11.46) | 3.34 (0.73–8.65) | 0.1862 |
BMI | |||||
<24 | |||||
TT | 57 | 49 | 1.00 (ref) | 1.00 (ref) | |
AT | 81 | 86 | 1.24 (0.76–2.01) | 1.19 (0.71–2.04) | 0.4686 |
AA | 37 | 58 | 1.82 (1.04–3.20) | 1.78 (1.14–2.95) | 0.0498 * |
≥24 | |||||
TT | 71 | 53 | 1.00 (ref) | 1.00 (ref) | |
AT | 89 | 76 | 1.14 (0.72–1.83) | 1.22 (0.70–2.29) | 0.6584 |
AA | 27 | 40 | 1.98 (1.08–3.63) | 2.15 (1.24–3.88) | 0.0370 * |
First Author | Year | Ethnicity | TT, AT, AA Genotype # of the Controls | TT, AT, AA Genotype # of the Cases | Highlights of the Findings | Ref # |
---|---|---|---|---|---|---|
Tsai | 2023 | Taiwanese | 128:170:64 | 102:162: 98 | AA genotype contributed to increased risk | current |
Walczak | 2012 | Caucasian | 99:71:35 | 50:104:37 | AA genotype contributed to increased risk | [19] |
Mustapha | 2012 | Mixed | 54: 189: 12 | 40:183:32 | AA genotype contributed to increased risk | [20] |
Gunter | 2006 | Caucasian | 65:94:32 | 52:87:66 | AA genotype contributed to increased risk | [21] |
Tsilidis | 2009 | Caucasian | 114:162:86 | 65:88:52 | No variant genotypes contributed to altered risk | [22] |
Cacev | 2008 | Caucasian | 53:73:34 | 46:75:39 | No variant genotypes contributed to altered risk | [23] |
Kury | 2008 | Caucasian | 375:516:230 | 307:511:205 | No variant genotypes contributed to altered risk | [24] |
Wilkening | 2008 | Caucasian | 115:296:169 | 71:133:96 | No variant genotypes contributed to altered risk | [25] |
Vogel | 2007 | Caucasian | 160:367:226 | 83:178:94 | No variant genotypes contributed to altered risk | [26] |
Theodoropoulos | 2006 | Caucasian | 64:90:42 | 76:106:40 | No variant genotypes contributed to altered risk | [27] |
Landi | 2003 | Caucasian | 117:167:68 | 83:170:55 | No variant genotypes contributed to altered risk | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsai, C.-W.; Chang, W.-S.; Yueh, T.-C.; Wang, Y.-C.; Chin, Y.-T.; Yang, M.-D.; Hung, Y.-C.; Mong, M.-C.; Yang, Y.-C.; Gu, J.; et al. The Significant Impacts of Interleukin-8 Genotypes on the Risk of Colorectal Cancer in Taiwan. Cancers 2023, 15, 4921. https://doi.org/10.3390/cancers15204921
Tsai C-W, Chang W-S, Yueh T-C, Wang Y-C, Chin Y-T, Yang M-D, Hung Y-C, Mong M-C, Yang Y-C, Gu J, et al. The Significant Impacts of Interleukin-8 Genotypes on the Risk of Colorectal Cancer in Taiwan. Cancers. 2023; 15(20):4921. https://doi.org/10.3390/cancers15204921
Chicago/Turabian StyleTsai, Chia-Wen, Wen-Shin Chang, Te-Cheng Yueh, Yun-Chi Wang, Yu-Ting Chin, Mei-Due Yang, Yi-Chih Hung, Mei-Chin Mong, Ya-Chen Yang, Jian Gu, and et al. 2023. "The Significant Impacts of Interleukin-8 Genotypes on the Risk of Colorectal Cancer in Taiwan" Cancers 15, no. 20: 4921. https://doi.org/10.3390/cancers15204921
APA StyleTsai, C. -W., Chang, W. -S., Yueh, T. -C., Wang, Y. -C., Chin, Y. -T., Yang, M. -D., Hung, Y. -C., Mong, M. -C., Yang, Y. -C., Gu, J., & Bau, D. -T. (2023). The Significant Impacts of Interleukin-8 Genotypes on the Risk of Colorectal Cancer in Taiwan. Cancers, 15(20), 4921. https://doi.org/10.3390/cancers15204921