Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Searches
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Literature
2.4. Quality Assessment
3. Results/Discussion
3.1. Immunologic Biomarkers
3.1.1. Immunotherapy
3.1.2. Clinical Trials
Prospective Studies
Retrospective Studies
3.1.3. VEGFR TKIs
Prospective Studies
Retrospective Studies
3.1.4. Combination Therapy
Prospective Studies
Retrospective Studies
3.2. Genomic Biomarkers
3.2.1. Immunotherapy
Prospective Studies
Retrospective Studies
3.2.2. VEGF TKIs
Prospective Studies
Retrospective Studies
3.2.3. mTORi
Prospective Studies
Retrospective Studies
3.2.4. Combined Biomarkers
Prospective Studies
Retrospective Studies
3.3. Radiologic Biomarkers
3.3.1. ICI
Prospective Studies
Retrospective Studies
3.3.2. VEGF TKIs
Prospective Studies
Retrospective Studies
3.3.3. Combined Biomarkers
Retrospective Studies
3.4. Physiologic Biomarkers
3.4.1. ICI
Prospective Studies
Retrospective Studies
3.4.2. VEGF TKIs
Retrospective Studies
3.5. Miscellaneous Biomarkers
3.5.1. VEGF TKIs
Retrospective Studies
Artificial Intelligence and Multi-Omics Approaches
4. Conclusions
5. Future Directions
- Conducting large-scale prospective studies with standardized protocols and longer follow-up periods can provide more robust evidence on prognostic factors, treatment response, and survival outcomes in mRCC patients. These studies can help validate the findings from retrospective analyses and further explore additional factors that may impact patient outcomes.
- Continued research is needed to identify and validate novel biomarkers that can predict treatment response, prognosis, and therapeutic resistance in mRCC. The integration of genomic, proteomic, and immunological markers may offer a comprehensive approach to understand the underlying mechanisms and develop personalized treatment strategies.
- Investigating the efficacy and safety of combination therapies, including targeted agents, immunotherapies, and other emerging treatment modalities, is crucial. Studying the synergistic effects of different therapeutic approaches and identifying predictive markers for optimal treatment selection can improve patient outcomes.
- Exploring novel response assessment techniques, such as functional imaging modalities (e.g., dynamic contrast-enhanced MRI, diffusion-weighted imaging) and liquid biopsies (e.g., circulating tumor DNA, exosomes), may provide more accurate and timely evaluation of treatment response. Developing standardized criteria and guidelines for response assessment in mRCC can enhance comparability and facilitate clinical decision making.
- Supplementing traditional clinical trials with real-world evidence from diverse patient populations and clinical settings can provide a more comprehensive understanding of treatment outcomes and enable personalized treatment decisions. Large-scale observational studies and data registries can help assess the effectiveness and safety of therapies in real-world clinical practice.
- Including patient-reported outcomes, quality-of-life assessments, and patient preferences in research studies can provide a holistic perspective on treatment efficacy and impact on patients’ lives. Understanding the patient experience and incorporating patient-centered endpoints can guide treatment decisions and improve the overall care of mRCC patients.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef] [PubMed]
- US Department of Health and Human Services. Kidney and Renal Pelvis Cancer—Cancer Stat Facts; US Department of Health and Human Services: Washington, DC, USA, 2021.
- Wong, M.C.S.; Goggins, W.B.; Yip, B.H.K.; Fung, F.D.H.; Leung, C.; Fang, Y.; Wong, S.Y.S.; Ng, C.F. Incidence and Mortality of Kidney Cancer: Temporal Patterns and Global Trends in 39 Countries. Sci. Rep. 2017, 7, 15698. [Google Scholar] [CrossRef] [PubMed]
- Protzel, C.; Maruschke, M.; Hakenberg, O.W. Epidemiology, Aetiology, and Pathogenesis of Renal Cell Carcinoma. Eur. Urol. Suppl. 2012, 11, 52–59. [Google Scholar] [CrossRef]
- National Cancer Institute. Cancer Stat Facts: Kidney and Renal Pelvis Cancer; National Cancer Institute: Bethesda, MD, USA, 2023. [Google Scholar]
- Goyal, R.; Gersbach, E.; Yang, X.J.; Rohan, S.M. Differential Diagnosis of Renal Tumors with Clear Cytoplasm: Clinical Relevance of Renal Tumor Subclassification in the Era of Targeted Therapies and Personalized Medicine. Arch. Pathol. Lab. Med. 2013, 137, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Rini, B.I.; Campbell, S.C.; Escudier, B. Renal Cell Carcinoma. Lancet 2009, 373, 1119–1132. [Google Scholar] [CrossRef]
- Bedke, J.; Gauler, T.; Grünwald, V.; Hegele, A.; Herrmann, E.; Hinz, S.; Janssen, J.; Schmitz, S.; Schostak, M.; Tesch, H.; et al. Systemic Therapy in Metastatic Renal Cell Carcinoma. World J. Urol. 2017, 35, 179–188. [Google Scholar] [CrossRef]
- Atkins, M.B.; Tannir, N.M. Current and Emerging Therapies for First-Line Treatment of Metastatic Clear Cell Renal Cell Carcinoma. Cancer Treat. Rev. 2018, 70, 127–137. [Google Scholar] [CrossRef]
- Zahoor, H.; Duddalwar, V.; D’Souza, A.; Merseburger, A.S.; Quinn, D.I. What Comes After Immuno-Oncology Therapy for Kidney Cancer? Kidney Cancer 2019, 3, 93–102. [Google Scholar] [CrossRef]
- Haas, N.B.; Shevach, J.; Davis, I.D.; Eisen, T.; Gross-Gupil, M.; Kapoor, A.; Master, V.A.; Ryan, C.W.; Schimdinger, M. Chapter 12: Neoadjuvant and Adjuvant Therapy for Renal Cell Carcinoma. In 2nd ICUD-WUOF International Consultation: Management of Kidney Cancer; Société Internationale d’Urologie: Montreal, QC, Canada, 2022; pp. 416–417. [Google Scholar]
- Califf, R.M. Biomarker Definitions and Their Applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Gulati, S.; Vogelzang, N.J. Biomarkers in Renal Cell Carcinoma: Are We There Yet? Asian J. Urol. 2021, 8, 362–375. [Google Scholar] [CrossRef]
- Raimondi, A.; Sepe, P.; Zattarin, E. Predictive Biomarkers of Response to Immunotherapy in Metastatic Renal Cell Cancer. Front. Oncol. 2020, 10, 1644. [Google Scholar] [CrossRef]
- Farber, N.J.; Kim, C.J.; Modi, P.K.; Hon, J.D.; Sadimin, E.T.; Singer, E.A. Renal Cell Carcinoma: The Search for a Reliable Biomarker. Transl. Cancer Res. 2017, 6, 620–632. [Google Scholar] [CrossRef]
- Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available online: http://www.covidence.org/ (accessed on 29 September 2023).
- Aziz, N.; Detels, R.; Quint, J.J.; Gjertson, D.; Ryner, T.; Butch, A.W. Biological Variation of Immunological Blood Biomarkers in Healthy Individuals and Quality Goals for Biomarker Tests. BMC Immunol. 2019, 20, 33. [Google Scholar] [CrossRef] [PubMed]
- Figlin, R.A.; Tannir, N.M.; Uzzo, R.G.; Tykodi, S.S.; Chen, D.Y.; Master, V.; Kapoor, A.; Vaena, D.; Lowrance, W.T.; Bratslavsky, G.; et al. Results of the ADAPT Phase 3 Study of Rocapuldencel-T in Combination with Sunitinib as First-Line Therapy in Patients with Metastatic Renal Cell Carcinoma. Clin. Cancer Res. 2020, 26, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Tang, B.; Yan, X.; Sheng, X.; Si, L.; Cui, C.; Kong, Y.; Mao, L.; Lian, B.; Bai, X.; Wang, X.; et al. Safety and Clinical Activity with an Anti-PD-1 Antibody JS001 in Advanced Melanoma or Urologic Cancer Patients. J. Hematol. Oncol. 2019, 12, 7. [Google Scholar] [CrossRef] [PubMed]
- Velev, M.; Dalban, C.; Chevreau, C.; Gravis, G.; Negrier, S.; Laguerre, B.; Gross-Goupil, M.; Ladoire, S.; Borchiellini, D.; Geoffrois, L.; et al. Efficacy and Safety of Nivolumab in Bone Metastases from Renal Cell Carcinoma: Results of the GETUG-AFU26-NIVOREN Multicentre Phase II Study. Eur. J. Cancer 2023, 182, 66–76. [Google Scholar] [CrossRef]
- Xu, J.X.; Maher, V.E.; Zhang, L.; Tang, S.; Sridhara, R.; Ibrahim, A.; Kim, G.; Pazdur, R. FDA Approval Summary: Nivolumab in Advanced Renal Cell Carcinoma After Anti-Angiogenic Therapy and Exploratory Predictive Biomarker Analysis. Oncologist 2017, 22, 311–317. [Google Scholar] [CrossRef]
- Pignon, J.-C.; Jegede, O.; Shukla, S.A.; Braun, D.A.; Horak, C.E.; Wind-Rotolo, M.; Ishii, Y.; Catalano, P.J.; Grosha, J.; Flaifel, A.; et al. irRECIST for the Evaluation of Candidate Biomarkers of Response to Nivolumab in Metastatic Clear Cell Renal Cell Carcinoma: Analysis of a Phase II Prospective Clinical Trial. Clin. Cancer Res. 2019, 25, 2174–2184. [Google Scholar] [CrossRef]
- Atkins, M.B.; Jegede, O.A.; Haas, N.B.; McDermott, D.F.; Bilen, M.A.; Stein, M.; Sosman, J.A.; Alter, R.; Plimack, E.R.; Ornstein, M.; et al. Phase II Study of Nivolumab and Salvage Nivolumab/Ipilimumab in Treatment-Naive Patients with Advanced Clear Cell Renal Cell Carcinoma (HCRN GU16-260-Cohort A). J. Clin. Oncol. 2022, 40, 2913–2923. [Google Scholar] [CrossRef]
- Mahoney, K.M.; Ross-Macdonald, P.; Yuan, L.; Song, L.; Veras, E.; Wind-Rotolo, M.; McDermott, D.F.; Hodi, F.S.; Choueiri, T.K.; Freeman, G.J. Soluble PD-L1 as an Early Marker of Progressive Disease on Nivolumab. J. Immunother. Cancer 2022, 10, e003527. [Google Scholar] [CrossRef]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Porta, C.; Olive, D.; De Luca, I.; Brando, C.; Rizzo, M.; Messina, C.; Rediti, M.; et al. Baseline Plasma Levels of Soluble PD-1, PD-L1, and BTN3A1 Predict Response to Nivolumab Treatment in Patients with Metastatic Renal Cell Carcinoma: A Step toward a Biomarker for Therapeutic Decisions. OncoImmunology 2020, 9, 1832348. [Google Scholar] [CrossRef]
- Ross-Macdonald, P.; Walsh, A.M.; Chasalow, S.D.; Ammar, R.; Papillon-Cavanagh, S.; Szabo, P.M.; Choueiri, T.K.; Sznol, M.; Wind-Rotolo, M. Molecular Correlates of Response to Nivolumab at Baseline and on Treatment in Patients with RCC. J. Immunother. Cancer 2021, 9, e001506. [Google Scholar] [CrossRef] [PubMed]
- Chehrazi-Raffle, A.; Meza, L.; Alcantara, M.; Dizman, N.; Bergerot, P.; Salgia, N.; Hsu, J.; Ruel, N.; Salgia, S.; Malhotra, J.; et al. Circulating Cytokines Associated with Clinical Response to Systemic Therapy in Metastatic Renal Cell Carcinoma. J. Immunother. Cancer 2021, 9, e002009. [Google Scholar] [CrossRef] [PubMed]
- García-Donas, J.; Leon, L.A.; Esteban, E.; Vidal-Mendez, M.J.; Arranz, J.A.; Garcia Del Muro, X.; Basterretxea, L.; González Del Alba, A.; Climent, M.A.; Virizuela, J.A.; et al. A Prospective Observational Study for Assessment and Outcome Association of Circulating Endothelial Cells in Clear Cell Renal Cell Carcinoma Patients Who Show Initial Benefit from First-Line Treatment. The CIRCLES (CIRCuLating Endothelial cellS) Study (SOGUG-CEC-2011-01). Eur. Urol. Focus 2017, 3, 430–436. [Google Scholar] [CrossRef] [PubMed]
- Bootsma, M.; McKay, R.R.; Emamekhoo, H.; Bade, R.M.; Schehr, J.L.; Mannino, M.C.; Singh, A.; Wolfe, S.K.; Schultz, Z.D.; Sperger, J.; et al. Longitudinal Molecular Profiling of Circulating Tumor Cells in Metastatic Renal Cell Carcinoma. J. Clin. Oncol. 2022, 40, 3633–3641. [Google Scholar] [CrossRef]
- Billon, E.; Chanez, B.; Rochigneux, P.; Albiges, L.; Vicier, C.; Pignot, G.; Walz, J.; Chretien, A.-S.; Gravis, G.; Olive, D. Soluble BTN2A1 Is a Potential Prognosis Biomarker in Pre-Treated Advanced Renal Cell Carcinoma. Front. Immunol. 2021, 12, 670827. [Google Scholar] [CrossRef]
- Carril-Ajuria, L.; Desnoyer, A.; Meylan, M.; Dalban, C.; Naigeon, M.; Cassard, L.; Vano, Y.; Rioux-Leclercq, N.; Chouaib, S.; Beuselinck, B.; et al. Baseline Circulating Unswitched Memory B Cells and B-Cell Related Soluble Factors Are Associated with Overall Survival in Patients with Clear Cell Renal Cell Carcinoma Treated with Nivolumab within the NIVOREN GETUG-AFU 26 Study. J. Immunother. Cancer 2022, 10, e004885. [Google Scholar] [CrossRef]
- De Giorgi, U.; Procopio, G.; Giannarelli, D.; Sabbatini, R.; Bearz, A.; Buti, S.; Basso, U.; Mitterer, M.; Ortega, C.; Bidoli, P.; et al. Association of Systemic Inflammation Index and Body Mass Index with Survival in Patients with Renal Cell Cancer Treated with Nivolumab. Clin. Cancer Res. 2019, 25, 3839–3846. [Google Scholar] [CrossRef]
- Saal, J.; Bald, T.; Hölzel, M.; Ritter, M.; Brossart, P.; Ellinger, J.; Klümper, N. In the Phase III IMmotion151 Trial of Metastatic Renal Cell Carcinoma the Easy-to-Implement Modified Glasgow Prognostic Score Predicts Outcome More Accurately than the IMDC Score. Ann. Oncol. 2022, 33, 982–984. [Google Scholar] [CrossRef]
- Kankkunen, E.; Penttilä, P.; Peltola, K.; Bono, P. C-Reactive Protein and Immune-Related Adverse Events as Prognostic Biomarkers in Immune Checkpoint Inhibitor Treated Metastatic Renal Cell Carcinoma Patients. Acta Oncol. 2022, 61, 1240–1247. [Google Scholar] [CrossRef]
- Roussel, E.; Kinget, L.; Verbiest, A.; Debruyne, P.R.; Baldewijns, M.; Van Poppel, H.; Albersen, M.; Beuselinck, B. C-Reactive Protein and Neutrophil-Lymphocyte Ratio Are Prognostic in Metastatic Clear-Cell Renal Cell Carcinoma Patients Treated with Nivolumab. Urol. Oncol. 2021, 39, 239.e17–239.e25. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; Masunaga, A.; Tanaka, N.; Mizuno, R.; Shirotake, S.; Yasumizu, Y.; Ito, Y.; Miyazaki, Y.; Hagiwara, M.; Kanao, K.; et al. Impact of Inflammatory Marker Levels One Month after the First-Line Targeted Therapy Initiation on Progression-Free Survival Prediction in Patients with Metastatic Clear Cell Renal Cell Carcinoma. Jpn. J. Clin. Oncol. 2019, 49, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Abuhelwa, A.Y.; Bellmunt, J.; Kichenadasse, G.; McKinnon, R.A.; Rowland, A.; Sorich, M.J.; Hopkins, A.M. C-Reactive Protein Provides Superior Prognostic Accuracy than the IMDC Risk Model in Renal Cell Carcinoma Treated with Atezolizumab/Bevacizumab. Front. Oncol. 2022, 12, 918993. [Google Scholar] [CrossRef]
- Fukuda, S.; Saito, K.; Yasuda, Y.; Kijima, T.; Yoshida, S.; Yokoyama, M.; Ishioka, J.; Matsuoka, Y.; Kageyama, Y.; Fujii, Y. Impact of C-Reactive Protein Flare-Response on Oncological Outcomes in Patients with Metastatic Renal Cell Carcinoma Treated with Nivolumab. J. Immunother. Cancer 2021, 9, e001564. [Google Scholar] [CrossRef] [PubMed]
- Takamatsu, K.; Mizuno, R.; Tanaka, N.; Takeda, T.; Morita, S.; Matsumoto, K.; Kosaka, T.; Shinojima, T.; Kikuchi, E.; Asanuma, H.; et al. Prognostic Value of Serum C-Reactive Protein Level Prior to Second-Line Treatment in Intermediate Risk Metastatic Renal Cell Carcinoma Patients. Int. J. Clin. Oncol. 2019, 24, 1069–1074. [Google Scholar] [CrossRef]
- Noguchi, G.; Nakaigawa, N.; Umemoto, S.; Kobayashi, K.; Shibata, Y.; Tsutsumi, S.; Yasui, M.; Ohtake, S.; Suzuki, T.; Osaka, K.; et al. C-Reactive Protein at 1 Month after Treatment of Nivolumab as a Predictive Marker of Efficacy in Advanced Renal Cell Carcinoma. Cancer Chemother. Pharmacol. 2020, 86, 75–85. [Google Scholar] [CrossRef]
- Klümper, N.; Schmucker, P.; Hahn, O.; Höh, B.; Mattigk, A.; Banek, S.; Ellinger, J.; Heinzelbecker, J.; Sikic, D.; Eckstein, M.; et al. C-reactive Protein Flare-response Predicts Long-term Efficacy to First-line anti-PD-1-based Combination Therapy in Metastatic Renal Cell Carcinoma. Clin. Transl. Immunol. 2021, 10, e1358. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Graubard, B.I.; Rabkin, C.S.; Engels, E.A. Neutrophil-to-Lymphocyte Ratio and Mortality in the United States General Population. Sci. Rep. 2021, 11, 464. [Google Scholar] [CrossRef] [PubMed]
- Lalani, A.-K.A.; Xie, W.; Martini, D.J.; Steinharter, J.A.; Norton, C.K.; Krajewski, K.M.; Duquette, A.; Bossé, D.; Bellmunt, J.; Van Allen, E.M.; et al. Change in Neutrophil-to-Lymphocyte Ratio (NLR) in Response to Immune Checkpoint Blockade for Metastatic Renal Cell Carcinoma. J. Immunother. Cancer 2018, 6, 5. [Google Scholar] [CrossRef]
- Jeyakumar, G.; Kim, S.; Bumma, N.; Landry, C.; Silski, C.; Suisham, S.; Dickow, B.; Heath, E.; Fontana, J.; Vaishampayan, U. Neutrophil Lymphocyte Ratio and Duration of Prior Anti-Angiogenic Therapy as Biomarkers in Metastatic RCC Receiving Immune Checkpoint Inhibitor Therapy. J. Immunother. Cancer 2017, 5, 82. [Google Scholar] [CrossRef]
- Nishiyama, N.; Hirobe, M.; Kikushima, T.; Matsuki, M.; Takahashi, A.; Yanase, M.; Ichimatsu, K.; Egawa, M.; Hayashi, N.; Negishi, T.; et al. The Neutrophil-Lymphocyte Ratio Has a Role in Predicting the Effectiveness of Nivolumab in Japanese Patients with Metastatic Renal Cell Carcinoma: A Multi-Institutional Retrospective Study. BMC Urol. 2020, 20, 110. [Google Scholar] [CrossRef] [PubMed]
- Ikarashi, D.; Kato, Y.; Kato, R.; Kanehira, M.; Takata, R.; Obara, W. Inflammatory Markers for Predicting Responses to Nivolumab in Patients with Metastatic Renal Cell Carcinoma. Int. J. Urol. 2020, 27, 350–351. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, H.; Barata, P.C.; Jia, X.; Martin, A.; Allman, K.D.; Wood, L.S.; Gilligan, T.D.; Grivas, P.; Ornstein, M.C.; Garcia, J.A.; et al. Patterns, Predictors and Subsequent Outcomes of Disease Progression in Metastatic Renal Cell Carcinoma Patients Treated with Nivolumab. J. Immunother. Cancer 2018, 6, 107. [Google Scholar] [CrossRef] [PubMed]
- Conroy, M.; Naidoo, J. Immune-Related Adverse Events and the Balancing Act of Immunotherapy. Nat. Commun. 2022, 13, 392. [Google Scholar] [CrossRef]
- Martini, D.J.; Goyal, S.; Liu, Y.; Evans, S.T.; Olsen, T.A.; Case, K.; Magod, B.L.; Brown, J.T.; Yantorni, L.; Russler, G.A.; et al. Immune-Related Adverse Events as Clinical Biomarkers in Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2021, 26, e1742–e1750. [Google Scholar] [CrossRef]
- Ikeda, T.; Ishihara, H.; Nemoto, Y.; Tachibana, H.; Fukuda, H.; Yoshida, K.; Takagi, T.; Iizuka, J.; Hashimoto, Y.; Ishida, H.; et al. Prognostic Impact of Immune-Related Adverse Events in Metastatic Renal Cell Carcinoma Treated with Nivolumab plus Ipilimumab. Urol. Oncol. 2021, 39, 735.e9–735.e16. [Google Scholar] [CrossRef]
- Ishihara, H.; Takagi, T.; Kondo, T.; Homma, C.; Tachibana, H.; Fukuda, H.; Yoshida, K.; Iizuka, J.; Kobayashi, H.; Okumi, M.; et al. Association between Immune-Related Adverse Events and Prognosis in Patients with Metastatic Renal Cell Carcinoma Treated with Nivolumab. Urol. Oncol. 2019, 37, 355.e21–355.e29. [Google Scholar] [CrossRef]
- Thomson, R.J.; Moshirfar, M.; Ronquillo, Y. Tyrosine Kinase Inhibitors. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Lai, Y.; Zhao, Z.; Zeng, T.; Liang, X.; Chen, D.; Duan, X.; Zeng, G.; Wu, W. Crosstalk between VEGFR and Other Receptor Tyrosine Kinases for TKI Therapy of Metastatic Renal Cell Carcinoma. Cancer Cell Int. 2018, 18, 31. [Google Scholar] [CrossRef]
- Mauge, L.; Mejean, A.; Fournier, L.; Pereira, H.; Etienne-Grimaldi, M.-C.; Levionnois, E.; Caty, A.; Abadie-Lacourtoisie, S.; Culine, S.; Le Moulec, S.; et al. Sunitinib Prior to Planned Nephrectomy in Metastatic Renal Cell Carcinoma: Angiogenesis Biomarkers Predict Clinical Outcome in the Prospective Phase II PREINSUT Trial. Clin. Cancer Res. 2018, 24, 5534–5542. [Google Scholar] [CrossRef]
- Jilaveanu, L.B.; Puligandla, M.; Weiss, S.A.; Wang, X.V.; Zito, C.; Flaherty, K.T.; Boeke, M.; Neumeister, V.; Camp, R.L.; Adeniran, A.; et al. Tumor Microvessel Density as a Prognostic Marker in High-Risk Renal Cell Carcinoma Patients Treated on ECOG-ACRIN E2805. Clin. Cancer Res. 2018, 24, 217–223. [Google Scholar] [CrossRef]
- Oudard, S.; Benhamouda, N.; Escudier, B.; Ravel, P.; Tran, T.; Levionnois, E.; Negrier, S.; Barthelemy, P.; Berdah, J.; Gross-Goupil, M.; et al. Decrease of Pro-Angiogenic Monocytes Predicts Clinical Response to Anti-Angiogenic Treatment in Patients with Metastatic Renal Cell Carcinoma. Cells 2021, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Puligandla, M.; Manola, J.; Bullock, A.J.; Tamasauskas, D.; McDermott, D.F.; Atkins, M.B.; Haas, N.B.; Flaherty, K.; Uzzo, R.G.; et al. Angiogenic Factor and Cytokine Analysis among Patients Treated with Adjuvant VEGFR TKIs in Resected Renal Cell Carcinoma. Clin. Cancer Res. 2019, 25, 6098–6106. [Google Scholar] [CrossRef] [PubMed]
- Hakimi, A.A.; Voss, M.H.; Kuo, F.; Sanchez, A.; Liu, M.; Nixon, B.G.; Vuong, L.; Ostrovnaya, I.; Chen, Y.-B.; Reuter, V.; et al. Transcriptomic Profiling of the Tumor Microenvironment Reveals Distinct Subgroups of Clear Cell Renal Cell Cancer: Data from a Randomized Phase III Trial. Cancer Discov. 2019, 9, 510–525. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J.; et al. Interleukin-6 Induces Drug Resistance in Renal Cell Carcinoma. Fukushima J. Med. Sci. 2018, 64, 103–110. [Google Scholar] [CrossRef]
- Pilskog, M.; Bostad, L.; Edelmann, R.J.; Akslen, L.A.; Beisland, C.; Straume, O. Tumour Cell Expression of Interleukin 6 Receptor α Is Associated with Response Rates in Patients Treated with Sunitinib for Metastatic Clear Cell Renal Cell Carcinoma: Interleukin 6 Receptor α in Renal Cancer. J. Pathol. Clin. Res. 2018, 4, 114–123. [Google Scholar] [CrossRef]
- Pilskog, M.; Nilsen, G.H.; Beisland, C.; Straume, O. Elevated Plasma Interleukin 6 Predicts Poor Response in Patients Treated with Sunitinib for Metastatic Clear Cell Renal Cell Carcinoma. Cancer Treat. Res. Commun. 2019, 19, 100127. [Google Scholar] [CrossRef]
- Bellmunt, J.; Esteban, E.; Del Muro, X.G.; Sepúlveda, J.M.; Maroto, P.; Gallardo, E.; Del Alba, A.G.; Etxaniz, O.; Guix, M.; Larriba, J.L.G.; et al. Pazopanib as Second-Line Antiangiogenic Treatment in Metastatic Renal Cell Carcinoma After Tyrosine Kinase Inhibitor (TKI) Failure: A Phase 2 Trial Exploring Immune-Related Biomarkers for Testing in the Post-Immunotherapy/TKI Era. Eur. Urol. Oncol. 2021, 4, 502–505. [Google Scholar] [CrossRef]
- Zizzari, I.G.; Napoletano, C.; Di Filippo, A.; Botticelli, A.; Gelibter, A.; Calabrò, F.; Rossi, E.; Schinzari, G.; Urbano, F.; Pomati, G.; et al. Exploratory Pilot Study of Circulating Biomarkers in Metastatic Renal Cell Carcinoma. Cancers 2020, 12, 2620. [Google Scholar] [CrossRef]
- Montemagno, C.; Hagege, A.; Borchiellini, D.; Thamphya, B.; Rastoin, O.; Ambrosetti, D.; Iovanna, J.; Rioux-Leclercq, N.; Porta, C.; Negrier, S.; et al. Soluble Forms of PD-L1 and PD-1 as Prognostic and Predictive Markers of Sunitinib Efficacy in Patients with Metastatic Clear Cell Renal Cell Carcinoma. OncoImmunology 2020, 9, 1846901. [Google Scholar] [CrossRef]
- Takamatsu, K.; Mizuno, R.; Omura, M.; Morita, S.; Matsumoto, K.; Shinoda, K.; Kosaka, T.; Takeda, T.; Shinojima, T.; Kikuchi, E.; et al. Prognostic Value of Baseline Serum C-Reactive Protein Level in Intermediate-Risk Group Patients with Metastatic Renal-Cell Carcinoma Treated by First-Line Vascular Endothelial Growth Factor-Targeted Therapy. Clin. Genitourin. Cancer 2018, 16, e927–e933. [Google Scholar] [CrossRef]
- Wang, B.; Gu, W.; Wan, F.; Shi, G.; Ye, D. Prognostic Significance of the Dynamic Changes of Systemic Inflammatory Response in Metastatic Renal Cell Carcinoma. Int. Braz. J. Urol. 2019, 45, 89–99. [Google Scholar] [CrossRef]
- Takagi, T.; Fukuda, H.; Kondo, T.; Ishihara, H.; Yoshida, K.; Kobayashi, H.; Iizuka, J.; Okumi, M.; Ishida, H.; Tanabe, K. Prognostic Markers for Refined Stratification of IMDC Intermediate-Risk Metastatic Clear Cell Renal Cell Carcinoma Treated with First-Line Tyrosine Kinase Inhibitor Therapy. Target. Oncol. 2019, 14, 179–186. [Google Scholar] [CrossRef]
- Teishima, J.; Ohara, S.; Shinmei, S.; Inoue, S.; Hayashi, T.; Mochizuki, H.; Mita, K.; Shigeta, M.; Matsubara, A. Normalization of C-Reactive Protein Levels Following Cytoreductive Nephrectomy in Patients with Metastatic Renal Cell Carcinoma Treated with Tyrosine Kinase Inhibitors Is Associated with Improved Overall Survival. Urol. Oncol. 2018, 36, 339.e9–339.e15. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, Y.; Saito, K.; Yuasa, T.; Uehara, S.; Kawamura, N.; Yokoyama, M.; Ishioka, J.; Matsuoka, Y.; Yamamoto, S.; Okuno, T.; et al. Early Response of C-Reactive Protein as a Predictor of Survival in Patients with Metastatic Renal Cell Carcinoma Treated with Tyrosine Kinase Inhibitors. Int. J. Clin. Oncol. 2017, 22, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Erdogan, B.; Kostek, O.; Bekir Hacioglu, M.; Gokyer, A.; Kucukarda, A.; Ozcan, E.; Gokmen, I.; Uzunoglu, S.; Cicin, I. Is Early Change in Systemic Inflammatory Markers Associated with Treatment Response in Patients Who Received Pazopanib? J. BUON 2021, 26, 2196–2201. [Google Scholar] [PubMed]
- Bayat Mokhtari, R.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022–38043. [Google Scholar] [CrossRef]
- Rossi, E.; Bersanelli, M.; Gelibter, A.J.; Borsellino, N.; Caserta, C.; Doni, L.; Maruzzo, M.; Mosca, A.; Pisano, C.; Verzoni, E.; et al. Combination Therapy in Renal Cell Carcinoma: The Best Choice for Every Patient? Curr. Oncol. Rep. 2021, 23, 147. [Google Scholar] [CrossRef]
- McDermott, D.F.; Huseni, M.A.; Atkins, M.B.; Motzer, R.J.; Rini, B.I.; Escudier, B.; Fong, L.; Joseph, R.W.; Pal, S.K.; Reeves, J.A.; et al. Clinical Activity and Molecular Correlates of Response to Atezolizumab Alone or in Combination with Bevacizumab versus Sunitinib in Renal Cell Carcinoma. Nat. Med. 2018, 24, 749–757. [Google Scholar] [CrossRef]
- Martini, J.-F.; Plimack, E.R.; Choueiri, T.K.; McDermott, D.F.; Puzanov, I.; Fishman, M.N.; Cho, D.C.; Vaishampayan, U.; Rosbrook, B.; Fernandez, K.C.; et al. Angiogenic and Immune-Related Biomarkers and Outcomes Following Axitinib/Pembrolizumab Treatment in Patients with Advanced Renal Cell Carcinoma. Clin. Cancer Res. 2020, 26, 5598–5608. [Google Scholar] [CrossRef]
- Msaouel, P.; Goswami, S.; Thall, P.F.; Wang, X.; Yuan, Y.; Jonasch, E.; Gao, J.; Campbell, M.T.; Shah, A.Y.; Corn, P.G.; et al. A Phase 1–2 Trial of Sitravatinib and Nivolumab in Clear Cell Renal Cell Carcinoma Following Progression on Antiangiogenic Therapy. Sci. Transl. Med. 2022, 14, eabm6420. [Google Scholar] [CrossRef]
- Kamai, T.; Kijima, T.; Tsuzuki, T.; Nukui, A.; Abe, H.; Arai, K.; Yoshida, K.-I. Increased Expression of Adenosine 2A Receptors in Metastatic Renal Cell Carcinoma Is Associated with Poorer Response to Anti-Vascular Endothelial Growth Factor Agents and Anti-PD-1/Anti-CTLA4 Antibodies and Shorter Survival. Cancer Immunol. Immunother. 2021, 70, 2009–2021. [Google Scholar] [CrossRef]
- Novelli, G.; Ciccacci, C.; Borgiani, P.; Papaluca Amati, M.; Abadie, E. Genetic Tests and Genomic Biomarkers: Regulation, Qualification and Validation. Clin. Cases Miner. Bone 2008, 5, 149–154. [Google Scholar]
- Incorvaia, L.; Fanale, D.; Badalamenti, G.; Brando, C.; Bono, M.; De Luca, I.; Algeri, L.; Bonasera, A.; Corsini, L.R.; Scurria, S.; et al. A “Lymphocyte MicroRNA Signature” as Predictive Biomarker of Immunotherapy Response and Plasma PD-1/PD-L1 Expression Levels in Patients with Metastatic Renal Cell Carcinoma: Pointing towards Epigenetic Reprogramming. Cancers 2020, 12, 3396. [Google Scholar] [CrossRef] [PubMed]
- Epaillard, N.; Simonaggio, A.; Elaidi, R.; Azzouz, F.; Braychenko, E.; Thibault, C.; Sun, C.-M.; Moreira, M.; Oudard, S.; Vano, Y.-A. BIONIKK: A Phase 2 Biomarker Driven Trial with Nivolumab and Ipilimumab or VEGFR Tyrosine Kinase Inhibitor (TKI) in Naïve Metastatic Kidney Cancer. Bull. Cancer 2020, 107, eS22–eS27. [Google Scholar] [CrossRef] [PubMed]
- Miao, D.; Margolis, C.A.; Gao, W.; Voss, M.H.; Li, W.; Martini, D.J.; Norton, C.; Bossé, D.; Wankowicz, S.M.; Cullen, D.; et al. Genomic Correlates of Response to Immune Checkpoint Therapies in Clear Cell Renal Cell Carcinoma. Science 2018, 359, 801–806. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kang, Y.; Kim, J.S.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; Park, D.; et al. Potential of Circulating Tumor DNA as a Predictor of Therapeutic Responses to Immune Checkpoint Blockades in Metastatic Renal Cell Carcinoma. Sci. Rep. 2021, 11, 5600. [Google Scholar] [CrossRef]
- Dietz, S.; Sültmann, H.; Du, Y.; Reisinger, E.; Riediger, A.L.; Volckmar, A.-L.; Stenzinger, A.; Schlesner, M.; Jäger, D.; Hohenfellner, M.; et al. Patient-Specific Molecular Alterations Are Associated with Metastatic Clear Cell Renal Cell Cancer Progressing under Tyrosine Kinase Inhibitor Therapy. Oncotarget 2017, 8, 74049–74057. [Google Scholar] [CrossRef]
- Maroto, P.; Esteban, E.; Fernández Parra, E.; Mendez-Vidal, M.; Domenech, M.; Pérez-Valderrama, B.; Calderero, V.; Perez-Gracia, J.; Grande, E.; Algaba, F. HIF Pathway and C-Myc as Biomarkers for Response to Sunitinib in Metastatic Clear-Cell Renal Cell Carcinoma. OncoTargets Ther. 2017, 10, 4635–4643. [Google Scholar] [CrossRef]
- Wierzbicki, P.; Klacz, J.; Kotulak-Chrzaszcz, A.; Wronska, A.; Stanislawowski, M.; Rybarczyk, A.; Ludziejewska, A.; Kmiec, Z.; Matuszewski, M. Prognostic Significance of VHL, HIF1A, HIF2A, VEGFA and P53 Expression in Patients with Clear-cell Renal Cell Carcinoma Treated with Sunitinib as First-line Treatment. Int. J. Oncol. 2019, 55, 371–390. [Google Scholar] [CrossRef]
- Nayak, B.; Panaiyadiyan, S.; Singh, P.; Karmakar, S.; Kaushal, S.; Seth, A. Role of Circulating Tumor Cells in Patients with Metastatic Clear-Cell Renal Cell Carcinoma. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 135.e9–135.e15. [Google Scholar] [CrossRef]
- Gudkov, A.; Shirokorad, V.; Kashintsev, K.; Sokov, D.; Nikitin, D.; Anisenko, A.; Borisov, N.; Sekacheva, M.; Gaifullin, N.; Garazha, A.; et al. Gene Expression-Based Signature Can Predict Sorafenib Response in Kidney Cancer. Front. Mol. Biosci. 2022, 9, 753318. [Google Scholar] [CrossRef] [PubMed]
- Crona, D.J.; Skol, A.D.; Leppänen, V.-M.; Glubb, D.M.; Etheridge, A.S.; Hilliard, E.; Peña, C.E.; Peterson, Y.K.; Klauber-DeMore, N.; Alitalo, K.K.; et al. Genetic Variants of VEGFA and FLT4 Are Determinants of Survival in Renal Cell Carcinoma Patients Treated with Sorafenib. Cancer Res. 2019, 79, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Dorff, T.B.; Longmate, J.A.; Pal, S.K.; Stadler, W.M.; Fishman, M.N.; Vaishampayan, U.N.; Rao, A.; Pinksi, J.K.; Hu, J.S.; Quinn, D.I.; et al. Bevacizumab Alone or in Combination with TRC105 for Patients with Refractory Metastatic Renal Cell Cancer: Bevacizumab and TRC105 in Renal Cancer. Cancer 2017, 123, 4566–4573. [Google Scholar] [CrossRef]
- Bamias, A.; Karavasilis, V.; Gavalas, N.; Tzannis, K.; Samantas, E.; Aravantinos, G.; Koutras, A.; Gkerzelis, I.; Kostouros, E.; Koutsoukos, K.; et al. The Combination of Bevacizumab/Temsirolimus after First-Line Anti-VEGF Therapy in Advanced Renal-Cell Carcinoma: A Clinical and Biomarker Study. Int. J. Clin. Oncol. 2019, 24, 411–419. [Google Scholar] [CrossRef]
- Palomero, L.; Bodnar, L.; Mateo, F.; Herranz-Ors, C.; Espín, R.; García-Varelo, M.; Jesiotr, M.; Ruiz De Garibay, G.; Casanovas, O.; López, J.I.; et al. EVI1 as a Prognostic and Predictive Biomarker of Clear Cell Renal Cell Carcinoma. Cancers 2020, 12, 300. [Google Scholar] [CrossRef] [PubMed]
- Voss, M.H.; Chen, D.; Reising, A.; Marker, M.; Shi, J.; Xu, J.; Ostrovnaya, I.; Seshan, V.E.; Redzematovic, A.; Chen, Y.-B.; et al. PTEN Expression, Not Mutation Status in TSC1, TSC2, or mTOR, Correlates with the Outcome on Everolimus in Patients with Renal Cell Carcinoma Treated on the Randomized RECORD-3 Trial. Clin. Cancer Res. 2019, 25, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Flaifel, A.; Xie, W.; Braun, D.A.; Ficial, M.; Bakouny, Z.; Nassar, A.H.; Jennings, R.B.; Escudier, B.; George, D.J.; Motzer, R.J.; et al. PD-L1 Expression and Clinical Outcomes to Cabozantinib, Everolimus, and Sunitinib in Patients with Metastatic Renal Cell Carcinoma: Analysis of the Randomized Clinical Trials METEOR and CABOSUN. Clin. Cancer Res. 2019, 25, 6080–6088. [Google Scholar] [CrossRef] [PubMed]
- Motzer, R.J.; Powles, T.; Atkins, M.B.; Escudier, B.; McDermott, D.F.; Alekseev, B.Y.; Lee, J.-L.; Suarez, C.; Stroyakovskiy, D.; De Giorgi, U.; et al. Final Overall Survival and Molecular Analysis in IMmotion151, a Phase 3 Trial Comparing Atezolizumab Plus Bevacizumab vs Sunitinib in Patients with Previously Untreated Metastatic Renal Cell Carcinoma. JAMA Oncol. 2022, 8, 275–280. [Google Scholar] [CrossRef]
- Shaikh, F.; Dupont-Roettger, D.; Dehmeshki, J.; Awan, O.; Kubassova, O.; Bisdas, S. The Role of Imaging Biomarkers Derived from Advanced Imaging and Radiomics in the Management of Brain Tumors. Front. Oncol. 2020, 10, 559946. [Google Scholar] [CrossRef]
- Tabei, T.; Nakaigawa, N.; Kaneta, T.; Ikeda, I.; Kondo, K.; Makiyama, K.; Hasumi, H.; Hayashi, N.; Kawahara, T.; Izumi, K.; et al. Early Assessment with 18F-2-Fluoro-2-Deoxyglucose Positron Emission Tomography/Computed Tomography to Predict Short-Term Outcome in Clear Cell Renal Carcinoma Treated with Nivolumab. BMC Cancer 2019, 19, 298. [Google Scholar] [CrossRef] [PubMed]
- Drljevic-Nielsen, A.; Donskov, F.; Mains, J.R.; Andersen, M.B.; Thorup, K.; Thygesen, J.; Rasmussen, F. Prognostic Utility of Parameters Derived from Pretreatment Dual-Layer Spectral-Detector CT in Patients with Metastatic Renal Cell Carcinoma. Am. J. Roentgenol. 2022, 218, 867–876. [Google Scholar] [CrossRef]
- Drljevic-Nielsen, A.; Mains, J.R.; Thorup, K.; Andersen, M.B.; Rasmussen, F.; Donskov, F. Early Reduction in Spectral Dual-Layer Detector CT Parameters as Favorable Imaging Biomarkers in Patients with Metastatic Renal Cell Carcinoma. Eur. Radiol. 2022, 32, 7323–7334. [Google Scholar] [CrossRef]
- Martini, D.J.; Olsen, T.A.; Goyal, S.; Liu, Y.; Evans, S.T.; Magod, B.; Brown, J.T.; Yantorni, L.; Russler, G.A.; Caulfield, S.; et al. Body Composition Variables as Radiographic Biomarkers of Clinical Outcomes in Metastatic Renal Cell Carcinoma Patients Receiving Immune Checkpoint Inhibitors. Front. Oncol. 2021, 11, 707050. [Google Scholar] [CrossRef] [PubMed]
- Malone, E.R.; Sim, H.-W.; Stundzia, A.; Pierre, S.; Metser, U.; O’Malley, M.; Sacher, A.G.; Sridhar, S.S.; Hansen, A.R. Predictive Radiomics Signature for Treatment Response to Nivolumab in Patients with Advanced Renal Cell Carcinoma. Can. Urol. Assoc. J. 2021, 16, E94–E101. [Google Scholar] [CrossRef] [PubMed]
- Mittlmeier, L.M.; Unterrainer, M.; Rodler, S.; Todica, A.; Albert, N.L.; Burgard, C.; Cyran, C.C.; Kunz, W.G.; Ricke, J.; Bartenstein, P.; et al. 18F-PSMA-1007 PET/CT for Response Assessment in Patients with Metastatic Renal Cell Carcinoma Undergoing Tyrosine Kinase or Checkpoint Inhibitor Therapy: Preliminary Results. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 2031–2037. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Shin, J.H.; Li, H.; Chen, Y.; Guo, Y.; Wang, M. Comparison of Radiological Tumor Response Based on iRECIST and RECIST 1.1 in Metastatic Clear-Cell Renal Cell Carcinoma Patients Treated with Programmed Cell Death-1 Inhibitor Therapy. Korean J. Radiol. 2021, 22, 366–375. [Google Scholar] [CrossRef]
- Park, H.J.; Qin, L.; Bakouny, Z.; Krajewski, K.M.; Van Allen, E.M.; Choueiri, T.K.; Shinagare, A.B. Computed Tomography Texture Analysis for Predicting Clinical Outcomes in Patients with Metastatic Renal Cell Carcinoma Treated with Immune Checkpoint Inhibitors. Oncologist 2022, 27, 389–397. [Google Scholar] [CrossRef]
- Udayakumar, D.; Zhang, Z.; Xi, Y.; Dwivedi, D.K.; Fulkerson, M.; Haldeman, S.; McKenzie, T.; Yousuf, Q.; Joyce, A.; Hajibeigi, A.; et al. Deciphering Intratumoral Molecular Heterogeneity in Clear Cell Renal Cell Carcinoma with a Radiogenomics Platform. Clin. Cancer Res. 2021, 27, 4794–4806. [Google Scholar] [CrossRef]
- Nakaigawa, N.; Kondo, K.; Kaneta, T.; Tateishi, U.; Minamimoto, R.; Namura, K.; Ueno, D.; Kobayashi, K.; Kishida, T.; Ikeda, I.; et al. FDG PET/CT after First Molecular Targeted Therapy Predicts Survival of Patients with Renal Cell Carcinoma. Cancer Chemother. Pharmacol. 2018, 81, 739–744. [Google Scholar] [CrossRef]
- Hall, P.E.; Shepherd, S.T.C.; Brown, J.; Larkin, J.; Jones, R.; Ralph, C.; Hawkins, R.; Chowdhury, S.; Boleti, E.; Bahl, A.; et al. Radiological Response Heterogeneity Is of Prognostic Significance in Metastatic Renal Cell Carcinoma Treated with Vascular Endothelial Growth Factor-Targeted Therapy. Eur. Urol. Focus 2020, 6, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Go, H.; Kang, M.J.; Kim, P.-J.; Lee, J.-L.; Park, J.Y.; Park, J.-M.; Ro, J.Y.; Cho, Y.M. Development of Response Classifier for Vascular Endothelial Growth Factor Receptor (VEGFR)-Tyrosine Kinase Inhibitor (TKI) in Metastatic Renal Cell Carcinoma. Pathol. Oncol. Res. 2019, 25, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Mytsyk, Y.; Pasichnyk, S.; Dutka, I.; Dats, I.; Vorobets, D.; Skrzypczyk, M.; Uteuliyev, Y.; Botikova, A.; Gazdikova, K.; Kubatka, P.; et al. Systemic Treatment of the Metastatic Renal Cell Carcinoma: Usefulness of the Apparent Diffusion Coefficient of Diffusion-Weighted MRI in Prediction of Early Therapeutic Response. Clin. Exp. Med. 2020, 20, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Liu, G.; Kong, W.; Qu, J.; Suo, S.; Liu, X.; Xu, J.; Zhang, J. Assessment of Response to Anti-Angiogenic Targeted Therapy in Pulmonary Metastatic Renal Cell Carcinoma: R2* Value as a Predictive Biomarker. Eur. Radiol. 2017, 27, 3574–3582. [Google Scholar] [CrossRef]
- Navani, V.; Ernst, M.; Wells, J.C.; Yuasa, T.; Takemura, K.; Donskov, F.; Basappa, N.S.; Schmidt, A.; Pal, S.K.; Meza, L.; et al. Imaging Response to Contemporary Immuno-Oncology Combination Therapies in Patients with Metastatic Renal Cell Carcinoma. JAMA Netw. Open 2022, 5, e2216379. [Google Scholar] [CrossRef]
- Labadie, B.W.; Liu, P.; Bao, R.; Crist, M.; Fernandes, R.; Ferreira, L.; Graupner, S.; Poklepovic, A.S.; Duran, I.; Maleki Vareki, S.; et al. BMI, irAE, and Gene Expression Signatures Associate with Resistance to Immune-Checkpoint Inhibition and Outcomes in Renal Cell Carcinoma. J. Transl. Med. 2019, 17, 386. [Google Scholar] [CrossRef]
- Herrmann, T.; Mione, C.; Montoriol, P.-F.; Molnar, I.; Ginzac, A.; Durando, X.; Mahammedi, H. Body Mass Index, Sarcopenia, and Their Variations in Predicting Outcomes for Patients Treated with Nivolumab for Metastatic Renal Cell Carcinoma. Oncology 2022, 100, 114–123. [Google Scholar] [CrossRef]
- Ueki, H.; Hara, T.; Okamura, Y.; Bando, Y.; Terakawa, T.; Furukawa, J.; Harada, K.; Nakano, Y.; Fujisawa, M. Association between Sarcopenia Based on Psoas Muscle Index and the Response to Nivolumab in Metastatic Renal Cell Carcinoma: A Retrospective Study. Investig. Clin. Urol. 2022, 63, 415–424. [Google Scholar] [CrossRef]
- McKay, R.R.; Vu, P.; Albiges, L.K.; Lin, X.; Simantov, R.; Temel, J.S.; Choueiri, T.K. The Effect of Weight Change During Treatment with Targeted Therapy in Patients with Metastatic Renal Cell Carcinoma. Clin. Genitourin. Cancer 2019, 17, 443–450.e1. [Google Scholar] [CrossRef]
- Ishihara, H.; Takagi, T.; Kondo, T.; Fukuda, H.; Yoshida, K.; Iizuka, J.; Tanabe, K. Effect of Changes in Skeletal Muscle Mass on Oncological Outcomes During First-Line Sunitinib Therapy for Metastatic Renal Cell Carcinoma. Target. Oncol. 2018, 13, 745–755. [Google Scholar] [CrossRef]
- Janisch, F.; Klotzbücher, T.; Marks, P.; Kienapfel, C.; Meyer, C.P.; Yu, H.; Fühner, C.; Hillemacher, T.; Mori, K.; Mostafei, H.; et al. Predictive Value of De Ritis Ratio in Metastatic Renal Cell Carcinoma Treated with Tyrosine-Kinase Inhibitors. World J. Urol. 2021, 39, 2977–2985. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Yu, J.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Park, S.H.; Jeon, S.S.; Lee, H.M.; Choi, H.Y.; Seo, S.I. Prognostic Impact of the Pretreatment Aspartate Transaminase/Alanine Transaminase Ratio in Patients Treated with First-Line Systemic Tyrosine Kinase Inhibitor Therapy for Metastatic Renal Cell Carcinoma. Int. J. Urol. 2018, 25, 596–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, X.; Zhu, X.; Ni, Y.; Dai, J.; Zhu, S.; Sun, G.; Wang, Z.; Chen, J.; Zhao, J.; et al. The Impact of Renal Impairment on Survival Outcomes in Patients with Metastatic Renal Cell Carcinoma Treated with Tyrosine Kinase Inhibitors. Cancer Control 2020, 27, 107327482097714. [Google Scholar] [CrossRef] [PubMed]
- Aktepe, O.H.; Guner, G.; Guven, D.C.; Taban, H.; Yildirim, H.C.; Sahin, T.K.; Ardic, F.S.; Yeter, H.H.; Yuce, D.; Erman, M. Impact of Albumin to Globulin Ratio on Survival Outcomes of Patients with Metastatic Renal Cell Carcinoma. Turk. J. Urol. 2021, 47, 113–119. [Google Scholar] [CrossRef]
- Roussel, E.; Kinget, L.; Verbiest, A.; Boeckx, B.; Zucman-Rossi, J.; Couchy, G.; Caruso, S.; Baldewijns, M.; Joniau, S.; Van Poppel, H.; et al. Molecular Underpinnings of Glandular Tropism in Metastatic Clear Cell Renal Cell Carcinoma: Therapeutic Implications. Acta Oncol. 2021, 60, 1499–1506. [Google Scholar] [CrossRef]
- Martini, D.J.; Kline, M.R.; Liu, Y.; Shabto, J.M.; Carthon, B.C.; Russler, G.A.; Yantorni, L.; Hitron, E.E.; Caulfield, S.; Goldman, J.M.; et al. Novel Risk Scoring System for Metastatic Renal Cell Carcinoma Patients Treated with Cabozantinib. Cancer Treat. Res. Commun. 2021, 28, 100393. [Google Scholar] [CrossRef]
- Shirotake, S.; Kondo, H.; Okabe, T.; Makino, S.; Araki, R.; Komatsuda, A.; Kaneko, G.; Nishimoto, K.; Oyama, M. Early Tumor Shrinkage as a Predictive Factor of Metastatic Renal Cell Carcinoma in Molecular Targeted Therapy: A Single Institutional Study. Mol. Clin. Oncol. 2018, 10, 125–131. [Google Scholar] [CrossRef]
- Kammerer-Jacquet, S.-F.; Brunot, A.; Bensalah, K.; Campillo-Gimenez, B.; Lefort, M.; Bayat, S.; Ravaud, A.; Dupuis, F.; Yacoub, M.; Verhoest, G.; et al. Hilar Fat Infiltration: A New Prognostic Factor in Metastatic Clear Cell Renal Cell Carcinoma with First-Line Sunitinib Treatment. Urol. Oncol. Semin. Orig. Investig. 2017, 35, 603.e7–603.e14. [Google Scholar] [CrossRef]
- Pieretti, A.C.; Shapiro, D.D.; Westerman, M.E.; Hwang, H.; Wang, X.; Segarra, L.A.; Campbell, M.T.; Tannir, N.M.; Jonasch, E.; Matin, S.F.; et al. Tumor Diameter Response in Patients with Metastatic Clear Cell Renal Cell Carcinoma Is Associated with Overall Survival. Urol. Oncol. Semin. Orig. Investig. 2021, 39, 837.e9–837.e17. [Google Scholar] [CrossRef]
- Shi, H.; Cao, C.; Wen, L.; Zhang, L.; Zhang, J.; Ma, J.; Shou, J.; Li, C. Prognostic Value of the Ratio of Maximum to Minimum Diameter of Primary Tumor in Metastatic Clear Cell Renal Cell Carcinoma. BMC Urol. 2022, 22, 95. [Google Scholar] [CrossRef]
- Yildiz, I.; Bilici, A.; Karadurmuş, N.; Ozer, L.; Tural, D.; Kaplan, M.A.; Akman, T.; Bayoglu, I.V.; Uysal, M.; Yildiz, Y.; et al. Prognostic Factors for Survival in Metastatic Renal Cell Carcinoma Patients with Brain Metastases Receiving Targeted Therapy. Tumori J. 2018, 104, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Bivalacqua, T.J.; Kates, M.; Seiler, R.; Black, P.C.; Popel, A.S.; Baras, A.S. Predictive Models of Response to Neoadjuvant Chemotherapy in Muscle-Invasive Bladder Cancer Using Nuclear Morphology and Tissue Architecture. Cell Rep. Med. 2021, 2, 100382. [Google Scholar] [CrossRef]
- Mi, H.; Sivagnanam, S.; Betts, C.B.; Liudahl, S.M.; Jaffee, E.M.; Coussens, L.M.; Popel, A.S. Quantitative Spatial Profiling of Immune Populations in Pancreatic Ductal Adenocarcinoma Reveals Tumor Microenvironment Heterogeneity and Prognostic Biomarkers. Cancer Res. 2022, 82, 4359–4372. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ni, Y.; Wang, Y.; Feng, J.; Zhuang, N.; Li, J.; Liu, L.; Shen, W.; Zheng, J.; Zheng, W.; et al. Spatial Heterogeneity of Tumor Microenvironment Influences the Prognosis of Clear Cell Renal Cell Carcinoma. J. Transl. Med. 2023, 21, 489. [Google Scholar] [CrossRef] [PubMed]
- Wessels, F.; Schmitt, M.; Krieghoff-Henning, E.; Kather, J.N.; Nientiedt, M.; Kriegmair, M.C.; Worst, T.S.; Neuberger, M.; Steeg, M.; Popovic, Z.V.; et al. Deep Learning Can Predict Survival Directly from Histology in Clear Cell Renal Cell Carcinoma. PLoS ONE 2022, 17, e0272656. [Google Scholar] [CrossRef]
- Cheng, J.; Han, Z.; Mehra, R.; Shao, W.; Cheng, M.; Feng, Q.; Ni, D.; Huang, K.; Cheng, L.; Zhang, J. Computational Analysis of Pathological Images Enables a Better Diagnosis of TFE3 Xp11.2 Translocation Renal Cell Carcinoma. Nat. Commun. 2020, 11, 1778. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, J.; Han, Y.; Wang, X.; Ye, X.; Meng, Y.; Parwani, A.; Han, Z.; Feng, Q.; Huang, K. Integrative Analysis of Histopathological Images and Genomic Data Predicts Clear Cell Renal Cell Carcinoma Prognosis. Cancer Res. 2017, 77, e91–e100. [Google Scholar] [CrossRef]
Term | Definition |
---|---|
Biomarker | A measurable substance whose presence is indicative of disease, infection, or environmental exposure. |
Diagnostic Biomarker | Detects or confirms the presence of a disease or condition of interest or identifies an individual with a subtype of the disease. |
Predictive Biomarker | Predicts an individual or group of individuals more likely to experience a favorable or unfavorable effect from the exposure to a medical product or environmental agent |
Prognostic Biomarker | Identifies the likelihood of a clinical event, disease recurrence, or disease progression in patients with a disease or medical condition of interest |
Therapeutic Monitoring Biomarker | Assesses the status of a disease or medical condition for evidence of exposure to a medical product or environmental agent, or to detects an effect of a medical product or biological agent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dani, K.A.; Rich, J.M.; Kumar, S.S.; Cen, H.; Duddalwar, V.A.; D’Souza, A. Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring. Cancers 2023, 15, 4934. https://doi.org/10.3390/cancers15204934
Dani KA, Rich JM, Kumar SS, Cen H, Duddalwar VA, D’Souza A. Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring. Cancers. 2023; 15(20):4934. https://doi.org/10.3390/cancers15204934
Chicago/Turabian StyleDani, Komal A., Joseph M. Rich, Sean S. Kumar, Harmony Cen, Vinay A. Duddalwar, and Anishka D’Souza. 2023. "Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring" Cancers 15, no. 20: 4934. https://doi.org/10.3390/cancers15204934
APA StyleDani, K. A., Rich, J. M., Kumar, S. S., Cen, H., Duddalwar, V. A., & D’Souza, A. (2023). Comprehensive Systematic Review of Biomarkers in Metastatic Renal Cell Carcinoma: Predictors, Prognostics, and Therapeutic Monitoring. Cancers, 15(20), 4934. https://doi.org/10.3390/cancers15204934