Indocyanine Green (ICG) in Robotic Gastrectomy: A Retrospective Review of Lymphadenectomy Outcomes for Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Population and Data Collection
- -
- Group 1 (G1): Laparoscopic surgery without the use of ICG
- -
- Group 2 (G2): ICG-guided laparoscopic surgery
- -
- Group 3 (G3): ICG-guided robotic surgery
2.2. Surgical Procedure, Endoscopic ICG Injection, and Intraoperative NIR Imaging
2.3. Determination of the Proper Lymphadenectomy (PL)
2.4. Statistical Analysis
2.5. Ethical Approval and Consent to Participate
3. Results
3.1. Patient Demographic and Clinicopathological Characteristics
3.2. Comparative Analysis of Patients Undergoing Proper Lymphadenectomy
3.3. Factors Influencing the Achievement of Proper Lymphadenectomy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Korean Gastric Cancer Association. Korean Gastric Cancer Association-Led Nationwide Survey on Surgically Treated Gastric Cancers in 2019. J. Gastric Cancer 2021, 21, 221–235. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.W.; Kim, S.J.; Kim, S.; Kim, D.W.; Jeong, W.; Han, K.T. Cancer care patterns in South Korea: Types of hospital where patients receive care and outcomes using national health insurance claims data. Cancer Med. 2023, 12, 14707–14717. [Google Scholar] [CrossRef]
- Han, E.S.; Seo, H.S.; Kim, J.H.; Lee, H.H. Surveillance Endoscopy Guidelines for Postgastrectomy Patients Based on Risk of Developing Remnant Gastric Cancer. Ann. Surg. Oncol. 2020, 27, 4216–4224. [Google Scholar] [CrossRef] [PubMed]
- Uña, E. Gastric cancer: Predictors of recurrence when lymph-node dissection is inadequate. World J. Surg. Oncol. 2009, 7, 69. [Google Scholar] [CrossRef]
- Zhang, N.; Bai, H.; Deng, J.; Wang, W.; Sun, Z.; Wang, Z.; Xu, H.; Zhou, Z.; Liang, H. Impact of examined lymph node count on staging and long-term survival of patients with node-negative stage III gastric cancer: A retrospective study using a Chinese multi-institutional registry with Surveillance, Epidemiology, and End Results (SEER) data validation. Ann. Transl. Med. 2020, 8, 1075. [Google Scholar] [CrossRef]
- Kim, T.H.; Kim, I.H.; Kang, S.J.; Choi, M.; Kim, B.H.; Eom, B.W.; Kim, B.J.; Min, B.H.; Choi, C.I.; Shin, C.M.; et al. Korean Practice Guidelines for Gastric Cancer 2022: An Evidence-based, Multidisciplinary Approach. J. Gastric Cancer 2023, 23, 3–106. [Google Scholar] [CrossRef]
- Japanese Gastric Cancer Association. Japanese Gastric Cancer Treatment Guidelines 2021 (6th edition). Gastric Cancer 2023, 26, 1–25. [Google Scholar] [CrossRef]
- Hayashi, S.; Kanda, M.; Ito, S.; Mochizuki, Y.; Teramoto, H.; Ishigure, K.; Murai, T.; Asada, T.; Ishiyama, A.; Matsushita, H.; et al. Number of retrieved lymph nodes is an independent prognostic factor after total gastrectomy for patients with stage III gastric cancer: Propensity score matching analysis of a multi-institution dataset. Gastric Cancer 2019, 22, 853–863. [Google Scholar] [CrossRef]
- Nishimuta, M.; Arai, J.; Hamasaki, K.; Hashimoto, Y.; Nonaka, T.; Tominaga, T.; Oyama, S.; Yasutake, T.; Sawai, T.; Nagayasu, T. Number of Examined Lymph Nodes as a Risk Factor for Recurrence in pT1N+ or pT2-3N0 Gastric Cancer. Cancer Diagn. Progn. 2022, 2, 558–563. [Google Scholar] [CrossRef]
- Okajima, W.; Komatsu, S.; Ichikawa, D.; Kosuga, T.; Kubota, T.; Okamoto, K.; Konishi, H.; Shiozaki, A.; Fujiwara, H.; Otsuji, E. Prognostic impact of the number of retrieved lymph nodes in patients with gastric cancer. J. Gastroenterol. Hepatol. 2016, 31, 1566–1571. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Han, S.U.; Kim, M.C.; Kim, W.; Lee, H.J.; Ryu, S.W.; Cho, G.S.; Kim, C.Y.; Yang, H.K.; Park, D.J.; et al. Effect of Laparoscopic Distal Gastrectomy vs Open Distal Gastrectomy on Long-term Survival Among Patients With Stage I Gastric Cancer: The KLASS-01 Randomized Clinical Trial. JAMA Oncol. 2019, 5, 506–513. [Google Scholar] [CrossRef] [PubMed]
- Hyung, W.J.; Yang, H.K.; Park, Y.K.; Lee, H.J.; An, J.Y.; Kim, W.; Kim, H.I.; Kim, H.H.; Ryu, S.W.; Hur, H.; et al. Long-Term Outcomes of Laparoscopic Distal Gastrectomy for Locally Advanced Gastric Cancer: The KLASS-02-RCT Randomized Clinical Trial. J. Clin. Oncol. 2020, 38, 3304–3313. [Google Scholar] [CrossRef]
- Lee, H.H.; Hur, H.; Jung, H.; Jeon, H.M.; Park, C.H.; Song, K.Y. Robot-assisted distal gastrectomy for gastric cancer: Initial experience. Am. J. Surg. 2011, 201, 841–845. [Google Scholar] [CrossRef] [PubMed]
- Vahrmeijer, A.L.; Hutteman, M.; van der Vorst, J.R.; van de Velde, C.J.; Frangioni, J.V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 2013, 10, 507–518. [Google Scholar] [CrossRef]
- Herrera-Almario, G.; Patane, M.; Sarkaria, I.; Strong, V.E. Initial report of near-infrared fluorescence imaging as an intraoperative adjunct for lymph node harvesting during robot-assisted laparoscopic gastrectomy. J. Surg. Oncol. 2016, 113, 768–770. [Google Scholar] [CrossRef]
- Romanzi, A.; Mancini, R.; Ioni, L.; Picconi, T.; Pernazza, G. ICG-NIR-guided lymph node dissection during robotic subtotal gastrectomy for gastric cancer. A single-centre experience. Int. J. Med. Robot. 2021, 17, e2213. [Google Scholar] [CrossRef]
- Amin, M.B.; Greene, F.L.; Edge, S.B.; Compton, C.C.; Gershenwald, J.E.; Brookland, R.K.; Meyer, L.; Gress, D.M.; Byrd, D.R.; Winchester, D.P. The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more “personalized” approach to cancer staging. CA Cancer J. Clin. 2017, 67, 93–99. [Google Scholar] [CrossRef]
- Zeng, Y.; Chen, L.C.; Ye, Z.S.; Deng, J.Y. Examined lymph node count for gastric cancer patients after curative surgery. World J. Clin. Cases 2023, 11, 1930–1938. [Google Scholar] [CrossRef]
- Gu, P.; Deng, J.; Sun, Z.; Wang, Z.; Wang, W.; Liang, H.; Xu, H.; Zhou, Z. Superiority of log odds of positive lymph nodes (LODDS) for prognostic prediction after gastric cancer surgery: A multi-institutional analysis of 7620 patients in China. Surg. Today 2021, 51, 101–110. [Google Scholar] [CrossRef]
- Zhao, L.; Han, W.; Yang, X.; Zhao, D.; Niu, P.; Gao, X.; Wu, Z.; Zhang, X.; Li, Z.; Ji, G.; et al. Exceeding 30 ELNs is strongly recommended for pT3-4N0 patients with gastric cancer: A multicenter study of survival, recurrence, and prediction model. Cancer Sci. 2021, 112, 3266–3277. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Liu, S.; Song, P.; Zhang, C.; Liu, Z.; Guan, W.; Wang, M. Impact of retrieved lymph node count on short-term complications in patients with gastric cancer. World J. Surg. Oncol. 2020, 18, 224. [Google Scholar] [CrossRef]
- Kim, S.J.; Jeon, C.H.; Jung, Y.J.; Seo, H.S.; Lee, H.H.; Song, K.Y. Hybrid Robotic and Laparoscopic Gastrectomy for Gastric Cancer: Comparison with Conventional Laparoscopic Gastrectomy. J. Gastric Cancer 2021, 21, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Mueller, J.L.; Kim, D.H.; Stapleton, S.; Cauley, C.E.; Chang, D.C.; Park, C.H.; Song, K.Y.; Mullen, J.T. Nature versus nurture: The impact of nativity and site of treatment on survival for gastric cancer. Gastric Cancer 2019, 22, 446–455. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.; Lee, D.; Shin, J.K.; Jang, J.H.; Huh, J.W.; Park, Y.A.; Cho, Y.B.; Kim, H.C.; Yun, S.H.; Lee, W.Y.; et al. Is a cutoff value of 12 still useful in stage II right-sided colon cancer without risk factors? Korean J. Clin. Oncol. 2022, 18, 27–35. [Google Scholar] [CrossRef]
- Simões, P.; Fernandes, G.; Costeira, B.; Machete, M.; Baptista, C.; Silva, D.N.; Leal-Costa, L.; Prazeres, G.; Correia, J.; Albuquerque, J.; et al. Lymph node yield in the pathological staging of resected nonmetastatic colon cancer: The more the better? Surg. Oncol. 2022, 43, 101806. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Cheng, G.; Lu, X.; Ju, H.; Zhu, X. The re-evaluation of optimal lymph node yield in stage II right-sided colon cancer: Is a minimum of 12 lymph nodes adequate? Int. J. Colorectal. Dis. 2020, 35, 623–631. [Google Scholar] [CrossRef]
- Kwon, I.G.; Son, T.; Kim, H.I.; Hyung, W.J. Fluorescent Lymphography-Guided Lymphadenectomy During Robotic Radical Gastrectomy for Gastric Cancer. JAMA Surg. 2019, 154, 150–158. [Google Scholar] [CrossRef]
- Pang, H.Y.; Liang, X.W.; Chen, X.L.; Zhou, Q.; Zhao, L.Y.; Liu, K.; Zhang, W.H.; Yang, K.; Chen, X.Z.; Hu, J.K. Assessment of indocyanine green fluorescence lymphography on lymphadenectomy during minimally invasive gastric cancer surgery: A systematic review and meta-analysis. Surg. Endosc. 2022, 36, 1726–1738. [Google Scholar] [CrossRef]
- Chen, Q.Y.; Xie, J.W.; Zhong, Q.; Wang, J.B.; Lin, J.X.; Lu, J.; Cao, L.L.; Lin, M.; Tu, R.H.; Huang, Z.N.; et al. Safety and Efficacy of Indocyanine Green Tracer-Guided Lymph Node Dissection During Laparoscopic Radical Gastrectomy in Patients With Gastric Cancer: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 300–311. [Google Scholar] [CrossRef]
- Zhong, Q.; Chen, Q.Y.; Huang, X.B.; Lin, G.T.; Liu, Z.Y.; Chen, J.Y.; Wang, H.G.; Weng, K.; Li, P.; Xie, J.W.; et al. Clinical implications of Indocyanine Green Fluorescence Imaging-Guided laparoscopic lymphadenectomy for patients with gastric cancer: A cohort study from two randomized, controlled trials using individual patient data. Int. J. Surg. 2021, 94, 106120. [Google Scholar] [CrossRef]
- Jung, M.K.; Cho, M.; Roh, C.K.; Seo, W.J.; Choi, S.; Son, T.; Kim, H.I.; Hyung, W.J. Assessment of diagnostic value of fluorescent lymphography-guided lymphadenectomy for gastric cancer. Gastric Cancer 2021, 24, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Matsunaga, T.; Miyauchi, W.; Kono, Y.; Shishido, Y.; Miyatani, K.; Hanaki, T.; Watanabe, J.; Kihara, K.; Yamamoto, M.; Fukumoto, Y.; et al. The Advantages of Robotic Gastrectomy over Laparoscopic Surgery for Gastric Cancer. Yonago Acta Med. 2020, 63, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, S.; Suda, K.; Obama, K.; Yoshida, M.; Uyama, I. Should robotic gastrectomy become a standard surgical treatment option for gastric cancer? Surg. Today 2020, 50, 955–965. [Google Scholar] [CrossRef]
- Tian, Y.; Cao, S.; Kong, Y.; Shen, S.; Niu, Z.; Zhang, J.; Chen, D.; Jiang, H.; Lv, L.; Liu, X.; et al. Short- and long-term comparison of robotic and laparoscopic gastrectomy for gastric cancer by the same surgical team: A propensity score matching analysis. Surg. Endosc. 2022, 36, 185–195. [Google Scholar] [CrossRef] [PubMed]
Variables, n (%) | G1 (n = 288) | G2 (n = 61) | G3 (n = 44) | p-Value |
---|---|---|---|---|
Age (years) | 0.001 | |||
<65 | 137 (47.6) | 31 (50.8) | 34 (77.3) | |
≥65 | 151 (52.4) | 30 (49.2) | 10 (22.7) | |
Sex | 0.439 | |||
Male | 193 (67.0) | 46 (75.4) | 30 (68.2) | |
Female | 95 (33.0) | 15 (24.6) | 14 (31.8) | |
ECOG | 0.128 | |||
0–1 | 272 (94.4) | 60 (98.4) | 44 (100.0) | |
≥2 | 16 (5.6) | 1 (1.6) | ||
Preoperative BMI (kg/m2) | 0.141 | |||
<23 | 121 (42.3) | 20 (32.8) | 13 (29.5) | |
≥23 | 165 (57.7) | 41 (67.2) | 31 (70.5) | |
Comorbidity | 0.001 | |||
Present | 207 (71.9) | 25 (41.0) | 24 (54.5) | |
Absent | 81 (28.1) | 36 (59.0) | 20 (45.5) | |
History of abdominal surgery | 0.671 | |||
Present | 72 (25.0) | 12 (19.7) | 11 (25.0) | |
Absent | 216 (75.0) | 49 (80.3) | 33 (75.0) | |
Extent of gastrectomy | 0.123 | |||
STG | 231 (80.2) | 43 (70.5) | 31 (70.5) | |
TG | 57 (19.8) | 18 (29.5) | 13 (29.5) | |
pT stage | 0.039 | |||
T1 | 38 (13.2) | 3 (4.9) | 9 (20.5) | |
T2 | 49 (17.0) | 14 (23.0) | 10 (22.7) | |
T3 | 133 (46.2) | 34 (55.7) | 22 (50.0) | |
T4 | 68 (23.6) | 10 (16.4) | 3 (6.8) | |
pN stage | 0.039 | |||
N0 | 70 (24.3) | 13 (21.3) | 9 (20.5) | |
N1 | 67 (23.3) | 26 (42.6) | 9 (20.5) | |
N2 | 87 (30.2) | 16 (26.2) | 14 (31.8) | |
N3 | 64 (22.2) | 6 (9.8) | 12 (27.3) | |
pTNM stage | 0.277 | |||
Stage II | 175 (60.8) | 42 (68.9) | 31 (70.5) | |
Stage III | 113 (39.2) | 19 (31.1) | 13 (29.5) | |
ELN Count | 45.2 ± 20.3 | 51.6 ± 24.5 | 50.8 ± 19.6 | 0.058 |
≥16 | 285 (99.0) | 61 (100.0) | 43 (97.7) | 0.518 |
≥30 | 219 (76.0) | 49 (80.3) | 40 (90.9) | 0.049 |
Variables, n (%) | PL (-) (n = 85) | PL (+) (n = 308) | p-Value |
---|---|---|---|
ICG Injection | 0.063 | ||
Present | 16 (18.8) | 89 (28.9) | |
Absent | 69 (81.2) | 219 (71.1) | |
Intervention group | 0.049 | ||
G1 | 69 (24.0) | 219 (76.0) | |
G2 | 12 (19.7) | 49 (80.3) | |
G3 | 4 (9.1) | 40 (90.9) | |
pT stage | 0.273 | ||
T1 | 16 (18.8) | 34 (11.0) | |
T2 | 16 (18.8) | 57 (18.5) | |
T3 | 38 (44.7) | 151 (49.0) | |
T4 | 15 (17.6) | 66 (21.4) | |
pN stage | 0.001 | ||
N0 | 27 (31.8) | 65 (21.1) | |
N1 | 17 (20.0) | 85 (27.6) | |
N2 | 34 (40.0) | 83 (26.9) | |
N3 | 7 (8.2) | 75 (24.4) | |
pTNM stage | 0.009 | ||
Stage II | 64 (75.3) | 184 (59.7) | |
Stage III | 21 (24.7) | 124 (40.3) |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
Older age (vs. <65) | 0.754 | 0.466~1.221 | 0.251 | |||
Male sex (vs. Female) | 0.988 | 0.589~1.655 | 0.962 | |||
ECOG 2–4 (vs. 0–1) | 1.542 | 0.528~4.504 | 0.429 | |||
Higher BMI (vs. <23) | 1.060 | 0.648~1.734 | 0.818 | |||
No comorbidity (vs. present) | 0.599 | 0.347~1.034 | 0.066 | |||
No history of abdominal surgery (vs. present) | 0.761 | 0.443~1.309 | 0.324 | |||
TG (vs. STG) | 0.624 | 0.332~1.171 | 0.142 | |||
T stage | ||||||
T1 | Ref | Ref | ||||
T2 | 1.676 | 0.744~3.779 | 0.213 | 1.175 | 0.461~2.991 | 0.736 |
T3 | 1.870 | 0.936~3.738 | 0.076 | 2.284 | 0.957~5.446 | 0.063 |
T4 | 2.071 | 0.915~4.687 | 0.081 | 2.189 | 0.890~5.388 | 0.088 |
N stage | ||||||
N0 | Ref | Ref | ||||
N1 | 2.077 | 1.044~4.130 | 0.037 | 2.150 | 1.061~4.356 | 0.034 |
N2 | 1.014 | 0.556~1.849 | 0.964 | 0.995 | 0.543~1.824 | 0.987 |
N3 | 4.451 | 1.82~10.894 | 0.001 | 4.414 | 1.794~10.862 | 0.001 |
Intervention group | ||||||
G1 | Ref | Ref | ||||
G2 | 1.287 | 0.647~2.557 | 0.472 | 1.285 | 0.634~2.606 | 0.487 |
G3 | 3.117 | 1.061~9.153 | 0.034 | 3.151 | 1.074~9.245 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, C.-H.; Kim, S.-J.; Lee, H.-H.; Song, K.-Y.; Seo, H.-S. Indocyanine Green (ICG) in Robotic Gastrectomy: A Retrospective Review of Lymphadenectomy Outcomes for Gastric Cancer. Cancers 2023, 15, 4949. https://doi.org/10.3390/cancers15204949
Jeon C-H, Kim S-J, Lee H-H, Song K-Y, Seo H-S. Indocyanine Green (ICG) in Robotic Gastrectomy: A Retrospective Review of Lymphadenectomy Outcomes for Gastric Cancer. Cancers. 2023; 15(20):4949. https://doi.org/10.3390/cancers15204949
Chicago/Turabian StyleJeon, Chul-Hyo, So-Jung Kim, Han-Hong Lee, Kyo-Young Song, and Ho-Seok Seo. 2023. "Indocyanine Green (ICG) in Robotic Gastrectomy: A Retrospective Review of Lymphadenectomy Outcomes for Gastric Cancer" Cancers 15, no. 20: 4949. https://doi.org/10.3390/cancers15204949
APA StyleJeon, C. -H., Kim, S. -J., Lee, H. -H., Song, K. -Y., & Seo, H. -S. (2023). Indocyanine Green (ICG) in Robotic Gastrectomy: A Retrospective Review of Lymphadenectomy Outcomes for Gastric Cancer. Cancers, 15(20), 4949. https://doi.org/10.3390/cancers15204949