EAU Biochemical Recurrence Risk Classification and PSA Kinetics Have No Value for Patient Selection in PSMA-Radioguided Surgery (PSMA-RGS) for Oligorecurrent Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Cohort
2.2. Procedure of PSMA-RGS
2.3. PSA Doubling Time, PSA Velocity, and EAU Risk Group Assignment
2.4. Outcomes of Interest
2.5. Statistical Analyses
3. Results
3.1. Patients’ Baseline Characteristics
3.2. Patients’ Characteristics at PSMA-RGS
3.3. Oncological Outcomes: cBR, BCRFS, and TFS
3.3.1. Influence of EAU Risk Stratification
3.3.2. Influence of PSA Kinetics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy |
BCR | biochemical recurrence |
BCRFS | biochemical recurrence-free survival |
cBR | complete biochemical response |
CI | confidence interval |
CT | computed tomography |
EAU | European Association of Urology |
GGG | Gleason grade group |
HR | hazard ratio |
IQR | interquartile ranges |
MDT | metastases-directed therapy |
mo | months |
NA | not assigned |
OR | odds Ratio |
PCA | prostate cancer |
PET | positron emission tomography |
PSA | prostate-specific antigen |
PSA-DT | PSA doubling time, measured in months |
PSA-V | PSA velocity, measured in ng/mL/year |
PSMA | prostate-specific membrane antigen |
PSMA-RGS | radioguided surgery against PSMA |
RP | radical prostatectomy |
RT | radiotherapy |
TFS | therapy-free survival |
yr | year |
References
- Mottet, N.; Cornford, P.; van den Bergh, R.; Briers, E.; Eberli, D.; De Meerleer, G.; De Santis, M.; Gillessen, S.; Grummet, J.; Henry, A.M.; et al. EAU—EANM—ESTRO—ESUR—ISUP—SIOG Guidelines on Prostate Cancer. Edn. Presented at the EAU Annual Congress Milan 2023. Available online: http://uroweb.org/guidelines/compilations-of-all-guidelines/ (accessed on 1 May 2023).
- Knipper, S.; Mehdi Irai, M.; Simon, R.; Koehler, D.; Rauscher, I.; Eiber, M.; van Leeuwen, F.W.B.; van Leeuwen, P.; de Barros, H.; van der Poel, H.; et al. Cohort Study of Oligorecurrent Prostate Cancer Patients: Oncological Outcomes of Patients Treated with Salvage Lymph Node Dissection via Prostate-specific Membrane Antigen-radioguided Surgery. Eur. Urol. 2022, 83, 62–69. [Google Scholar] [CrossRef]
- Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, D.K., AWMF). S3-Leitlinie Prostatakarzinom, Langversion 6.2, 2021, AWMF Registernummer: 043/022OL. 2021. Available online: https://www.leitlinienprogramm-onkologie.de/fileadmin/user_upload/Downloads/Leitlinien/Prostatatkarzinom/Version_6/LL_Prostatakarzinom_Langversion_6.2.pdf (accessed on 1 May 2023).
- Eastham, J.A.; Auffenberg, G.B.; Barocas, D.A.; Chou, R.; Crispino, T.; Davis, J.W.; Eggener, S.; Horwitz, E.M.; Kane, C.J.; Kirkby, E.; et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part II: Principles of Active Surveillance, Principles of Surgery, and Follow-Up. J. Urol. 2022, 208, 19–25. [Google Scholar] [CrossRef]
- Vickers, A.J.; Brewster, S.F. PSA Velocity and Doubling Time in Diagnosis and Prognosis of Prostate Cancer. Br. J. Med. Surg. Urol. 2012, 5, 162–168. [Google Scholar] [CrossRef]
- Pound, C.R.; Partin, A.W.; Eisenberger, M.A.; Chan, D.W.; Pearson, J.D.; Walsh, P.C. Natural history of progression after PSA elevation following radical prostatectomy. JAMA 1999, 281, 1591–1597. [Google Scholar] [CrossRef]
- Markowski, M.C.; Chen, Y.; Feng, Z.; Cullen, J.; Trock, B.J.; Suzman, D.; Antonarakis, E.S.; Paller, C.J.; Rosner, I.; Han, M.; et al. PSA Doubling Time and Absolute PSA Predict Metastasis-free Survival in Men With Biochemically Recurrent Prostate Cancer After Radical Prostatectomy. Clin. Genitourin. Cancer 2019, 17, 470–475.e471. [Google Scholar] [CrossRef]
- Van den Broeck, T.; van den Bergh, R.C.N.; Arfi, N.; Gross, T.; Moris, L.; Briers, E.; Cumberbatch, M.; De Santis, M.; Tilki, D.; Fanti, S.; et al. Prognostic Value of Biochemical Recurrence Following Treatment with Curative Intent for Prostate Cancer: A Systematic Review. Eur. Urol. 2019, 75, 967–987. [Google Scholar] [CrossRef]
- Tilki, D.; Preisser, F.; Graefen, M.; Huland, H.; Pompe, R.S. External Validation of the European Association of Urology Biochemical Recurrence Risk Groups to Predict Metastasis and Mortality After Radical Prostatectomy in a European Cohort. Eur. Urol. 2019, 75, 896–900. [Google Scholar] [CrossRef]
- Ferdinandus, J.; Fendler, W.P.; Farolfi, A.; Washington, S.; Mohamad, O.; Pampaloni, M.H.; Scott, P.J.H.; Rodnick, M.; Viglianti, B.L.; Eiber, M.; et al. PSMA PET Validates Higher Rates of Metastatic Disease for European Association of Urology Biochemical Recurrence Risk Groups: An International Multicenter Study. J. Nucl. Med. 2022, 63, 76–80. [Google Scholar] [CrossRef]
- Preisser, F.; Abrams-Pompe, R.S.; Stelwagen, P.J.; Böhmer, D.; Zattoni, F.; Magli, A.; Rivas, J.G.; Dilme, R.V.; Sepulcri, M.; Eguibar, A.; et al. European Association of Urology Biochemical Recurrence Risk Classification as a Decision Tool for Salvage Radiotherapy-A Multicenter Study. Eur. Urol. 2023. [Google Scholar] [CrossRef]
- Ost, P.; Reynders, D.; Decaestecker, K.; Fonteyne, V.; Lumen, N.; De Bruycker, A.; Lambert, B.; Delrue, L.; Bultijnck, R.; Claeys, T.; et al. Surveillance or Metastasis-Directed Therapy for Oligometastatic Prostate Cancer Recurrence: A Prospective, Randomized, Multicenter Phase II Trial. J. Clin. Oncol. 2018, 36, 446–453. [Google Scholar] [CrossRef]
- Arlen, P.M.; Bianco, F.; Dahut, W.L.; D’Amico, A.; Figg, W.D.; Freedland, S.J.; Gulley, J.L.; Kantoff, P.W.; Kattan, M.W.; Lee, A.; et al. Prostate Specific Antigen Working Group guidelines on prostate specific antigen doubling time. J. Urol. 2008, 179, 2181–2185; discussion 2185–2186. [Google Scholar] [CrossRef] [PubMed]
- Claeys, T.; Van Praet, C.; Lumen, N.; Ost, P.; Fonteyne, V.; De Meerleer, G.; Lambert, B.; Delrue, L.; De Visschere, P.; Villeirs, G.; et al. Salvage Pelvic Lymph Node Dissection in Recurrent Prostate Cancer: Surgical and Early Oncological Outcome. BioMed Res. Int. 2015, 2015, 198543. [Google Scholar] [CrossRef] [PubMed]
- Horn, T.; Krönke, M.; Rauscher, I.; Haller, B.; Robu, S.; Wester, H.J.; Schottelius, M.; van Leeuwen, F.W.B.; van der Poel, H.G.; Heck, M.; et al. Single Lesion on Prostate-specific Membrane Antigen-ligand Positron Emission Tomography and Low Prostate-specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-specific Membrane Antigen-targeted Radioguided Surgery in Recurrent Prostate Cancer. Eur. Urol. 2019, 76, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Jilg, C.A.; Rischke, H.C.; Reske, S.N.; Henne, K.; Grosu, A.L.; Weber, W.; Drendel, V.; Schwardt, M.; Jandausch, A.; Schultze-Seemann, W. Salvage lymph node dissection with adjuvant radiotherapy for nodal recurrence of prostate cancer. J. Urol. 2012, 188, 2190–2197. [Google Scholar] [CrossRef]
- Linxweiler, J.; Saar, M.; Al-Kailani, Z.; Janssen, M.; Ezziddin, S.; Stöckle, M.; Siemer, S.; Ohlmann, C.H. Robotic salvage lymph node dissection for nodal-only recurrences after radical prostatectomy: Perioperative and early oncological outcomes. Surg. Oncol. 2018, 27, 138–145. [Google Scholar] [CrossRef]
- Tilki, D.; Mandel, P.; Seeliger, F.; Kretschmer, A.; Karl, A.; Ergün, S.; Seitz, M.; Stief, C.G. Salvage lymph node dissection for nodal recurrence of prostate cancer after radical prostatectomy. J. Urol. 2015, 193, 484–490. [Google Scholar] [CrossRef]
- Grambsch, P.M.; Therneau, T.M. Proportional hazards tests and diagnostics based on weighted residuals. Biometrika 1994, 81, 515–526. [Google Scholar] [CrossRef]
- De Bleser, E.; Jereczek-Fossa, B.A.; Pasquier, D.; Zilli, T.; Van As, N.; Siva, S.; Fodor, A.; Dirix, P.; Gomez-Iturriaga, A.; Trippa, F.; et al. Metastasis-directed Therapy in Treating Nodal Oligorecurrent Prostate Cancer: A Multi-institutional Analysis Comparing the Outcome and Toxicity of Stereotactic Body Radiotherapy and Elective Nodal Radiotherapy. Eur. Urol. 2019, 76, 732–739. [Google Scholar] [CrossRef]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef]
- Varatharajan, A.; Olivier, T.; Prasad, V. Prostate-specific Membrane Antigen Positron Emission Tomography in the Staging of Newly Diagnosed Prostate Cancer: Is More Sensitivity Always Better? Eur. Urol. 2023, 83, 481–483. [Google Scholar] [CrossRef]
- James, N.D.; Sydes, M.R.; Clarke, N.W.; Mason, M.D.; Dearnaley, D.P.; Spears, M.R.; Ritchie, A.W.; Parker, C.C.; Russell, J.M.; Attard, G.; et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016, 387, 1163–1177. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, C.J.; Chen, Y.H.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.N.; Hahn, N.; Kohli, M.; Cooney, M.M.; et al. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Rydzewska, L.H.M.; Burdett, S.; Vale, C.L.; Clarke, N.W.; Fizazi, K.; Kheoh, T.; Mason, M.D.; Miladinovic, B.; James, N.D.; Parmar, M.K.B.; et al. Adding abiraterone to androgen deprivation therapy in men with metastatic hormone-sensitive prostate cancer: A systematic review and meta-analysis. Eur. J. Cancer 2017, 84, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D.; et al. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy With Enzalutamide or Placebo in Men With Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef]
- Chi, K.N.; Agarwal, N.; Bjartell, A.; Chung, B.H.; Pereira de Santana Gomes, A.J.; Given, R.; Juarez Soto, A.; Merseburger, A.S.; Ozguroglu, M.; Uemura, H.; et al. Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2019, 381, 13–24. [Google Scholar] [CrossRef]
- Fizazi, K.; Tran, N.; Fein, L.; Matsubara, N.; Rodriguez-Antolin, A.; Alekseev, B.Y.; Ozguroglu, M.; Ye, D.; Feyerabend, S.; Protheroe, A.; et al. Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N. Engl. J. Med. 2017, 377, 352–360. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Christidis, D.; Wetherell, D.; Hofman, M.S.; Murphy, D.G.; Bolton, D.; Lawrentschuk, N. Sensitivity, Specificity, and Predictors of Positive (68)Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 70, 926–937. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Roberts, M.; Williams, M.; Udovicich, C.; Vela, I.; Christidis, D.; Bolton, D.; Hofman, M.S.; Lawrentschuk, N.; et al. Gallium-68 Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer-Updated Diagnostic Utility, Sensitivity, Specificity, and Distribution of Prostate-specific Membrane Antigen-avid Lesions: A Systematic Review and Meta-analysis. Eur. Urol. 2020, 77, 403–417. [Google Scholar] [CrossRef]
- Pereira Mestre, R.; Treglia, G.; Ferrari, M.; Pascale, M.; Mazzara, C.; Azinwi, N.C.; Llado’, A.; Stathis, A.; Giovanella, L.; Roggero, E. Correlation between PSA kinetics and PSMA-PET in prostate cancer restaging: A meta-analysis. Eur. J. Clin. Investig. 2019, 49, e13063. [Google Scholar] [CrossRef]
- Dong, L.; Su, Y.; Zhu, Y.; Markowski, M.C.; Xin, M.; Gorin, M.A.; Dong, B.; Pan, J.; Pomper, M.G.; Liu, J.; et al. The European Association of Urology Biochemical Recurrence Risk Groups Predict Findings on PSMA PET in Patients with Biochemically Recurrent Prostate Cancer after Radical Prostatectomy. J. Nucl. Med. 2022, 63, 248–252. [Google Scholar] [CrossRef]
Characteristic | Low-Risk BCR (n = 21) | High-Risk BCR (n = 201) | All Patients (n = 374) | p |
---|---|---|---|---|
Age at RP (yr), median (IQR) | 63.0 (54.0, 68.0) | 60.0 (54.0, 65.0) | 60.0 (55.0, 65.0) | 0.4 |
PSA at RP (ng/mL), median (IQR) | 6.7 (4.3, 9.4) | 9.0 (5.8, 16.0) | 8.5 (5.7, 14.8) | 0.03 |
GGG at RP, n (%) | ||||
1 | 0 (0) | 10 (5) | 27 (7) | < 0.001 |
2 | 5 (24) | 41 (20) | 93 (25) | |
3 | 16 (76) | 42 (21) | 132 (35) | |
4 | 0 (0) | 40 (20) | 40 (11) | |
5 | 0 (0) | 61 (30) | 61 (16) | |
NA | 0 (0) | 7 (4) | 21 (6) | |
pT Stage at RP, n (%) | ||||
pT2 | 8 (38.1) | 65 (32.3) | 141 (37.7) | 0.9 |
pT3a | 7 (33.3) | 68 (33.8) | 111 (29.7) | |
pT3b | 6 (28.6) | 65 (32.3) | 106 (28.3) | |
NA | 0 (0.0) | 3 (1.5) | 16 (4.3) | |
pN stage at RP, n (%) | ||||
pN0 | 18 (85.7) | 151 (75.1) | 275 (73.5) | 0.5 |
pN1 | 3 (14.3) | 38 (18.9) | 64 (17.1) | |
pNx/NA | 0 (0.0) | 12 (5.6) | 35 (9.4) | |
Surgical Margin at RP, n (%) | ||||
R0 | 19 (90.5) | 142 (73.6) | 262 (70.1) | 0.2 |
R1 | 2 (9.5) | 47 (24.4) | 80 (21.4) | |
Rx/NA | 0 (0.0) | 12 (6.0) | 32 (8.6) | |
RT after RP, n (%) | 12 (57) | 116 (58) | 215 (58)) | 1.0 |
Characteristic | Low-Risk BCR (n = 21) | High-Risk BCR (n = 201) | All Patients (n = 374) | p |
---|---|---|---|---|
Age at PSMA-RGS (yr), median (IQR) | 66.0 (57.0, 71.0) | 65.0 (61.0, 70.0) | 66.0 (61.0, 71.0) | 0.8 |
Time between RP and PSMA-RGS (mo), median (IQR) | 40.6 (22.6, 62.9) | 49.6 (23.1, 90.7) | 50.4 (24.4, 91.8) | 0.5 |
PSA prior PSMA-RGS (ng/mL), median (IQR) | 0.5 (0.3, 1.2) | 0.8 (0.4, 1.4) | 0.8 (0.4, 1.7) | 0.2 |
PSA doubling time (months), median (IQR) | 19.2 (14.9, 26.5) | 5.5 (3.8, 8.0) | 6.1 (4.0, 9.9) | <0.001 |
PSA velocity (ng/mL/month), median (IQR) | 0.3 (0.1, 0.5) | 0.6 (0.2, 1.7) | 0.5 (0.2, 1.3) | 0.02 |
No. of PSMA-PET avid lesions | ||||
1—n (%) | 13 (61.9) | 132 (65.7) | 240 (64.2) | 0.6 |
2—n (%) | 6 (28.6) | 45 (22.4) | 91 (24.3) | |
≥3—n (%) | 2 (9.5) | 20 (10.0) | 34 (9.1) | |
NA | 0 | 4 (2.0) | 9 (2.4) | |
PSMA PET localization | ||||
Pelvic only, n (%) | 16 (76.2) | 161 (82.6) | 299 (82.6) | 0.6 |
Pelvic + retro, n (%) | 3 (14.3) | 15 (7.7) | 31 (8.6) | |
Retroperitoneal, n (%) | 2 (9.5) | 19 (9.7) | 32 (8.8) |
cBR (Logistic Regression) | BCRFS (Cox Regression) | TFS (Cox Regression) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OR | 95% CI | p | HR | 95% CI | p | HR | 95% CI | p | ||||
EAU BCR | ||||||||||||
-low risk | Ref. | |||||||||||
-high risk | 0.94 | 0.32 | 2.50 | 0.9 | 1.61 | 0.70 | 3.71 | 0.3 | 1.07 | 0.46 | 2.47 | 0.9 |
PSA-DT, in mo (cont.) | 0.99 | 0.95 | 1.03 | 0.5 | 1.00 | 0.97 | 1.03 | 0.9 | 1.02 | 0.99 | 1.04 | 0.2 |
PSA-V, in ng/mL/yr (cont.) | 1.02 | 0.98 | 1.09 | 0.5 | 1.01 | 0.99 | 1.03 | 0.4 | 1.01 | 0.99 | 1.03 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Falkenbach, F.; Ambrosini, F.; Tennstedt, P.; Eiber, M.; Heck, M.M.; Preisser, F.; Graefen, M.; Budäus, L.; Koehler, D.; Knipper, S.; et al. EAU Biochemical Recurrence Risk Classification and PSA Kinetics Have No Value for Patient Selection in PSMA-Radioguided Surgery (PSMA-RGS) for Oligorecurrent Prostate Cancer. Cancers 2023, 15, 5008. https://doi.org/10.3390/cancers15205008
Falkenbach F, Ambrosini F, Tennstedt P, Eiber M, Heck MM, Preisser F, Graefen M, Budäus L, Koehler D, Knipper S, et al. EAU Biochemical Recurrence Risk Classification and PSA Kinetics Have No Value for Patient Selection in PSMA-Radioguided Surgery (PSMA-RGS) for Oligorecurrent Prostate Cancer. Cancers. 2023; 15(20):5008. https://doi.org/10.3390/cancers15205008
Chicago/Turabian StyleFalkenbach, Fabian, Francesca Ambrosini, Pierre Tennstedt, Matthias Eiber, Matthias M. Heck, Felix Preisser, Markus Graefen, Lars Budäus, Daniel Koehler, Sophie Knipper, and et al. 2023. "EAU Biochemical Recurrence Risk Classification and PSA Kinetics Have No Value for Patient Selection in PSMA-Radioguided Surgery (PSMA-RGS) for Oligorecurrent Prostate Cancer" Cancers 15, no. 20: 5008. https://doi.org/10.3390/cancers15205008
APA StyleFalkenbach, F., Ambrosini, F., Tennstedt, P., Eiber, M., Heck, M. M., Preisser, F., Graefen, M., Budäus, L., Koehler, D., Knipper, S., & Maurer, T. (2023). EAU Biochemical Recurrence Risk Classification and PSA Kinetics Have No Value for Patient Selection in PSMA-Radioguided Surgery (PSMA-RGS) for Oligorecurrent Prostate Cancer. Cancers, 15(20), 5008. https://doi.org/10.3390/cancers15205008