The Evolving Role of Stereotactic Body Radiation Therapy for Head and Neck Cancer: Where Do We Stand?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Radiobiological Principles of SBRT for HNC
3. Practical and Technical Aspects of SBRT for HNC
3.1. Target Volume Definition for SBRT
3.2. SBRT Dose and Fractionation
3.3. Target Objectives and OAR Constraints
4. Definitive SBRT for Primary HNC
4.1. Definitive SBRT in Elderly or Medically Unfit HNC Patients
Summary and Recommendation
4.2. Definitive SBRT for Early-Stage Glottis Cancer
Summary and Recommendation
4.3. Definitive SBRT as Boost after EBRT (Alternative to Brachytherapy Boost)
Summary and Recommendation
5. Neoadjuvant SBRT (with Immunotherapy) for HNC
Summary and Recommendation
6. Salvage SBRT for Recurrent Unresectable or Second Primary HNC
Summary and Recommendation
7. Adjuvant SBRT for Recurrent HNC
8. Conclusions
9. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Gilyoma, J.M.; Rambau, P.F.; Masalu, N.; Kayange, N.M.; Chalya, P.L. Head and neck cancers: A clinico-pathological profile and management challenges in a resource-limited setting. BMC Res. Notes. 2015, 8, 772. [Google Scholar] [CrossRef]
- Khuri, F.R.; Lee, J.J.; Lippman, S.M.; Kim, E.S.; Cooper, J.S.; Benner, S.E.; Winn, R.; Pajak, T.F.; Williams, B.; Shenouda, G.; et al. Randomized phase III trial of low-dose isotretinoin for prevention of second primary tumors in stage I and II head and neck cancer patients. J. Natl. Cancer Inst. 2006, 98, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Vahl, J.M.; Wigand, M.C.; Denkinger, M.; Dallmeier, D.; Steiger, C.; Welke, C.; Kuhn, P.; Idel, C.; Doescher, J.; von Witzleben, A.; et al. Increasing Mean Age of Head and Neck Cancer Patients at a German Tertiary Referral Center. Cancers 2021, 13, 832. [Google Scholar] [CrossRef] [PubMed]
- Ries, L.A.G.; Reichman, M.E.; Lewis, D.R.; Hankey, B.F.; Edwards, B.K. Cancer Survival and Incidence from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist 2003, 8, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Lacas, B.; Carmel, A.; Landais, C.; Wong, S.J.; Licitra, L.; Tobias, J.S.; Burtness, B.; Ghi, M.G.; Cohen, E.E.; Grau, C.; et al. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): An update on 107 randomized trials and 19,805 patients, on behalf of MACH-NC Group. Radiother. Oncol. 2021, 156, 281. [Google Scholar] [CrossRef]
- Shaikh, H.; Karivedu, V.; Wise-Draper, T.M. Managing Recurrent Metastatic Head and Neck Cancer. Hematol. Oncol. Clin. North Am. 2021, 35, 1009–1020. [Google Scholar] [CrossRef]
- Peng, K.A.; Grogan, T.; Wang, M.B. Head and Neck Sarcomas: Analysis of the SEER Database. Otolaryngol. Neck Surg. 2014, 151, 627–633. [Google Scholar] [CrossRef]
- Bernier, J.; Cooper, J.S.; Pajak, T.F.; Van Glabbeke, M.; Bourhis, J.; Forastiere, A.; Ozsahin, E.M.; Jacobs, J.R.; Jassem, J.; Ang, K.-K.; et al. Defining risk levels in locally advanced head and neck cancers: A comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck 2005, 27, 843–850. [Google Scholar] [CrossRef]
- Weiss, J.; Sheth, S.; Deal, A.M.; Olson, J.E.G.; Patel, S.; Hackman, T.G.; Blumberg, J.M.; Galloway, T.J.; Patel, S.; Zanation, A.M.; et al. Concurrent Definitive Immunoradiotherapy for Patients with Stage III-IV Head and Neck Cancer and Cisplatin Contraindication. Clin. Cancer Res. 2020, 26, 4260–4267. [Google Scholar] [CrossRef]
- Mohamad, I.; Almousa, A.; Taqash, A.; Mayta, E.; Abuhijla, F.; Ghatasheh, H.; Ababneh, H.; Wahbeh, L.; Abuhijlih, R.; Hussein, T.; et al. Primary radiation therapy for advanced-stage laryngeal cancer: A laryngo-esophageal dysfunction disease-free survival. Laryngoscope Investig. Otolaryngol. 2022, 7, 1866–1874. [Google Scholar] [CrossRef] [PubMed]
- Al-Assaf, H.; Erler, D.; Karam, I.; Lee, J.W.; Higgins, K.; Enepekides, D.; Zhang, L.; Eskander, A.; Poon, I. Stereotactic body radiotherapy for medically unfit patients with cancers to the head and neck. Head Neck 2020, 42, 2050–2057. [Google Scholar] [CrossRef] [PubMed]
- Russell, J.S.; Brown, J.M. The irradiated tumor microenvironment: Role of tumor-associated macrophages in vascular recovery. Front. Physiol. 2013, 4, 157. [Google Scholar] [CrossRef]
- Khan, L.; Tjong, M.; Raziee, H.; Lee, J.; Erler, D.; Chin, L.; Poon, I. Role of stereotactic body radiotherapy for symptom control in head and neck cancer patients. Support. Care Cancer 2015, 23, 1099–1103. [Google Scholar] [CrossRef] [PubMed]
- Vargo, J.A.; Ward, M.C.; Caudell, J.J.; Riaz, N.; Dunlap, N.E.; Isrow, D.; Zakem, S.J.; Dault, J.; Awan, M.J.; Higgins, K.A.; et al. A Multi-institutional Comparison of SBRT and IMRT for Definitive Reirradiation of Recurrent or Second Primary Head and Neck Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 595–605. [Google Scholar] [CrossRef]
- Amini, A.; McDermott, J.D.; Gan, G.; Bhatia, S.; Sumner, W.; Fisher, C.M.; Jimeno, A.; Bowles, D.W.; Raben, D.; Karam, S.D. Stereotactic body radiotherapy as primary therapy for head and neck cancer in the elderly or patients with poor performance. Front. Oncol. 2014, 4, 274. [Google Scholar] [CrossRef]
- Vargo, J.A.; Heron, D.E.; Ferris, R.L.; Rwigema, J.-C.M.; Kalash, R.; Wegner, R.E.; Ohr, J.; Burton, S. Examining tumor control and toxicity after stereotactic body radiotherapy in locally recurrent previously irradiated head and neck cancers: Implications of treatment duration and tumor volume. Head Neck 2014, 36, 1349–1355. [Google Scholar] [CrossRef]
- Garcia-Barros, M.; Paris, F.; Cordon-Cardo, C.; Lyden, D.; Rafii, S.; Haimovitz-Friedman, A.; Fuks, Z.; Kolesnick, R. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003, 300, 1155–1159. [Google Scholar] [CrossRef]
- Brown, J.M.; Carlson, D.J.; Brenner, D.J. The Tumor Radiobiology of SRS and SBRT: Are More than the 5 R’s Involved? Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 254. [Google Scholar] [CrossRef]
- Siddiqui, F.; Patel, M.; Khan, M.; McLean, S.; Dragovic, J.; Jin, J.-Y.; Movsas, B.; Ryu, S. Stereotactic body radiation therapy for primary, recurrent, and metastatic tumors in the head-and-neck region. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1047–1053. [Google Scholar] [CrossRef]
- Kodani, N.; Yamazaki, H.; Tsubokura, T.; Shiomi, H.; Kobayashi, K.; Nishimura, T.; Aibe, N.; Ikeno, H.; Nishimura, T. Stereotactic body radiation therapy for head and neck tumor: Disease control and morbidity outcomes. J. Radiat. Res. 2011, 52, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, K.; Sato, K.; Yamada, H.; Horie, A.; Nomura, T.; Iketani, S.; Kanai, I.; Suzuki, S.; Nakatani, Y.; Hamada, Y. Stereotactic radiosurgery in combination with chemotherapy as primary treatment for head and neck cancer. J. Oral. Maxillofac. Surg. 2012, 70, 461–472. [Google Scholar] [CrossRef] [PubMed]
- Vargo, J.A.; Ferris, R.L.; Clump, D.A.; Heron, D.E. Stereotactic body radiotherapy as primary treatment for elderly patients with medically inoperable head and neck cancer. Front. Oncol. 2014, 4, 214. [Google Scholar] [CrossRef] [PubMed]
- Karam, I.; Yao, M.; Heron, E.D.; Poon, I.; Koyfman, A.S.; Yom, S.S.; Siddiqui, F.; Lartigau, E.; Cengiz, M.; Yamazaki, H.; et al. Survey of current practices from the International Stereotactic Body Radiotherapy Consortium (ISBRTC) for head and neck cancers. Futur. Oncol. 2017, 13, 603–613. [Google Scholar] [CrossRef]
- Bisello, S.; Cilla, S.; Benini, A.; Cardano, R.; Nguyen, N.P.; Deodato, F.; Macchia, G.; Buwenge, M.; Cammelli, S.; Wondemagegnehu, T.; et al. Dose-Volume Constraints fOr oRganS At risk In Radiotherapy (CORSAIR): An “All-in-One” Multicenter-Multidisciplinary Practical Summary. Curr. Oncol. 2022, 29, 7021–7050. [Google Scholar] [CrossRef] [PubMed]
- Sahgal, A.; Chang, J.H.; Ma, L.; Marks, L.B.; Milano, M.T.; Medin, P.; Niemierko, A.; Soltys, S.G.; Tomé, W.A.; Wong, C.S.; et al. HyTEC Organ-Specific Paper: Spinal Cord Spinal Cord Dose Tolerance to Stereotactic Body Radiation Therapy Radiation Oncology. Int. J. Radiat. Oncol. Biol. Phys. 2019, 110, 124–136. [Google Scholar] [CrossRef]
- Benedict, S.H.; Yenice, K.M.; Followill, D.; Galvin, J.M.; Hinson, W.; Kavanagh, B.; Keall, P.; Lovelock, M.; Meeks, S.; Papiez, L. Stereotactic body radiation therapy: The report of AAPM Task Group 101. Med. Phys. 2010, 37, 4078–4101. [Google Scholar] [CrossRef]
- Zhang, Y.; Chiu, T.; Dubas, J.; Tian, Z.; Lee, P.; Gu, X.; Yan, Y.; Sher, D.; Timmerman, R.; Zhao, B. Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning. Radiat. Oncol. 2019, 14, 193. [Google Scholar] [CrossRef]
- Timmerman, R. A Story of Hypofractionation and the Table on the Wall. Int. J. Radiat. Oncol. Biol. Phys. 2022, 112, 4–21. [Google Scholar] [CrossRef]
- Sahgal, A.; Ma, L.; Weinberg, V.; Gibbs, I.C.; Chao, S.; Chang, U.-K.; Werner-Wasik, M.; Angelov, L.; Chang, E.L.; Sohn, M.-J.; et al. Reirradiation Human Spinal Cord Tolerance for Stereotactic Body Radiotherapy. Int. J. Radiat. Oncol. 2012, 82, 107–116. [Google Scholar] [CrossRef]
- Milano, M.T.; Grimm, J.; Niemierko, A.; Soltys, S.G.; Moiseenko, V.; Redmond, K.J.; Yorke, E.; Sahgal, A.; Xue, J.; Mahadevan, A.; et al. Single and Multi-fraction Stereotactic Radiosurgery Dose/ Volume Tolerances of the Brain HHS Public Access. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 68–86. [Google Scholar] [CrossRef]
- Karam, S.D.; Snider, J.W.; Wang, H.; Wooster, M.; Lominska, C.; Deeken, J.; Newkirk, K.; Davidson, B.; Harter, K.W. Survival outcomes of patients treated with hypofractionated stereotactic body Radiation Therapy for Parotid Gland Tumors: A Retrospective Analysis. Front. Oncol. 2012, 2, 55. [Google Scholar] [CrossRef]
- Voruganti, I.S.; Poon, I.; Husain, Z.A.; Bayley, A.; Barnes, E.A.; Zhang, L.; Chin, L.; Erler, D.; Higgins, K.; Enepekides, D.; et al. Stereotactic body radiotherapy for head and neck skin cancer. Radiother. Oncol. 2021, 165, 1–7. [Google Scholar] [CrossRef]
- Gogineni, E.; Rana, Z.; Vempati, P.; Karten, J.; Sharma, A.; Taylor, P.; Pereira, L.; Frank, D.; Paul, D.; Seetharamu, N. Stereotactic body radiotherapy as primary treatment for elderly and medically inoperable patients with head and neck cancer. Head Neck 2020, 42, 2880–2886. [Google Scholar] [CrossRef]
- Malik, N.H.; Kim, M.S.; Chen, H.; Poon, I.; Husain, Z.; Eskander, A.; Boldt, G.; Louie, A.V.; Karam, I. Stereotactic Radiation Therapy for De Novo Head and Neck Cancers: A Systematic Review and Meta-Analysis. Adv. Radiat. Oncol. 2021, 6, 100628. [Google Scholar] [CrossRef]
- Le, Q.-T.X.; Fu, K.K.; Kroll, S.; Ryu, J.K.; Quivey, J.M.; Meyler, T.S.; Krieg, R.M.; Phillips, T.L. Influence of fraction size, total dose, and overall time on local control of T1-T2 glottic carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1997, 39, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Dinshaw, K.A.; Sharma, V.; Agarwal, J.P.; Ghosh, S.; Havaldar, R. Radiation therapy in T1-T2 glottic carcinoma: Influence of various treatment parameters on local control/complications. Int. J. Radiat. Oncol. Biol. Phys. 2000, 48, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, H.; Nishiyama, K.; Tanaka, E.; Koizumi, M.; Chatani, M. Radiotherapy for early glottic carcinoma (T1N0M0): Results of prospective randomized study of radiation fraction size and overall treatment time. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 77–82. [Google Scholar] [CrossRef]
- Garden, A.S.; Forster, K.; Wong, P.-F.; Morrison, W.H.; Schechter, N.R.; Ang, K. Results of radiotherapy for T2N0 glottic carcinoma: Does the “2” stand for twice-daily treatment? Int. J. Radiat. Oncol. Biol. Phys. 2003, 55, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Sher, D.J.; Timmerman, R.D.; Nedzi, L.; Ding, C.; Pham, N.-L.; Zhao, B.; Sumer, B.D. Phase 1 Fractional Dose-Escalation Study of Equipotent Stereotactic Radiation Therapy Regimens for Early-Stage Glottic Larynx Cancer. Int. J. Radiat. Oncol. 2019, 105, 110–118. [Google Scholar] [CrossRef]
- Zhao, B.; Park, Y.K.; Gu, X.; Reynolds, R.; Timmerman, R.; Sher, D.J. Surface guided motion management in glottic larynx stereotactic body radiation therapy. Radiother. Oncol. 2020, 153, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Wee, C.W.; Choi, N.; Wu, H.; Kang, H.; Park, J.M.; Kim, J.H.; Kwon, T.; Chung, E. Study design and early result of a phase I study of SABR for early-stage glottic cancer. Laryngoscope 2018, 128, 2560–2565. [Google Scholar] [CrossRef] [PubMed]
- Kang, B.-H.; Yu, T.; Kim, J.H.; Park, J.M.; Chung, E.-J.; Kwon, S.K.; Kim, J.-H.; Wu, H.-G. Early Closure of a Phase 1 Clinical Trial for SABR in Early-Stage Glottic Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2019, 105, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Tate, D.J.; Adler, J.R.; Chang, S.D.; Marquez, S.; Eulau, S.M.; Fee, E.W.; Pinto, H.; Goffinet, D.R. Stereotactic radiosurgical boost following radiotherapy in primary nasopharyngeal carcinoma: Impact on local control. Int. J. Radiat. Oncol. Biol. Phys. 1999, 45, 915–921. [Google Scholar] [CrossRef]
- Le, Q.-T.; Tate, D.; Koong, A.; Gibbs, I.C.; Chang, S.D.; Adler, J.R.; Pinto, A.H.; Terris, D.J.; Fee, E.W.; Goffinet, D.R. Improved local control with stereotactic radiosurgical boost in patients with nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2003, 56, 1046–1054. [Google Scholar] [CrossRef]
- Hara, W.; Loo, B.W.; Goffinet, D.R.; Chang, S.D.; Adler, J.R.; Pinto, H.A.; Fee, W.E.; Kaplan, M.J.; Fischbein, N.J.; Le, Q.-T. Excellent local control with stereotactic radiotherapy boost after external beam radiotherapy in patients with nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 393–400. [Google Scholar] [CrossRef]
- Chen, H.H.; Tsai, S.-T.; Wang, M.-S.; Wu, Y.-H.; Hsueh, W.-T.; Yang, M.-W.; Yeh, I.-C.; Lin, J.-C. Experience in fractionated stereotactic body radiation therapy boost for newly diagnosed nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol Phys. 2006, 66, 1408–1414. [Google Scholar] [CrossRef]
- Uno, T.; Isobe, K.; Ueno, N.; Fukuda, A.; Sudo, S.; Shirotori, H.; Kitahara, I.; Fukushima, T.; Ito, H. Fractionated stereotactic radiotherapy as a boost treatment for tumors in the head and neck region. J. Radiat. Res. 2010, 51, 449–454. [Google Scholar] [CrossRef]
- Yamazaki, H.; Ogita, M.; Himei, K.; Nakamura, S.; Yoshida, K.; Kotsuma, T.; Yamada, Y.; Fujiwara, M.; Baek, S.; Yoshioka, Y. Hypofractionated stereotactic radiotherapy using CyberKnife as a boost treatment for head and neck cancer, a multi-institutional survey: Impact of planning target volume. Anticancer. Res. 2014, 34, 5755–5759. [Google Scholar]
- Lee, D.S.; Kim, Y.S.; Cheon, J.S.; Song, J.H.; Son, S.H.; Jang, J.S.; Kang, Y.N.; Kang, J.H.; Jung, S.L.; Yoo, I.R.; et al. Long-term outcome and toxicity of hypofractionated stereotactic body radiotherapy as a boost treatment for head and neck cancer: The importance of boost volume assessment. Radiat. Oncol. 2012, 7, 85. [Google Scholar] [CrossRef]
- Al-Mamgani, A.; Tans, L.; Teguh, D.N.; van Rooij, P.; Zwijnenburg, E.M.; Levendag, P.C. Stereotactic body radiotherapy: A promising treatment option for the boost of oropharyngeal cancers not suitable for brachytherapy: A single-institutional experience. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Verduijn, G.; Petit, S.; Nuyttens, J.J.; Sewnaik, A.; van der Lugt, A.; Heemsbergen, W.D. Locoregional failures and their relation to radiation fields following stereotactic body radiotherapy boost for oropharyngeal squamous cell carcinoma. Head Neck 2019, 41, 1622–1631. [Google Scholar] [CrossRef] [PubMed]
- Baker, S.; Verduijn, G.M.; Petit, S.; Sewnaik, A.; Mast, H.; Koljenović, S.; Nuyttens, J.J.; Heemsbergen, W.D. Long-term outcomes following stereotactic body radiotherapy boost for oropharyngeal squamous cell carcinoma. Acta Oncol. 2019, 58, 926–933. [Google Scholar] [CrossRef] [PubMed]
- Vempati, P.; Halthore, A.N.; Teckie, S.; Rana, Z.; Gogineni, E.; Antone, J.; Zhang, H.; Marrero, M.; Beadle, K.; Frank, D.K.; et al. Phase I trial of dose-escalated stereotactic radiosurgery (SRS) boost for unfavorable locally advanced oropharyngeal cancer. Radiat. Oncol. 2020, 15, 278. [Google Scholar] [CrossRef]
- Kataria, T.; Basu, T.; Goyal, S.; Abhishek, A.; Gupta, D.; Subramani, V.; Karrthick, K.P.; Bisht, S.S. Preliminary results of CyberKnife stereotactic radiotherapy (SBRT) boost for primary head and neck cancers: Is it the future direction? J. Radiother. Pract. 2015, 14, 187–193. [Google Scholar] [CrossRef]
- Díaz-Martínez, J.A.; Esquenazi, Y.; Martir, M.; Citardi, M.J.; Karni, R.J.; Blanco, A.I. Planned Gamma Knife Boost After Chemoradiotherapy for Selected Sinonasal and Nasopharyngeal Cancers. World Neurosurg. 2018, 119, e467–e474. [Google Scholar] [CrossRef]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G., Jr.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, A.; et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): A randomised, open-label, phase 3 study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Hui, C.; Chau, B.; Gan, G.; Stokes, W.; Karam, S.D.; Amini, A. Overcoming Resistance to Immunotherapy in Head and Neck Cancer Using Radiation: A Review. Front. Oncol. 2021, 11, 592319. [Google Scholar] [CrossRef]
- Leidner, R.; Crittenden, M.; Young, K.; Xiao, H.; Wu, Y.; Couey, A.M.; Patel, A.A.; Cheng, A.C.; Watters, A.L.; Bifulco, C.; et al. Neoadjuvant immunoradiotherapy results in high rate of complete pathological response and clinical to pathological downstaging in locally advanced head and neck squamous cell carcinoma. J. Immunother. Cancer. 2021, 9, 2485. [Google Scholar] [CrossRef]
- Ma, T.M.; Wong, D.J.; Chai-Ho, W.; Mendelsohn, A.; John, M.S.; Abemayor, E.; Chhetri, D.; Sajed, D.; Dang, A.; Chu, F.-I.; et al. High Recurrence For HPV-Positive Oropharyngeal Cancer With Neoadjuvant Radiotherapy To Gross Disease Plus Immunotherapy: Analysis From a Prospective Phase Ib/II Clinical Trial. Int. J. Radiat. Oncol. 2023, 117, 348–354. [Google Scholar] [CrossRef]
- Darragh, L.B.; Knitz, M.M.; Hu, J.; Clambey, E.T.; Backus, J.; Dumit, A.; Samedi, V.; Bubak, A.; Greene, C.; Waxweiler, T.; et al. A phase I/Ib trial and biological correlate analysis of neoadjuvant SBRT with single-dose durvalumab in HPV-unrelated locally advanced HNSCC Check for updates. Nat. Cancer 2022, 3, 1300–1317. [Google Scholar] [CrossRef] [PubMed]
- Shen, P.; Qiao, B.; Jin, N.; Wang, S. Neoadjuvant immunoradiotherapy in patients with locally advanced oral cavity squamous cell carcinoma: A retrospective study. Investig. New Drugs 2022, 40, 1282–1289. [Google Scholar] [CrossRef] [PubMed]
- Unger, K.R.; Lominska, C.E.; Deeken, J.F.; Davidson, B.J.; Newkirk, K.A.; Gagnon, G.J.; Hwang, J.; Slack, R.S.; Noone, A.-M.; Harter, K.W. Fractionated stereotactic radiosurgery for reirradiation of head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 2010, 77, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Vermorken, J.B.; Mesia, R.; Rivera, F.; Remenar, E.; Kawecki, A.; Rottey, S.; Erfan, J.; Zabolotnyy, D.; Kienzer, H.-R.; Cupissol, D.; et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med. 2008, 359, 1116–1127. [Google Scholar] [CrossRef]
- Spencer, S.A.; Harris, J.; Wheeler, R.H.; Machtay, M.; Schultz, C.; Spanos, W.; Rotman, M.; Meredith, R.; Ang, K.-K. Final report of RTOG 9610, a multi-institutional trial of reirradiation and chemotherapy for unresectable recurrent squamous cell carcinoma of the head and neck. Head Neck 2008, 30, 281–288. [Google Scholar] [CrossRef]
- Langer, C.J.; Harris, J.; Horwitz, E.M.; Nicolaou, N.; Kies, M.; Curran, W.; Wong, S.; Ang, K. Phase II study of low-dose paclitaxel and cisplatin in combination with split-course concomitant twice-daily reirradiation in recurrent squamous cell carcinoma of the head and neck: Results of Radiation Therapy Oncology Group Protocol 9911. J. Clin. Oncol. 2007, 25, 4800–4805. [Google Scholar] [CrossRef]
- Cengiz, M.; Özyiğit, G.; Yazici, G.; Doğan, A.; Yildiz, F.; Zorlu, F.; Gürkaynak, M.; Gullu, I.H.; Hosal, S.; Akyol, F. Salvage reirradiaton with stereotactic body radiotherapy for locally recurrent head-and-neck tumors. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, 104–109. [Google Scholar] [CrossRef]
- Comet, B.; Kramar, A.; Faivre-Pierret, M.; Dewas, S.; Coche-Dequeant, B.; Degardin, M.; Lefebvre, J.-L.; Lacornerie, T.; Lartigau, E.F. Salvage stereotactic reirradiation with or without cetuximab for locally recurrent head-and-neck cancer: A feasibility study. Int. J. Radiat. Oncol. Biol. Phys. 2012, 84, 203–209. [Google Scholar] [CrossRef]
- Lartigau, E.F.; Tresch, E.; Thariat, J.; Graff, P.; Coche-Dequeant, B.; Benezery, K.; Schiappacasse, L.; Degardin, M.; Bondiau, P.-Y.; Peiffert, D.; et al. Multi institutional phase II study of concomitant stereotactic reirradiation and cetuximab for recurrent head and neck cancer. Radiother. Oncol. 2013, 109, 281–285. [Google Scholar] [CrossRef]
- Roh, K.-W.; Jang, J.-S.; Kim, M.-S.; Sun, D.-I.; Kim, B.-S.; Jung, S.-L.; Kang, J.-H.; Yoo, E.-J.; Yoon, S.-C.; Jang, H.-S.; et al. Fractionated Stereotactic Radiotherapy as Reirradiation for Locally Recurrent Head and Neck Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 1348–1355. [Google Scholar] [CrossRef]
- Rwigema, J.-C.; Heron, D.E.; Ferris, R.L.; Gibson, M.; Quinn, A.; Yang, Y.; Ozhasoglu, C.; Burton, S. Fractionated stereotactic body radiation therapy in the treatment of previously-irradiated recurrent head and neck carcinoma: Updated report of the University of Pittsburgh experience. Am. J. Clin. Oncol. 2010, 33, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Heron, D.E.; Ferris, R.L.; Karamouzis, M.; Andrade, R.S.; Deeb, E.L.; Burton, S.; Gooding, W.E.; Branstetter, B.F.; Mountz, J.M.; Johnson, J.T.; et al. Stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: Results of a phase I dose-escalation trial. Int. J. Radiat. Oncol. Biol. Phys. 2009, 75, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Heron, D.E.M.; Rwigema, J.-C.M.B.; Gibson, M.K.; Burton, S.A.; Quinn, A.E.R.; Ferris, R.L. Concurrent cetuximab with stereotactic body radiotherapy for recurrent squamous cell carcinoma of the head and neck: A single institution matched case-control study. Am. J. Clin. Oncol. 2011, 34, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Ansinelli, H.; Singh, R.; Sharma, D.L.; Jenkins, J.; Davis, J.; Vargo, A.J.; Sharma, S. Salvage Stereotactic Body Radiation Therapy for Locally Recurrent Previously Irradiated Head and Neck Squamous Cell Carcinoma: An Analysis from the RSSearch® Registry. Cureus 2018, 10, e3237. [Google Scholar] [CrossRef]
- Biau, J.; Thivat, E.; Millardet, C.; Saroul, N.; Pham-Dang, N.; Molnar, I.; Pereira, B.; Durando, X.; Bourhis, J.; Lapeyre, M. A multicenter prospective phase II study of postoperative hypofractionated stereotactic body radiotherapy (SBRT) in the treatment of early-stage oropharyngeal and oral cavity cancers with high risk margins: The STEREO POSTOP GORTEC 2017-03 trial. BMC Cancer 2020, 20, 730. [Google Scholar] [CrossRef]
- Collan, J.; Lundberg, M.; Vaalavirta, L.; Bäck, L.; Kajanti, M.; Mäkitie, A.; Tenhunen, M.; Saarilahti, K. Acta Oncologica Patterns of relapse following surgery and postoperative intensity modulated radiotherapy for oral and oropharyngeal cancer. Acta Oncol. 2011, 50, 1119–1125. [Google Scholar] [CrossRef]
- Chan, A.K.; Huang, S.H.; Le, L.W.; Yu, E.; Dawson, L.A.; Kim, J.J.; Cho, B.J.; Bayley, A.J.; Ringash, J.; Goldstein, D.; et al. Postoperative intensity-modulated radiotherapy following surgery for oral cavity squamous cell carcinoma: Patterns of failure. Oral. Oncol. 2013, 49, 255–260. [Google Scholar] [CrossRef]
- Vargo, J.A.; Kubicek, G.J.; Ferris, R.L.; Duvvuri, U.; Johnson, J.T.; Ohr, J.; Clump, D.A.; Burton, S.; Heron, D.E. Adjuvant stereotactic body radiotherapy±cetuximab following salvage surgery in previously irradiated head and neck cancer. Laryngoscope 2014, 124, 1579–1584. [Google Scholar] [CrossRef]
- Wong, S.; Torres-Saavedra, P.; Le, Q.; Chung, C.; Jang, S.; Huq, M.; Jordan, R.; Clump, D.; Blakaj, D.; Straza, M.; et al. Safety of reRT with SBRT plus concurrent and adjuvant pembrolizumab in patients with recurrent or new second primary head and neck squamous cell cancer in a previously irradiated field: RTOG 3507 Foundation (KEYSTROKE). Int. J. Radiat. Oncol. 2020, 106, 1224–1225. [Google Scholar] [CrossRef]
- Lavigne, D.; Ng, S.P.; O’sullivan, B.; Nguyen-Tan, P.F.; Filion, E.; Létourneau-Guillon, L.; Fuller, C.D.; Bahig, H. Magnetic Resonance-Guided Radiation Therapy for Head and Neck Cancers. Curr. Oncol. 2022, 29, 8302–8315. [Google Scholar] [CrossRef] [PubMed]
OAR Constraint | Constraint for 1 fx | Constraint for 2 fx | Constraint for 3 fx | Constraint for 4 fx | Constraint for 5 fx | Endpoint ≥ Grade 3 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Primary Disease | Re-RT | Primary Disease | Re-RT | Primary Disease | Re-RT | Primary Disease | Re-RT | Primary Disease | Re-RT | Primary Disease | Re-RT | |
Spinal cord and medulla_ PRV | Dmax 14 Gy (D0.035cc), V10 (<0.35cc) [26,27,28,29] | Dmax 9 Gy [26,30] | Dmax 17–19.3 Gy (D0.035cc), V13 (<0.35cc) [30] | Dmax 12.2 Gy [26,30] | Dmax 20.3–22.5 Gy (D0.035cc), V15.9 (<0.35 cc) [26,27,30] | Dmax 14.5 Gy [26] | Dmax 23–25.6 Gy (D0.035cc), V19.2 (<0.35 cc) [26,29] | Dmax 16.2 Gy [26,30] | Dmax 25.3–30 Gy (D0.035cc), V22 (<0.35 cc) [26,27,30] | Dmax 18 Gy [26,30] | Myelitis [29] Sahgal et al. [26]: Radiation myelopathy (1–5% risk for 1–5 fractions) | Myelitis [30] |
Optic pathway | Dmax 10 Gy, V8 (<0.2 cc) [29] | Dmax 8 Gy [24] | Dmax 17.3 Gy, V11.7 (<0.2 cc) [29] | - | Dmax 17.4 Gy, V15.3 (<0.2 cc) [29] | Dmax Gy, V15 < 0.2 cc (Optic nerves) [24] | Dmax 21.2 Gy, V19.2 (<0.2 cc) [29] | - | Dmax 25 Gy, V23 (<0.2 cc) [29] | Dmax 10 Gy [24] | Neuritis [29] | - |
Cochlea | Dmax 10 Gy [29], Dmax 4–12 Gy [24] | Dmax 12 Gy [24] | Dmax 13.7 Gy [29] | - | Dmax 17.4 Gy [29], Dmax 20 Gy [24] | Dmax 24 Gy [24] | Dmax 21.2 Gy [29] | - | Dmax 22 Gy [29], Dmax 25–30 Gy [24] | Dmax 20–27.5 Gy [24] | Hearing loss [29] | - |
Brain stem (not medulla) | Dmax 15 Gy, V10 (<0.5 cc) [29] | Dmax 10–15 Gy, V10 < 1 cc [24] | Dmax 17.3, V13 Gy (<0.5 cc) [29] | - | Dmax 23.1 Gy, V15.9 (<0.5 cc) [29] | Dmax 23 Gy, V18 < 1 cc [24] | Dmax 27.2 Gy, V20.8 (<0.5 cc) [29] | - | Dmax 31 Gy, V23 (<0.5 cc) [29] | Dmax 9–15 Gy [24] | Cranial neuropathy [29] | - |
Esophagus | Dmax 24 Gy, V20 (< 5 cc) [29], Dmax 19 Gy [24] | Dmax 10 Gy [24] | Dmax 28.3 Gy, V24.3 (<5 cc) [29] | - | Dmax 32.4 Gy, V27.9 (<5 cc) [29] | - | Dmax 35.6 Gy, V30.4 (<30.4 cc) [29] | - | Dmax 38 Gy, V32.5 (5 cc) [29], Dmax 27–35 Gy [24] | Dmax 20–25 Gy [24] | Esophagitis [29] | - |
Brachial plexus | Dmax 16.4 Gy, V 13.6 (<3 cc) [29] | Dmax 10–16 Gy, V14.4 <3 cc [24] | Dmax 20.8 Gy, V17.8 (<3 cc) [29] | - | Dmax 26 Gy, V22 (<3 cc) [29] | Dmax 23 Gy, V22.5 <3 cc [24] | Dmax 29.6 Gy, V24.8 (24.8(3 cc) [29] | - | Dmax 32.5 Gy, V27 (3 cc) [29] | Dmax 20–32 Gy V30 < 3 cc [24] | Neuropathy [29] | - |
Trachea | Dmax 30 Gy, V27.5 (<4 cc) [29] | - | Dmax 38 Gy, V34.5 (<4 cc) [29] | - | Dmax 43 Gy, V39<(5 cc) [29] | - | Dmax 47 Gy, V42.4(5 cc) [29] | - | Dmax 50 Gy, V45 (<5 cc) [29] | - | Stenosis [29] | - |
Skin | Dmax 27.5 Gy, V25.5 (10 cc) [29] | - | Dmax 30.3 Gy. V28.3 (10 cc) [29] | - | Dmax 33 Gy, V31 (10 cc) [29] | - | Dmax 54 Gy, V33.6 (10 cc) [29] | - | Dmax 38.5 Gy, V36.5 (10 cc) [29] | Dmax 20 Gy [24] | Ulceration [29] | - |
Brain | V12 Gy (10–15 cc) [31], Dmax 15–20 Gy V10 < 1 cc [24] | Dmax 10 Gy [24] | - | - | 20 Gy (D20cc) [31], Dmax23 Gy V18 < 1 cc [24] | - | - | - | 24 Gy (D20cc) [31], Dmax 10–25 Gy [24] | Dmax 20–23 Gy [24] | Milano et al. [31]: Symptomatic radiation necrosis (one fraction), oedema/necrosis (three and five fractions) | - |
Carotid artery | - | Dmax 10 Gy [24] | - | - | - | - | - | - | Dmax 25–47 Gy [24] | Dmax 15–34 Gy < 50% gets PTV dose [24] | - | - |
Parotid | - | - | - | - | - | - | - | - | - | Dmax 20–25 Gy [24] | - | - |
Lens | - | - | - | - | - | - | - | - | - | Dmax 6 Gy [24] | - | - |
Larynx | - | - | - | - | - | - | - | - | Dmax 20 Gy [24] | Dmax 20 Gy [24] | - | - |
Author (Year)/Design/Subsite | n | Median Age (Range), yr | Median Target Volume | Elective Nodal Irradiation | RT Dose (Gy)/Fraction | EQD2 (Gy) (α/β = 10) | BED10 (Gy) (α/β = 10) | BED3 (Gy) (α/β = 3) | Median Follow Up (Months) | LC (%) | OS (%) | Toxicity |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Voruganti et al. (2021)/retrospective/skin [33] | 106 | 86 (56–102) | (GTV) = 31 cm3 (range: 17–56 cm3) | Yes | 32–50/4–6 | 48–76.38 | 57.6–91.65 | 117.3–188.83 | 8 | 1 yr 78% | 1 yr 53% | Acute: Grade 3: 31 dermatitis Late grade ≥ 3: 7 fibrosis, 1 ORN and 1 grade 4 skin ulceration |
Al-Assaf et al. (2020)/retrospective/mixed [12] | 48 | 81 (25- 102) | Median GTV volume = 33.2 cc (range, 1.9–368.6 cc) | Yes | 35–50/4–6 | 54.69–76.38 | 65.63–91.65 | 137–189 | 10.5 | 85.5% | - | Acute: Grade 4:1 (Mucosal ulceration) Late: Grade 4:1 (ORN and skin ulceration) |
Gogineni et al. (2020)/retrospective/mixed [34] | 66 | 80 (47–99) | Median PTV volume = 82 cc | Yes | 35–40/5 | 49.58–60 | 59.5–72 | 116.67–146.67 | 15 (3–88) | 1 yr 73% | 1 yr 64% | Acute: Grade 3:2 Late: Grade ≥ 3:0 |
Khan et al. (2015)/retrospective/mixed [14] | 17 | 87 (25–103) | Median Maximum Diameter = 3.7 cm (1–10 cm) | Yes | 35–48/5–6 | 49.58–72 | 59.5–86.4 | 116.67–176 | 8 | 1 yr 87% | 1 yr 60% | Grade 3:0 |
Amini et al. (2014)/retrospective/mixed [16] | 3 | 82 (72–88) | Tumor volume cc = 15–36.7 cc | Yes | 25–36/5 | 31.25–51.6 | 37.5–61.92 | 66.67–122.4 | 8 | 100 (crude rate) | 33 | Grade 3 = 0 |
Vargo et al. (2014)/retrospective/mixed [17] | 12 | 88 (79–98) | Median = 42.1 cc (15.1–247.9 cc) | No | 20–44/1–5 | 50–68.93 | 60–82.72 | 155.33–173.07 | 6 (0.5–29 | 1 yr 69% | 1 yr 64% | Acute: Grade 3:1 Late: Grade 3:1 |
Kawaguchi et al. (2012)/retrospective/mixed [22] | 14 | 73 (64–93) | - | No | 35–42/3–5 | 63.18–64.4 | 75.81–77.28 | 171–77.28 | 36 (14–40) | Mean 71.4 | Mean 78.6 | Late: Grade 3:1 (ORN) (after 2nd SRS) |
Karam et al./retrospective/ parotid [32] | 13 | 80 (34–99) | PTV = 13.3–195.3 cc | Yes | 25–40/5–7 | 31.25–52.37 | 37.5–62.84 | 66.67–116.13 | 14 (0–59) | 2 yr LRC 84% | 2 yr 46% | Acute: G5: 1 Sepsis secondary to aspiration pneumonia |
Kodani et al. (2011)/retrospective/mixed [21] | 13 | 66 (17–88) | Median GTV volume = 22 cc (0.7–78 cc) | No | 19.5–42/3–8 | 26.81–53.38 | 32.17–64.05 | 61.75–115.5 | 16 (3–51) | CR:38% PR:46% | 85% | Grade 3:0 |
Siddiqui et al. (2009)/retrospective/mixed [20] | 10 | 73.5 (37–89) | Median GTV 15.5 cc (1.7–155 cc) | No | 30–48/5–6 | 40–72 | 48–86.4 | 90–176 | 32 (7–53.4) | 1 yr 83.3% | 1 yr 70% | Acute: Grade 3:1 (Pain) Late: Grade 3:1 (Cataract) |
Author (Year)/Subsite/Design | Sample Size (n) | Median Follow Up (Months) | EBRT Dose/Fraction | Boost Dose (Gy)/Fraction | GTV (cc) or Boost Volume (Range) | EQD2 (Gy) (α/β = 10) (Total) | BED10 (Gy) (α/β = 10) (Total) | Margins for Stereotactic Boost (PTV) | LC (%) | OS (%) | Initial Site of Failure (N) | Toxicity (N) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tate et al. (1999)/retrospective/nasopahrynx [44] | 23 | 21 (2–64) | 64.8 Gy–70 Gy (Median 66 Gy/ 33 frs) | 7–15 Gy /1#frs Median 12 Gy | Not reported | Median 88 | Median 105.6 | Not reported | 100% | Not reported | Local: 0 Regional: 2 Distant: 7 | As expected for EBRT |
Le et al. (2003)/retrospective/nasopahrynx [45] | 45 | 31 | 66 Gy/33 frs | 7–15 Gy/1 frs | Not reported | 88 | 105.6 | Not reported | 3 yr LC: 100% | 3 yr OS: 75% | Local: 0 Regional: 3 Distant: 14 | CN weakness: 4 Retinopathy: 1 Asymptomatic TLN: 3 |
Chen HH et al. (2006) retrospective/nasopahrynx [47] | 64 | 31 (22–54) | 64.8 Gy–68.4 Gy/36–38 frs | 12–15 Gy/4–5 frs | Mean GTV 62.6 (21.1– 145.3) | 76.72–83.51 | 92.06–100.2 | CTV + 2–3 mm | 3 yr LC: 93.1% | 3 yr OS: 84.9% | Local: 4 Regional: 7 Distant: 7 | Late Grade 4: None Note: 3 fatal nasal bleeding could be not related to SBRT boost |
Hara et al. (2008)/retrospective/nasopahrynx [46] | 82 | 40.7 (6.5–144.2) | 66 Gy/33 frs | 7–15 Gy/1 frs | Median GTV 34.2 (6.4– 102.2) | 88 | 105.6 | Not reported | 5 yr LC: 98% | 5 yr OS: 69% | Local: 1 Regional: 5 Distant: 27 | Retinopathy: 3 Asymptomatic TLN: 8 Symptomatic: 2 |
Uno T et al. (2010)/retrospective/mixed [48] | 10 | 16 (6–24) | 40 Gy–60 Gy/20–30 frs | 9–16 Gy/1–3 frs | Not reported | 54.22–80.44 | 65.1–96.53 | CTV + 0–5 mm | CR: 60% PR: 40% | Not reported | Local: 3 Distant: 1 | ≥Grade 3: None |
Lee DS et al. (2012) retrospective/mixed [50] | 26 | 56 (27.6–80.2) | 39.6 Gy–70.2 Gy (Median 50.4 Gy/28 frs) | 10–25 Gy/2–5 frs Median 21 Gy/5 frs | NPC median GTV 45.3 (21.3– 69.4) Non-NPC Median GTV 19.4 (6.9–66.8) | Median 74.41 | Median 89.29 | GTV + 1- mm | 1 yr LRRFR: 91.4% 2 yr LRRFR: 86.3% | 2 yr OS: 61.5% 5 yr OS: 46.2% | Local: 2 Regional: 1 Distant: 5 | ≥Grade 3: 9 |
Al-Mamgani et al. (2012)/retrospective/oropharynx [51] | 51 | 18 (6–65) | 46 Gy/23 frs | 16.5 Gy/3 frs | Not reported | 67.31 | 80.78 | CTV + 3 mm | 2 yr LC: 86% 3 yr LC: 70% | 2 yr OS: 82% 3 yr OS: 54% | Local: 5 Regional: 1 Distant: 1 | ≥Grade 3: 2 1 feeding tube dependence |
Yamazaki H et al. (2014) retrospective/mixed [49] | 25 | 28 (7–128) | 35 Gy–70 Gy (Median 50 Gy/25 frs) | 12–35 Gy/1–5 frs Median 15 Gy/3 frs | Not reported | Median 68.75 | Median 82.5 | 2 yr LC: 89% 5 yr LC: 71% | 2 yr OS: 83% 5 yr OS: 70% | - | ≥Grade 3: None | |
Karam et al., (2014)/retrospective/salivary gland [32] | 10 | 29 (12–120) | Median 64.8, range (50–75.6) | Median17.5, range (10– 30)/3–6 frs | Not reported | 87.82 (61.11–113.1) | 92.5 (75.91–102.3) | Definitive= GTV + 15– 20 mm Post-op CTV + 10– 20 mm | 1-yr LC: 90% 2-yr LC: 80% | 1 yr: 100% | Local: 1 Distant: 1 | ≥Grade 3: None |
Kataria et al., (2015)/retrospective/mixed [55] | 9 | 8 (6–19) | 54 (50–60)/(25–30) | 15 (10–25)/2–5 frs | Median GTV 16.3 (7– 47) | 72.7 (62.5–91.2) | 87.3 (75–109.5) | GTV +3–5 mm | CR: 55% | Not reported | Distant: 1 | ≥Grade 3: None |
Diaz- Martinez et al., (2018)/retrospective/Sinonasal/ nasopharynx [56] | 9 | 13.3 (4–32) | 64.3 (54–70)/(27–35) | 13 (12–20)/1 fr | Mean GTV 4.5 (1.17– 8.2) | 89.2 (76–120) | 107.1 (91.2–144) | Not reported | 1-yr LC: 100% | Not reported | Distant: 3 | ≥Grade 3: None |
Baker S et al. (2018)/retrospective/oropharynx Baker S et al. (2019)b retrospective/oropharynx [52] | 195 | 42.8 (2.1–98.6) | 46 Gy/23 frs | 16.5 Gy/3 frs | Not reported | 67.31 | 80.78 | CTV + 3 mm | 5 yr LC: 90% | 5 yr OS: 66.7% | Local: 18 Regional: 12 Distant: 11 | ≥Grade 3: 47 |
Vempati et al., (2020)/prospective/oropharynx [54] | 34 | 50 | 60–66/30 frs | 8–10/1–2 frs | Mean GTVp 70 Mean boost volume 54 (13–185) | 72–79.6 | 86.4–95.5 | CTV = GTV + 7 mm PTV = CTV + 3 mm | Median follow up of 50 months LC: 85.3% | Median follow up of 50 months OS: 85.3% | Local: 1 Regional: 2Distant: 4 | ≥Grade 3: 4 Dysphagia: 1 Pharyngeal hemorrhage: 3 |
Author (Year)/Design/Subsite | Sample Size (n) | Treatment | rRT Dose (Gy)/Fraction | Radiotherapy Treatment Duration | rRT Tumor Volume (cm3), Median (Range) | Median Follow Up (Months) | LC/LRC | Median Survival Rate, Months | Overall Survival Rate, % | Grade 4/5 Late Toxicity, % |
---|---|---|---|---|---|---|---|---|---|---|
Heron et al. (2009)/phase I/Mixed [73] | 25 | SBRT | 25–44 Gy/5 frs | 2 weeks | 44.8 (4.2–217) | - | 6 | - | 0 | |
Rwigema et al. (2010)/Retrospective/Mixed [72] | 85 | SBRT | 15–44 Gy/1–5 frs | 1–38 days | 25.1 (2.5–162) | 6 | 1-y LC: 51.2 2-y LC: 30.7 | 11.5 | 1-y OS: 48.5 2-y OS: 16.1 | 0 |
Heron et al. (2011)/Retrospective/Mixed [74] | 70 | SBRT +/− cetuximab | 20–44 Gy/5 frs | 9–14 days | 29 (4.8–86.8) | 21.3 | SBRT alone: 1-y LC: 53.8 2-y LC: 33.6. SBRT + Cetuximab: 1-y LC: 78.6 2-y LC: 49.2 | SBRT alone: 14.8 SBRT + Cetuximab: 24.5 | SBRT alone: 1-y OS: 52.7 2-y OS: 21.1. SBRT + Cetuximab: 1-y OS: 66 2-y OS: 53.3 | 0 |
Comet et al. (2011)/Retrospective/Mixed [69] | 40 | SBRT +/− cetuximab | 36 Gy/6 frs | 11–12 days | 29.5 (8–85) | 25.6 | - | 13.6 | 1-y OS: 58 2-y OS: 24 | 0 |
Lartigau et al. (2011)/Phase II/Mixed [70] | 56 | SBRT + cetuximab | 36 Gy/6 frs | 11–12 days | - | 11.4 | 3 months LC: 91.7 | 11.8 | 1-y OS: 47.5 | Grade 5:2 patients: (hemorrhage and denutrition) |
Cengiz et al. (2011)/Retrospective/Mixed [68] | 46 | SBRT | 18–35 Gy/1–5 frs | Daily | 45(3–206) | 7 | Median PFS: 10.5 | 1.9 | 1-y OS: 47 | Grade 5:8 patients, 17.8%): carotid blowout |
Vargo et al. (2014)/Retrospective/Mixed [17] | 132 | SBRT + cetuximab | 35–40 Gy/5 frs | 7–14 days | 30.9 (4.4–192.4) | 6 | 1-y LRC: 48 | 7 | 1-y OS:38 | 0 |
Unger et al. (2010)/Retrospective/Mixed [64] | 65 | SBRT | 21–35 Gy/2–5 frs | Daily | - | 16 | 2-y LRC: 30 | 12 | 2-y OS: 41 | Grade 4/5 late Toxicity: (6 patients, 9%) arterial bleeding, soft tissue necrosis, fistula formation, and dysphagia requiring hospitalization. |
Roh et al. (2009)/Retrospective/Mixed [71] | 36 | SBRT | 18–40 Gy/3–5 frs | Daily | 22.6 (0.2–114.9) | 17.3 | 1-y LRFS: 61 2-y LRFS: 52.2 | 16.2 | 1-y OS: 52.1 2-y OS: 30.9 | Grade 4/5 late Toxicity: (3 patients, 6.8%) (1 bone necrosis, 2 soft tissue necrosis) |
[15] et al. (2018)/Retrospective/Mixed | 197 | SBRT | 16–50 Gy/1–8 frs | Every other day | 30 (1–427) | 24 | 2-y cumulative LRF: 57 | 7.8 | 2-y OS: 16.3 | Grade 4/5 late Toxicity: (5% of patients developed carotid blowout syndrome, fistula, and intensive care unit admission) |
Ansinelli et al. (2018)/Retrospective/Mixed [75] | 45 | SBRT | 20–42.5 Gy/5 frs | Every other day | 34.09 (1.00–258.12) | 8.78 | 1-y LC: 49.6 | 9.23 | 1-y OS: 37.7 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamad, I.; Karam, I.; El-Sehemy, A.; Abu-Gheida, I.; Al-Ibraheem, A.; AL-Assaf, H.; Aldehaim, M.; Alghamdi, M.; Alotain, I.; Ashour, M.; et al. The Evolving Role of Stereotactic Body Radiation Therapy for Head and Neck Cancer: Where Do We Stand? Cancers 2023, 15, 5010. https://doi.org/10.3390/cancers15205010
Mohamad I, Karam I, El-Sehemy A, Abu-Gheida I, Al-Ibraheem A, AL-Assaf H, Aldehaim M, Alghamdi M, Alotain I, Ashour M, et al. The Evolving Role of Stereotactic Body Radiation Therapy for Head and Neck Cancer: Where Do We Stand? Cancers. 2023; 15(20):5010. https://doi.org/10.3390/cancers15205010
Chicago/Turabian StyleMohamad, Issa, Irene Karam, Ahmed El-Sehemy, Ibrahim Abu-Gheida, Akram Al-Ibraheem, Hossam AL-Assaf, Mohammed Aldehaim, Majed Alghamdi, Ibrahim Alotain, May Ashour, and et al. 2023. "The Evolving Role of Stereotactic Body Radiation Therapy for Head and Neck Cancer: Where Do We Stand?" Cancers 15, no. 20: 5010. https://doi.org/10.3390/cancers15205010
APA StyleMohamad, I., Karam, I., El-Sehemy, A., Abu-Gheida, I., Al-Ibraheem, A., AL-Assaf, H., Aldehaim, M., Alghamdi, M., Alotain, I., Ashour, M., Bushehri, A., ElHaddad, M., & Hosni, A. (2023). The Evolving Role of Stereotactic Body Radiation Therapy for Head and Neck Cancer: Where Do We Stand? Cancers, 15(20), 5010. https://doi.org/10.3390/cancers15205010