Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Sample Preparation, Instrument Setup, and Cell Acquisition
2.3. Immunophenotypic MRD Analysis
2.4. Molecular MRD Analysis
2.5. Data Analysis
3. Results
3.1. Patient Demographics and Treatment
3.1.1. B Lymphoblastic Leukaemia (B-ALL)
3.1.2. Acute Myeloid Leukaemia (AML)
3.2. Comparison of FC-MRD and Mol-MRD Results
3.2.1. B-ALL
3.2.2. AML
3.3. Longitudinal FC-MRD Patterns
3.3.1. B-ALL
3.3.2. AML
3.4. FC-MRD Association with Clinical Relapse and Death
3.4.1. B-ALL
3.4.2. AML
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Li, W.; Morgan, R.; Nieder, R.; Truong, S.; Habeebu, S.S.M.; Ahmed, A.A. Normal or reactive minor cell populations in bone marrow and peripheral blood mimic minimal residual leukemia by flow cytometry. Cytometry 2020, 100, 590–601. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wood, B.L. Monitoring minimal residual disease in acute leukemia: Technical challenges and interpretive complexities. Blood Rev. 2017, 31, 63–75. [Google Scholar] [CrossRef]
- Othus, M.; Gale, R.P.; Hourigan, C.S.; Walter, R.B. Statistics and measurable residual disease (MRD) testing: Uses and abuses in hematopoietic cell transplantation. Bone Marrow Transplant. 2020, 55, 843–850. [Google Scholar] [CrossRef]
- Chen, X.; Cherian, S. Role of Minimal Residual Disease Testing in Acute Myeloid Leukemia. Clin. Lab. Med. 2021, 41, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.-C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef] [PubMed]
- Coccaro, N.; Anelli, L.; Zagaria, A.; Specchia, G.; Albano, F. Next-Generation Sequencing in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2019, 20, 2929. [Google Scholar] [CrossRef] [PubMed]
- Zeijlemaker, W.; Gratama, J.W.; Schuurhuis, G.J. Tumor heterogeneity makes AML a “moving target” for detection of residual disease. Cytometry 2014, 86, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Pierce, E.; Mautner, B.; Mort, J.; Blewett, A.; Morris, A.; Keng, M.; El Chaer, F. MRD in ALL: Optimization and Innovations. Curr. Hematol. Malig. Rep. 2022, 17, 69–81. [Google Scholar] [CrossRef]
- Schuurhuis, G.J.; Heuser, M.; Freeman, S.; Béné, M.-C.; Buccisano, F.; Cloos, J.; Grimwade, D.; Haferlach, T.; Hills, R.K.; Hourigan, C.S.; et al. Minimal/measurable residual disease in AML: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2018, 131, 1275–1291. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, C.D.; Estey, E.; Pleyer, L.; Schuh, A.C.; Stein, E.M.; Tallman, M.S.; Wei, A. Time to repeal and replace response criteria for acute myeloid leukemia? Blood Rev. 2018, 32, 416–425. [Google Scholar] [CrossRef]
- Berry, D.A.; Zhou, S.; Higley, H.; Mukundan, L.; Fu, S.; Reaman, G.H.; Wood, B.L.; Kelloff, G.J.; Jessup, J.M.; Radich, J.P. Association of Minimal Residual Disease with Clinical Outcome in Pediatric and Adult Acute Lymphoblastic Leukemia: A Meta-analysis. JAMA Oncol. 2017, 3, e170580. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.L. Principles of minimal residual disease detection for hematopoietic neoplasms by flow cytometry. Cytometry 2016, 90, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Kruse, A.; Azim, A.; Kim, H.; Ruan, Y.; Phan, V.; Ogana, H.; Wang, W.; Lee, R.; Gang, E.J.; Khazal, S. Minimal Residual Disease Detection in Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 1054. [Google Scholar] [CrossRef]
- Paiva, B.; Vidriales, M.-B.; Sempere, A.; Tarín, F.; Colado, E.; Benavente, C.; Cedena, M.-T.; Sánchez, J.; Caballero-Velazquez, T.; Cordón, L.; et al. Impact of measurable residual disease by decentralized flow cytometry: A PETHEMA real-world study in 1076 patients with acute myeloid leukemia. Leukemia 2021, 35, 2358–2370. [Google Scholar] [CrossRef]
- Wood, B.L. Acute Myeloid Leukemia Minimal Residual Disease Detection: The Difference from Normal Approach. Curr. Protoc. Cytom. 2020, 93, e73. [Google Scholar] [CrossRef]
- Zhou, Y.; Moon, A.; Hoyle, E.; Fromm, J.R.; Chen, X.; Soma, L.; Salipante, S.J.; Wood, B.L.; Wu, D. Pattern associated leukemia immunophenotypes and measurable disease detection in acute myeloid leukemia or myelodysplastic syndrome with mutated NPM1. Cytometry 2019, 96, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.D.; Hourigan, C.S. MRD evaluation of AML in clinical practice: Are we there yet? Hematol. Am. Soc. Hematol. Educ. Program 2019, 2019, 557–569. [Google Scholar] [CrossRef]
- Boyer, T.; Gonzales, F.; Plesa, A.; Peyrouze, P.; Barthelemy, A.; Guihard, S.; Quesnel, B.; Roumier, C.; Preudhomme, C.; Cheok, M. Flow Cytometry to Estimate Leukemia Stem Cells in Primary Acute Myeloid Leukemia and in Patient-derived-xenografts, at Diagnosis and Follow Up. J. Vis. Exp. 2018, 26, 56976. [Google Scholar]
- Akabane, H.; Logan, A. Clinical Significance and Management of MRD in Adults With Acute Lymphoblastic Leukemia. Clin. Adv. Hematol. Oncol. 2020, 18, 413–422. [Google Scholar]
- Ribera, J.-M.; Morgades, M.; Ciudad, J.; Montesinos, P.; Esteve, J.; Genescà, E.; Barba, P.; Ribera, J.; García-Cadenas, I.; Moreno, M.J.; et al. Chemotherapy or allogeneic transplantation in high-risk Philadelphia chromosome-negative adult lymphoblastic leukemia. Blood 2021, 137, 1879–1894. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Slack, R.; Jorgensen, J.L.; Wang, S.A.; Rondon, G.; de Lima, M.; Shpall, E.; Popat, U.; Ciurea, S.; Alousi, A.; et al. The Effect of Peritransplant Minimal Residual Disease in Adults with Acute Lymphoblastic Leukemia Undergoing Allogeneic Hematopoietic Stem Cell Transplantation. Clin. Lymphoma Myeloma Leuk. 2014, 14, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Guolo, F.; Di Grazia, C.; Minetto, P.; Raiola, A.M.; Clavio, M.; Miglino, M.; Tedone, E.; Contini, P.; Mangerini, R.; Kunkl, A.; et al. Pre-transplant minimal residual disease assessment and transplant-related factors predict the outcome of acute myeloid leukemia patients undergoing allogeneic stem cell transplantation. Eur. J. Haematol. 2021, 107, 573–582. [Google Scholar] [CrossRef]
- Döhner, H.; Weisdorf, D.J.; Bloomfield, C.D. Acute Myeloid Leukemia. N. Engl. J. Med. 2015, 373, 1136–1152. [Google Scholar] [CrossRef]
- Liu, F.-J.; Cheng, W.-Y.; Lin, X.-J.; Wang, S.-Y.; Jiang, T.-Y.; Ma, T.-T.; Zhu, Y.-M.; Shen, Y. Measurable Residual Disease Detected by Multiparameter Flow Cytometry and Sequencing Improves Prediction of Relapse and Survival in Acute Myeloid Leukemia. Front. Oncol. 2021, 11, 677833. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, J.; Goswami, M.; Peng, J.; Zuo, Z.; Daver, N.; Borthakur, G.; Tang, G.; Medeiros, L.J.; Jorgensen, J.L.; Ravandi, F.; et al. Comparison of Multiparameter Flow Cytometry Immunophenotypic Analysis and Quantitative RT-PCR for the Detection of Minimal Residual Disease of Core Binding Factor Acute Myeloid Leukemia. Am. J. Clin. Pathol. 2016, 145, 769–777. [Google Scholar] [CrossRef]
- Perea, G.; Lasa, A.; Aventín, A.; Domingo, A.; Villamor, N.; De Llano, M.P.Q.; Llorente, A.; Juncà, J.; Palacios, C.; Fernández, C.; et al. Prognostic value of minimal residual disease (MRD) in acute myeloid leukemia (AML) with favorable cytogenetics t(8;21) and inv(16). Leukemia 2006, 20, 87–94. [Google Scholar] [CrossRef]
- Lopez, A.; Patel, S.; Geyer, J.T.; Racchumi, J.; Chadburn, A.; Simonson, P.; Ouseph, M.M.; Inghirami, G.; Mencia-Trinchant, N.; Guzman, M.L.; et al. Comparison of Multiple Clinical Testing Modalities for Assessment of NPM1-Mutant AML. Front. Oncol. 2021, 11, 701318. [Google Scholar] [CrossRef] [PubMed]
- Singh, J.; Gorniak, M.; Grigoriadis, G.; Westerman, D.; McBean, M.; Venn, N.; Law, T.; Sutton, R.; Morgan, S.; Fleming, S. Correlation between a 10-color flow cytometric measurable residual disease (MRD) analysis and molecular MRD in adult B-acute lymphoblastic leukemia. Cytom. B Clin. Cytom. 2022, 102, 115–122. [Google Scholar] [CrossRef]
- Theunissen, P.; Mejstrikova, E.; Sedek, L.; van der Sluijs-Gelling, A.J.; Gaipa, G.; Bartels, M.; da Costa, E.S.; Kotrová, M.; Novakova, M.; Sonneveld, E.; et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 2017, 129, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Garand, R.; Beldjord, K.; Cavé, H.; Fossat, C.; Arnoux, I.; Asnafi, V.; Bertrand, Y.; Boulland, M.-L.; Brouzes, C.; Clappier, E.; et al. Flow cytometry and IG/TCR quantitative PCR for minimal residual disease quantitation in acute lymphoblastic leukemia: A French multicenter prospective study on behalf of the FRALLE, EORTC and GRAALL. Leukemia 2013, 27, 370–376. [Google Scholar] [CrossRef]
- Van der Velden, V.H.; Cazzaniga, G.; Schrauder, A.; Hancock, J.; Bader, P.; Panzer-Grumayer, E.R.; Flohr, T.; Sutton, R.; Cave, H.; Madsen, H.O.; et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: Guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007, 21, 604–611. [Google Scholar] [CrossRef]
- Jamovi. Version 1.6. 2020. Available online: https://www.jamovi.org (accessed on 19 June 2023).
- R: A Language and Environment for Statistical Computing. Version R4.0. 2020. Available online: https://cran.r-project.org/ (accessed on 19 June 2023).
- SankeyMATIC (@[email protected]). Available online: https://sankeymatic.com (accessed on 2 July 2023).
- Deschler, B.; Lübbert, M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006, 107, 2099–2107. [Google Scholar] [CrossRef] [PubMed]
- Óskarsson, J.; Rögnvaldsson, S.; Thorsteinsdóttir, S.; Þórðardóttir, H.U.; Hakonardottir, G.K.; Gunnarsson, S.B.; Sigurdardóttir, G.; Thórdardottir, R.; Gíslason, G.; Olafsson, A.; et al. Determining Hemodilution in Diagnostic Bone Marrow Samples in Multiple Myeloma and Its Precursors by Next-Generation Flow Cytometry: Data from the Iceland Screens, Treats, or Prevents Multiple Myeloma (iStopMM) Study. Blood 2022, 140 (Suppl. S1), 7166–7167. [Google Scholar] [CrossRef]
- Shang, L.; Cai, X.; Sun, W.; Cheng, Q.; Mi, Y. Time point-dependent concordance and prognostic significance of flow cytometry and real time quantitative PCR for measurable/minimal residual disease detection in acute myeloid leukemia with t(8;21)(q22;q22.1). Cytometry 2021, 102, 34–43. [Google Scholar] [CrossRef]
- Kwon, M.; Martínez-Laperche, C.; Infante, M.; Carretero, F.; Balsalobre, P.; Serrano, D.; Gayoso, J.; Pérez-Corral, A.; Anguita, J.; Díez-Martín, J.L.; et al. Evaluation of minimal residual disease by real-time quantitative PCR of Wilms’ tumor 1 expression in patients with acute myelogenous leukemia after allogeneic stem cell transplantation: Correlation with flow cytometry and chimerism. Biol. Blood Marrow Transplant. 2012, 18, 1235–1242. [Google Scholar] [CrossRef] [PubMed]
- Taga, T.; Tanaka, S.; Hasegawa, D.; Terui, K.; Toki, T.; Iwamoto, S.; Hiramatsu, H.; Miyamura, T.; Hashii, Y.; Moritake, H.; et al. Post-induction MRD by FCM and GATA1-PCR are significant prognostic factors for myeloid leukemia of Down syndrome. Leukemia 2021, 35, 2508–2516. [Google Scholar] [CrossRef] [PubMed]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef]
- Gao, M.-G.; Ruan, G.-R.; Chang, Y.-J.; Liu, Y.-R.; Qin, Y.-Z.; Jiang, Q.; Jiang, H.; Huang, X.-J.; Zhao, X.-S. The predictive value of minimal residual disease when facing the inconsistent results detected by real-time quantitative PCR and flow cytometry in NPM1-mutated acute myeloid leukemia. Ann. Hematol. 2020, 99, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef]
- Getta, B.M.; Devlin, S.M.; Levine, R.L.; Arcila, M.E.; Mohanty, A.S.; Zehir, A.; Tallman, M.S.; Giralt, S.A.; Roshal, M. Multicolor Flow Cytometry and Multigene Next-Generation Sequencing Are Complementary and Highly Predictive for Relapse in Acute Myeloid Leukemia after Allogeneic Transplantation. Biol. Blood Marrow Transplant. 2017, 23, 1064–1071. [Google Scholar] [CrossRef]
- Tiong, I.S.; Dillon, R.; Ivey, A.; Kuzich, J.A.; Thiagarajah, N.; Sharplin, K.M.; Kok, C.H.; Tedjaseputra, A.; Rowland, J.P.; Grove, C.S.; et al. Clinical impact of NPM1-mutant molecular persistence after chemotherapy for acute myeloid leukemia. Blood Adv. 2021, 5, 5107–5111. [Google Scholar] [CrossRef] [PubMed]
- Buccisano, F.; Maurillo, L.; Spagnoli, A.; Del Principe, M.I.; Fraboni, D.; Panetta, P.; Ottone, T.; Consalvo, M.I.; Lavorgna, S.; Bulian, P.; et al. Cytogenetic and molecular diagnostic characterization combined to postconsolidation minimal residual disease assessment by flow cytometry improves risk stratification in adult acute myeloid leukemia. Blood 2010, 116, 2295–2303. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Nasillo, V.; Ottomano, A.M.; Bergonzini, G.; Paolini, A.; Forghieri, F.; Lusenti, B.; Barozzi, P.; Lagreca, I.; Fiorcari, S.; et al. Multiparametric Flow Cytometry for MRD Monitoring in Hematologic Malignancies: Clinical Applications and New Challenges. Cancers 2021, 13, 4582. [Google Scholar] [CrossRef] [PubMed]
n (%) | ||
---|---|---|
Age | ||
Median (IQR) | 51 (33.5–60.5) | |
Gender | ||
Female | 18 (35%) | |
Male | 29 (62%) | |
Treatment | ||
Chemotherapy | 32 (68%) | |
AlloSCT | 9 (19%) | |
Surveillance | 2 (4%) | |
Chemotherapy | ||
Multimodal chemotherapy | 19 (59%) | |
Blinatumomab | 3 (9%) | |
Maintenance | 10 (32%) | |
Conditioning regimen | ||
Reduced-intensity conditioning | 4 (44%) | |
Myeloablative conditioning | 5 (56%) | |
Donor type | ||
Matched unrelated donor | 3 (33%) | |
Haploidentical donor | 2 (22%) | |
Sibling donor | 4 (45%) | |
Genetics | ||
t(9;22) (BCR-ABL1) | 19 (53%) | |
IGH gene rearrangement | 17 (47%) | |
Flow MRD | ||
Positive | 12 (26%) | |
Negative | 33 (70%) | |
Indeterminate | 2 (4%) |
n (%) | ||
---|---|---|
Age | ||
Median (IQR) | 60 (47.5–69.0) | |
Gender | ||
Female | 42 (48%) | |
Male | 45 (52%) | |
Treatment | ||
Chemotherapy | 49 (56%) | |
AlloSCT | 29 (33%) | |
Surveillance | 7 (8%) | |
Chemotherapy regimens | ||
Intensive chemotherapy | 32 (37%) | |
Hypomethylating agent-based | 5 (6%) | |
Low-dose cytarabine-based regimen | 12 (14%) | |
Conditioning regimens | ||
Reduced-intensity conditioning | 19 (22%) | |
Myeloablative conditioning | 10 (11%) | |
Donor type | ||
Matched unrelated donor | 14 (16%) | |
Haploidentical donor | 11 (13%) | |
Sibling donor | 4 (5%) | |
Genetics | ||
t(8;21) (RUNX1-RUNX1T1) | 8 (9%) | |
inv(16) (CBFB-MYH11) | 2 (2%) | |
NPM1 mutations | 18 (21%) | |
t(9;22) (BCR-ABL1) | 1 (1%) | |
ELN risk | ||
Favourable | 25 (29%) | |
Intermediate | 23 (26%) | |
Adverse | 29 (33%) | |
Other | 6 (7%) | |
Flow MRD | ||
Positive | 44 (51%) | |
Negative | 23 (26%) | |
Indeterminate | 20 (23%) |
Mol-MRD | FC-MRD | Total | |||
---|---|---|---|---|---|
Positive > 5% (Relapse) | Positive | Indeterminate | Negative | ||
Positive | 3 (12%) | 10 (38%) | 1 (4%) | 12 (46%) | 26 (100%) |
Negative | 0 (0%) | 6 (8%) | 8 (11%) | 61 (81%) | 75 (100%) |
Total | 3 (3%) | 16 (16%) | 9 (9%) | 73 (73%) | 101 (100% |
Mol MRD | FC-MRD | Total | |||
---|---|---|---|---|---|
Positive > 5% (Relapse) | Positive | Indeterminate | Negative | ||
Positive | 1 (3%) | 10 (30%) | 8 (24%) | 14 (43%) | 33 (100%) |
Negative | 0 (0%) | 16 (32%) | 4 (8%) | 30 (60%) | 50 (100%) |
Total | 1 (1%) | 26 (31%) | 12 (15%) | 44 (53%) | 83 (100%) |
Time of MRD Result | Survival | n | Median | p |
---|---|---|---|---|
Baseline | Alive | 36 | 0 | 0.487 |
Deceased | 4 | 0.01 | ||
3 months | Alive | 25 | 0 | 0.014 |
Deceased | 2 | 0.17 | ||
6 months | Alive | 24 | 0 | 0.292 |
Deceased | 2 | 0.54 | ||
9 months | Alive | 20 | 0 | 0.18 |
Deceased | 3 | 8.4 |
Time of MRD Result | Survival | n | Median | p |
---|---|---|---|---|
Baseline | Alive | 63 | 0.03 | <0.001 |
Deceased | 13 | 1.39 | ||
3 months | Alive | 45 | 0.01 | 0.038 |
Deceased | 4 | 6.35 | ||
6 months | Alive | 45 | 0.01 | 0.017 |
Deceased | 5 | 10 | ||
9 months | Alive | 36 | 0 | 0.052 |
Deceased | 2 | 13.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van der Linde, R.; Gatt, P.N.; Smith, S.; Fernandez, M.A.; Vaughan, L.; Blyth, E.; Curnow, J.; Brown, D.A.; Tegg, E.; Sasson, S.C. Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year. Cancers 2023, 15, 5064. https://doi.org/10.3390/cancers15205064
van der Linde R, Gatt PN, Smith S, Fernandez MA, Vaughan L, Blyth E, Curnow J, Brown DA, Tegg E, Sasson SC. Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year. Cancers. 2023; 15(20):5064. https://doi.org/10.3390/cancers15205064
Chicago/Turabian Stylevan der Linde, Riana, Prudence N. Gatt, Sandy Smith, Marian A. Fernandez, Lachlin Vaughan, Emily Blyth, Jennifer Curnow, David A. Brown, Elizabeth Tegg, and Sarah C. Sasson. 2023. "Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year" Cancers 15, no. 20: 5064. https://doi.org/10.3390/cancers15205064
APA Stylevan der Linde, R., Gatt, P. N., Smith, S., Fernandez, M. A., Vaughan, L., Blyth, E., Curnow, J., Brown, D. A., Tegg, E., & Sasson, S. C. (2023). Measurable Residual Disease (MRD) by Flow Cytometry in Adult B-Acute Lymphoblastic Leukaemia (B-ALL) and Acute Myeloid Leukaemia (AML): Correlation with Molecular MRD Testing and Clinical Outcome at One Year. Cancers, 15(20), 5064. https://doi.org/10.3390/cancers15205064