Regular Humoral and Cellular Immune Responses in Individuals with Chronic Myeloid Leukemia Who Received a Full Vaccination Schedule against COVID-19
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Populations
2.2. Ethical Statement
2.3. Breakthrough Infections
2.4. Blood Sample Processing and Cell Lines
2.5. Phenotyping of B Lymphocytes
2.6. SARS-CoV-2 Serology
2.7. Neutralization Assays
2.8. Antibody-Dependent Cellular Cytotoxicity Assay
2.9. Direct Cellular Cytotoxicity Assay
2.10. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. SARS-CoV-2 Breakthrough Infections
3.3. Humoral Response after Two Doses of the Vaccine against SARS-CoV-2
3.4. Cytotoxicity of PBMCs from Individuals with CML
3.5. Phenotyping of Cytotoxic Cells Populations before and after Vaccination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19—11 March 2020. Available online: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 (accessed on 5 February 2023).
- Fung, M.; Babik, J.M. COVID-19 in Immunocompromised Hosts: What We Know So Far. Clin. Infect. Dis. 2021, 72, 340–350. [Google Scholar] [CrossRef] [PubMed]
- Vijenthira, A.; Gong, I.Y.; Fox, T.A.; Booth, S.; Cook, G.; Fattizzo, B.; Martin-Moro, F.; Razanamahery, J.; Riches, J.C.; Zwicker, J.; et al. Outcomes of patients with hematologic malignancies and COVID-19: A systematic review and meta-analysis of 3377 patients. Blood 2020, 136, 2881–2892. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Chen, L.; Chen, L.; Yuan, G.; Fang, Y.; Chen, W.; Wu, D.; Liang, B.; Lu, X.; Ma, Y.; et al. COVID-19 in persons with haematological cancers. Leukemia 2020, 34, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Climent, N.; Plana, M. Immunomodulatory Activity of Tyrosine Kinase Inhibitors to Elicit Cytotoxicity Against Cancer and Viral Infection. Front. Pharmacol. 2019, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
- Hughes, A.; Yong, A.S.M. Immune Effector Recovery in Chronic Myeloid Leukemia and Treatment-Free Remission. Front. Immunol. 2017, 8, 469. [Google Scholar] [CrossRef]
- Rodriguez-Agustin, A.; Casanova, V.; Grau-Exposito, J.; Sanchez-Palomino, S.; Alcami, J.; Climent, N. Immunomodulatory Activity of the Tyrosine Kinase Inhibitor Dasatinib to Elicit NK Cytotoxicity against Cancer, HIV Infection and Aging. Pharmaceutics 2023, 15, 917. [Google Scholar] [CrossRef]
- Kadowaki, N.; Ishiyama, K.; Kitawaki, T. Cytomegalovirus pulls strings behind NK cells. Oncotarget 2017, 8, 93297–93298. [Google Scholar] [CrossRef] [PubMed]
- Kreutzman, A.; Juvonen, V.; Kairisto, V.; Ekblom, M.; Stenke, L.; Seggewiss, R.; Porkka, K.; Mustjoki, S. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood 2010, 116, 772–782. [Google Scholar] [CrossRef]
- Mustjoki, S.; Auvinen, K.; Kreutzman, A.; Rousselot, P.; Hernesniemi, S.; Melo, T.; Lahesmaa-Korpinen, A.M.; Hautaniemi, S.; Bouchet, S.; Molimard, M.; et al. Rapid mobilization of cytotoxic lymphocytes induced by dasatinib therapy. Leukemia 2013, 27, 914–924. [Google Scholar] [CrossRef]
- Schlums, H.; Cichocki, F.; Tesi, B.; Theorell, J.; Beziat, V.; Holmes, T.D.; Han, H.; Chiang, S.C.; Foley, B.; Mattsson, K.; et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity 2015, 42, 443–456. [Google Scholar] [CrossRef]
- Hochhaus, A.; Baccarani, M.; Silver, R.T.; Schiffer, C.; Apperley, J.F.; Cervantes, F.; Clark, R.E.; Cortes, J.E.; Deininger, M.W.; Guilhot, F.; et al. European LeukemiaNet 2020 recommendations for treating chronic myeloid leukemia. Leukemia 2020, 34, 966–984. [Google Scholar] [CrossRef] [PubMed]
- de Lavallade, H.; Khoder, A.; Hart, M.; Sarvaria, A.; Sekine, T.; Alsuliman, A.; Mielke, S.; Bazeos, A.; Stringaris, K.; Ali, S.; et al. Tyrosine kinase inhibitors impair B-cell immune responses in CML through off-target inhibition of kinases important for cell signaling. Blood 2013, 122, 227–238. [Google Scholar] [CrossRef]
- Schade, A.E.; Schieven, G.L.; Townsend, R.; Jankowska, A.M.; Susulic, V.; Zhang, R.; Szpurka, H.; Maciejewski, J.P. Dasatinib, a small-molecule protein tyrosine kinase inhibitor, inhibits T-cell activation and proliferation. Blood 2008, 111, 1366–1377. [Google Scholar] [CrossRef] [PubMed]
- Seggewiss, R.; Lore, K.; Greiner, E.; Magnusson, M.K.; Price, D.A.; Douek, D.C.; Dunbar, C.E.; Wiestner, A. Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 2005, 105, 2473–2479. [Google Scholar] [CrossRef] [PubMed]
- Florentino, P.T.V.; Alves, F.J.O.; Cerqueira-Silva, T.; Oliveira, V.A.; Junior, J.B.S.; Jantsch, A.G.; Penna, G.O.; Boaventura, V.; Werneck, G.L.; Rodrigues, L.C.; et al. Vaccine effectiveness of CoronaVac against COVID-19 among children in Brazil during the Omicron period. Nat. Commun. 2022, 13, 4756. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.; Stowe, J.; Kirsebom, F.; Toffa, S.; Rickeard, T.; Gallagher, E.; Gower, C.; Kall, M.; Groves, N.; O’Connell, A.M.; et al. COVID-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant. N. Engl. J. Med. 2022, 386, 1532–1546. [Google Scholar] [CrossRef]
- World Health Organization. Linving Guidance of Clinical Management of COVID-19. Available online: https://apps.who.int/iris/bitstream/handle/10665/349321/WHO-2019-nCoV-clinical-2021.2-eng.pdf (accessed on 5 February 2023).
- Vigon, L.; Fuertes, D.; Garcia-Perez, J.; Torres, M.; Rodriguez-Mora, S.; Mateos, E.; Corona, M.; Saez-Marin, A.J.; Malo, R.; Navarro, C.; et al. Impaired Cytotoxic Response in PBMCs From Patients With COVID-19 Admitted to the ICU: Biomarkers to Predict Disease Severity. Front. Immunol. 2021, 12, 665329. [Google Scholar] [CrossRef]
- Vigon, L.; Garcia-Perez, J.; Rodriguez-Mora, S.; Torres, M.; Mateos, E.; Castillo de la Osa, M.; Cervero, M.; Malo De Molina, R.; Navarro, C.; Murciano-Anton, M.A.; et al. Impaired Antibody-Dependent Cellular Cytotoxicity in a Spanish Cohort of Patients With COVID-19 Admitted to the ICU. Front. Immunol. 2021, 12, 742631. [Google Scholar] [CrossRef]
- Diez-Fuertes, F.; Iglesias-Caballero, M.; Garcia-Perez, J.; Monzon, S.; Jimenez, P.; Varona, S.; Cuesta, I.; Zaballos, A.; Jimenez, M.; Checa, L.; et al. A Founder Effect Led Early SARS-CoV-2 Transmission in Spain. J. Virol. 2021, 95, e01583-20. [Google Scholar] [CrossRef]
- Puzzolo, M.C.; Breccia, M.; Mariglia, P.; Colafigli, G.; Pepe, S.; Scalzulli, E.; Mariggio, E.; Latagliata, R.; Guarini, A.; Foa, R. Immunomodulatory Effects of IFNalpha on T and NK Cells in Chronic Myeloid Leukemia Patients in Deep Molecular Response Preparing for Treatment Discontinuation. J. Clin. Med. 2022, 11, 5594. [Google Scholar] [CrossRef]
- Chang, M.C.; Cheng, H.I.; Hsu, K.; Hsu, Y.N.; Kao, C.W.; Chang, Y.F.; Lim, K.H.; Chen, C.G. NKG2A Down-Regulation by Dasatinib Enhances Natural Killer Cytotoxicity and Accelerates Effective Treatment Responses in Patients With Chronic Myeloid Leukemia. Front. Immunol. 2018, 9, 3152. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.I.; Maecker, H.T.; Lee, P.P. Development and dynamics of robust T-cell responses to CML under imatinib treatment. Blood 2008, 111, 5342–5349. [Google Scholar] [CrossRef]
- Hayashi, Y.; Nakamae, H.; Katayama, T.; Nakane, T.; Koh, H.; Nakamae, M.; Hirose, A.; Hagihara, K.; Terada, Y.; Nakao, Y.; et al. Different immunoprofiles in patients with chronic myeloid leukemia treated with imatinib, nilotinib or dasatinib. Leuk. Lymphoma 2012, 53, 1084–1089. [Google Scholar] [CrossRef] [PubMed]
- Schiffer, C.A.; Cortes, J.E.; Hochhaus, A.; Saglio, G.; le Coutre, P.; Porkka, K.; Mustjoki, S.; Mohamed, H.; Shah, N.P. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: Effects on response and toxicity. Cancer 2016, 122, 1398–1407. [Google Scholar] [CrossRef] [PubMed]
- Vigon, L.; Rodriguez-Mora, S.; Luna, A.; Sandonis, V.; Mateos, E.; Bautista, G.; Steegmann, J.L.; Climent, N.; Plana, M.; Perez-Romero, P.; et al. Cytotoxic cell populations developed during treatment with tyrosine kinase inhibitors protect autologous CD4+ T cells from HIV-1 infection. Biochem. Pharmacol. 2020, 182, 114203. [Google Scholar] [CrossRef] [PubMed]
- Bermejo, M.; Ambrosioni, J.; Bautista, G.; Climent, N.; Mateos, E.; Rovira, C.; Rodriguez-Mora, S.; Lopez-Huertas, M.R.; Garcia-Gutierrez, V.; Steegmann, J.L.; et al. Evaluation of resistance to HIV-1 infection ex vivo of PBMCs isolated from patients with chronic myeloid leukemia treated with different tyrosine kinase inhibitors. Biochem. Pharmacol. 2018, 156, 248–264. [Google Scholar] [CrossRef]
- Breccia, M.; Abruzzese, E.; Accurso, V.; Attolico, I.; Barulli, S.; Bergamaschi, M.; Binotto, G.; Bocchia, M.; Bonifacio, M.; Caocci, G.; et al. COVID-19 infection in chronic myeloid leukaemia after one year of the pandemic in Italy. A Campus CML report. Br. J. Haematol. 2022, 196, 559–565. [Google Scholar] [CrossRef]
- de Lavallade, H.; Garland, P.; Sekine, T.; Hoschler, K.; Marin, D.; Stringaris, K.; Loucaides, E.; Howe, K.; Szydlo, R.; Kanfer, E.; et al. Repeated vaccination is required to optimize seroprotection against H1N1 in the immunocompromised host. Haematologica 2011, 96, 307–314. [Google Scholar] [CrossRef]
- Rodriguez-Mora, S.; Corona, M.; Torres, M.; Casado-Fernandez, G.; Garcia-Perez, J.; Ramos-Martin, F.; Vigon, L.; Manzanares, M.; Mateos, E.; Martin-Moro, F.; et al. Early Cellular and Humoral Responses Developed in Oncohematological Patients after Vaccination with One Dose against COVID-19. J. Clin. Med. 2022, 11, 2803. [Google Scholar] [CrossRef]
- Burger, J.A.; Wiestner, A. Targeting B cell receptor signalling in cancer: Preclinical and clinical advances. Nat. Rev. Cancer 2018, 18, 148–167. [Google Scholar] [CrossRef]
- Claudiani, S.; Apperley, J.F.; Parker, E.L.; Marchesin, F.; Katsanovskaja, K.; Palanicawandar, R.; Innes, A.J.; Tedder, R.S.; McClure, M.O.; Milojkovic, D. Durable humoral responses after the second anti-SARS-CoV-2 vaccine dose in chronic myeloid leukaemia patients on tyrosine kinase inhibitors. Br. J. Haematol. 2022, 197, e1–e4. [Google Scholar] [CrossRef] [PubMed]
- Harrington, P.; Doores, K.J.; Radia, D.; O’Reilly, A.; Lam, H.P.J.; Seow, J.; Graham, C.; Lechmere, T.; McLornan, D.; Dillon, R.; et al. Single dose of BNT162b2 mRNA vaccine against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) induces neutralising antibody and polyfunctional T-cell responses in patients with chronic myeloid leukaemia. Br. J. Haematol. 2021, 194, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Katagiri, S.; Akahane, D.; Otsuki, S.; Suto, A.; Yamada, A.; Suguro, T.; Asano, M.; Yoshizawa, S.; Tanaka, Y.; Furuya, N.; et al. Tyrosine Kinase Inhibitors Do Not Promote a Decrease in SARS-CoV-2 Anti-Spike IgG after BNT162b2 Vaccination in Chronic Myeloid Leukemia: A Prospective Observational Study. Vaccines 2022, 10, 1404. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Jiang, Q.; Lu, J.; Sun, Y.; Zhao, X.; Yang, S.; Tang, F.; Yu, W.; Zhao, T.; Liu, X.; et al. COVID-19 infection in patients with haematological malignancies: A single-centre survey in the latest Omicron wave in China. Br. J. Haematol. 2023, 202, 31–39. [Google Scholar] [CrossRef] [PubMed]
CML On-TKI | CML Off-TKI | Healthy Donors | |
---|---|---|---|
Participants | 23 | 6 | 20 |
Age, median years (IQR) | 65 (57–69) | 76 (59–82) | 40 (35–46) |
Gender (female), n (%) | 13 (56) | 3 (50) | 12 (60) |
Time with CML, years (IQR) | 9 (4–15) | 15 (12.5–23.3) | - |
Time on treatment with TKIs, years (IQR) | 10.7 (3–13.5) | - | - |
Time on TFR, median years (IQR) | - | 3.5 (2.5–6.3) | - |
First line treatment, n (%) | 12 (52) | 3 (50) | - |
TKI, n (%) | |||
Ponatinib | 3 (13) | - | - |
Bosutinib | 2 (9) | - | - |
Nilotinib | 6 (26) | - | - |
Imatinib | 6 (26) | - | - |
Dasatinib | 5 (22) | - | - |
Asciminib | 1 (4) | - | - |
Vaccine, n (%) | |||
Spikevax | 14 (61) | 2 (33) | - |
Comirnaty | 5 (22) | 4 (67) | 20 (100) |
Vaxzevria | 4 (17) | - | - |
SARS-CoV-2 breakthrough infections, n (%) | 6 (26) | 4 (67) | 8 (40) |
Participant ID | Gender | Age (Years) | Vaccine | Current TKI | Time Since 2nd Dose to Infection (Months) |
---|---|---|---|---|---|
1 | M | 82 | Comirnaty | - | 13.5 |
2 | F | 75 | Comirnaty | - | 10.7 |
3 | F | 59 | Spikevax | - | 8.1 |
4 | M | 52 | Comirnaty | - | 1.5 |
5 | F | 69 | Vaxzevria | Nilotinib | 8.6 |
6 | M | 57 | Spikevax | Nilotinib | 7.4 |
7 | F | 68 | Spikevax | Nilotinib | 6 |
8 | M | 73 | Spikevax | Asciminib | 8.5 |
9 | F | 56 | Spikevax | Imatinib | 11.6 |
10 | F | 58 | Spikevax | Dasatinib | 7.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Mora, S.; Corona, M.; Solera Sainero, M.; Mateos, E.; Torres, M.; Sánchez-Menéndez, C.; Casado-Fernández, G.; García-Pérez, J.; Pérez-Olmeda, M.; Murciano-Antón, M.A.; et al. Regular Humoral and Cellular Immune Responses in Individuals with Chronic Myeloid Leukemia Who Received a Full Vaccination Schedule against COVID-19. Cancers 2023, 15, 5066. https://doi.org/10.3390/cancers15205066
Rodríguez-Mora S, Corona M, Solera Sainero M, Mateos E, Torres M, Sánchez-Menéndez C, Casado-Fernández G, García-Pérez J, Pérez-Olmeda M, Murciano-Antón MA, et al. Regular Humoral and Cellular Immune Responses in Individuals with Chronic Myeloid Leukemia Who Received a Full Vaccination Schedule against COVID-19. Cancers. 2023; 15(20):5066. https://doi.org/10.3390/cancers15205066
Chicago/Turabian StyleRodríguez-Mora, Sara, Magdalena Corona, Miriam Solera Sainero, Elena Mateos, Montserrat Torres, Clara Sánchez-Menéndez, Guiomar Casado-Fernández, Javier García-Pérez, Mayte Pérez-Olmeda, María Aranzazu Murciano-Antón, and et al. 2023. "Regular Humoral and Cellular Immune Responses in Individuals with Chronic Myeloid Leukemia Who Received a Full Vaccination Schedule against COVID-19" Cancers 15, no. 20: 5066. https://doi.org/10.3390/cancers15205066
APA StyleRodríguez-Mora, S., Corona, M., Solera Sainero, M., Mateos, E., Torres, M., Sánchez-Menéndez, C., Casado-Fernández, G., García-Pérez, J., Pérez-Olmeda, M., Murciano-Antón, M. A., López-Jiménez, J., Coiras, M., & García-Gutiérrez, V. (2023). Regular Humoral and Cellular Immune Responses in Individuals with Chronic Myeloid Leukemia Who Received a Full Vaccination Schedule against COVID-19. Cancers, 15(20), 5066. https://doi.org/10.3390/cancers15205066