New Generations of Tyrosine Kinase Inhibitors in Treating NSCLC with Oncogene Addiction: Strengths and Limitations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Novel Generations of TKIs for NSCLC in Clinical Practice
2.1. Efficacy
Oncogene | TKI | Registrational Trial | N° of Patients | Control Arm | Primary EP | Efficacy Results | CNS Activity in Patients with Evaluable Lesions |
---|---|---|---|---|---|---|---|
EGFR exon 19 deletions and exon 20 L858R | Afatinib | Phase IIB LUX-Lung-7 [14,61] | 319 | Gefitinib | PFS | Median PFS 11.0 vs. 10.9 months (HR 0.74; 95% CI, 0.57–0.95; p = 0.0178) | NA |
Dacomitinib | Phase III ARCHER 1050 [15,16] | 452 | Gefitinib | PFS | Median PFS 14.7 vs. 9.2 months (HR 0.59; 95% CI, 0.47–0.74; p < 0.0001) | - | |
Osimertinib | Phase III FLAURA [20,21,62] | 556 | Gefitinib or Erlotinib | PFS | Median PFS 18.9 vs. 10.2 months (HR 0.46; 95% CI, 0.37–0.57; p < 0.001) | icORR 91% vs. 68% icDoR 15.2 vs. 18.8 months | |
ALK | Ceritinib | Phase III ASCEND-4 [63] | 376 | PBC | PFS | Median PFS 16.6 vs. 8.1 months (HR 0.55; 95% CI, 0.42–0.73; p < 0.00001) | icORR 72.7% vs. 27.3% icDoR 16.6 months vs. NE |
Alectinib | Phase III ALEX [34,35] | 303 | Crizotinib | PFS | Median PFS 34.8 vs. 10.9 months (HR 0.43; 95% CI 0.32–0.58, p = 0.0001) | icORR 81% vs. 50% icDoR 17.3 vs. 5.5 months | |
Brigatinib | Phase III ALTA 1L [36] | 275 | Crizotinib | PFS | Median PFS 24.0 vs. 11.1 months (HR 0.48, 95% CI 0.35–0.66, log-rank p < 0.0001) | icORR 78% vs. 26% icDoR 27.9 vs. 9.2 months | |
Lorlatinib | Phase III CROWN [37,38,64] | 296 | Crizotinib | PFS | Median PFS NR vs. 9.3 months (HR 0.28; 95% CI 0.19–0.41, p < 0.001) | icORR 83% vs. 23% icDoR NR vs. 10.2 months | |
ROS1 | Entrectinib | Phase I-II ALKA-372-001, STARTRK-1, and STARTRK-2 [43,44] | 161 | - | ORR DoR | ORR 67.1% (95% CI 59.3–74.3) Median DoR 15.7 months (95% CI 13.9–28.6) | icORR 79.2% icDoR 12.9 months |
MET Exon 14 skipping | Tepotinib | Phase II VISION trial [50,65] | 111, 1L T+ (cohort C + A) | - | ORR | ORR 56.8% (95% CI, 47.0–66.1) | icORR 55% icDoR 9.5 months |
97, ≥2L (cohort C + A) | ORR 49.5% (95% CI, 39.2–59.8) | ||||||
Capmatinib | Phase II GEOMETRY-mono-1 trial [49,66,67,68] | 28 Treatment-naïve (cohort 5b) | - | ORR | ORR 67.9% (95% CI, 47.6–84.1) | iORR 67.9% | |
32 Treatment-naïve (expansion cohort 7) | ORR 65.6% (95% CI, 46.8–81.4) | ||||||
69 pretreated 2/3L (cohort 4) | ORR 40.6% (95% CI, 28.9–53.1) | iORR 40.6% | |||||
31 pretreated 2L (expansion cohort 6) | ORR 51.6% (95% CI, 33.1–69.8) | ||||||
KRAS G12C | Sotorasib | Phase II CodeBreaK 100 [69] | 174 | - | ORR | ORR 40.7% (95% CI, 33.3–48.4) | icORR NR icDoR NR |
Phase III CodeBreak 200 [45] | 345 | Docetaxel | PFS | Median PFS 5.6 vs. 4.5 months (HR 0.66; 95% CI 0.51–0.86, p = 0.0017) | icORR 33% | ||
Adagrasib | Phase I/II KRYSTAL-1 [47,70] | 116 | - | ORR | ORR 42.9% (95% CI, 34.5–52.6) | icORR 42% icDoR 12.7 months | |
RET | Selpercatinib | Phase I/II LIBRETTO-001 [54,71] | 69 Treatment-naïve | - | ORR | ORR 84% (95% CI, 73–92) | icORR 82% icDoR 9.4 months |
247 PPP | ORR 61% (95% CI, 55–67) | ||||||
Pralsetinib | Phase I/II ARROW [55] | 75 Treatment-naïve | - | ORR | ORR 72% (95% CI, 60–82) | icORR 78% | |
136 PPP | ORR 59% (95% CI, 50–67) | ||||||
BRAF V600E | Dabrafenib/ Trametinib | Phase II BRF113928 [56] | 36 Treatment-naïve (Cohort C) | - | ORR | ORR 63.9% (95% CI, 46.2–79.2) | NA |
57 Pretreated (Cohort B) | - | ORR 68.4% (95% CI, 54.8–80.1) | |||||
NTRK | Larotrectinib | Phase I/II NAVIGATE [58] | 20 NSCLC | - | ORR | ORR 73% (95% CI, 45–92) | icORR 63% |
Entrectinib | Phase I/II STARTRK-1; STARTRK-2; ALKA-372–001 [59,60] | 22 NSCLC | - | ORR | ORR 63.6% (95% CI, 40.7–82.8) | icORR 67% |
2.2. CNS Activity
3. Novel Generations of Small Molecule Inhibitors in Clinical Development
3.1. EGFR
Lazertinib a | Almonertinib b | Furmonertinib c | TY-9591 | SH-1028 | Limertinib d | Abivertinib e | Befotertinib f | Rezivertinib g | |
---|---|---|---|---|---|---|---|---|---|
Structure Respect To Osi | pyrimidine and on phenyl rings | cyclopropyl group on the indole group | tphenyl ring and methyl group | Not released | indole ring | Indole and pyrimidine ring | pyrimidine and on phenyl rings | Not released | oxygen replacing on phenyl ring |
IC50 nM (T790M+) | 1.85 | 0.37 | Not released | Not released | 0.55 | 0.3 | 0.18 | Not released | GI50 22 nM |
RP2D | 240 mg | 110 mg | 80 mg | 160 mg | 200 mg | 160 mg BID | 300 mg BID | 75–100 mg | 180 mg |
MTD | Not reached | Not reached | Not reached | unpublished | unpublished | unpublished | Not reached | Not reached | Not reached |
Approved for T790M+ | Korea 18 January 2021 | China 18 March 2020 | China 3 March 2021 | - | - | - | - | - | - |
Trial | Phase I/II Lee 2020 [84] | Apollo Lu 2020 [91] | Phase I/II Shi 2021 [92] | NCT04204473 Ongoing | Phase I/II Xiong 22 [93] | Phase IIb Li 2022 [94] | Phase I/II Zhou 2022 [95] | Phase I/II Lu 2022 [96] | Phase I Shi 2022 [97] |
ORR (T790M+) | 58% | 69% | 74% | - | 60.4% | 68.8% | 56.5% | 67.6% | 60.5% |
mPFS mos (T790M+) | 11 | 12.3 | 9.6 | - | 12.6 | 11 | 8.5 | 16.6 | 9.7 |
Approved for 1st line | Korea 30 June 2023 | China 4 December 2021 | China 28 June 2022 | - | - | - | - | - | - |
Vs 1st TKI | LASER301 Cho 2023 [85] | AENEAS Lu 2022 [98] | FURLONG Shi 2022 [99] | - | NCT04239833 Ongoing | NCT04143607 Ongoing | AEGIS-1 Ongoing | NCT04206072 Lu 2023 [100] | REZOR Ongoing |
mPFS (mos) | 20.6 vs. 9.7 | 19.3 vs. 9.9 | 20.8 vs. 11.1 | - | - | - | - | 21.1 vs. 13.8 | - |
ILD | 3% | 1% | 1% | NR | 0 | NR | NR | 2% | NR |
Ongoing trials | MARIPOSA Lazertinib vs. Osimertinib vs. Lazertinib/ amivantamab | - | - | FLETEO TY-9591 vs. osimertinib | - | - | - | - | - |
3.2. KRAS
3.3. BRAF and MET
3.4. Fusion Genes
4. Combination Treatments with New Generation TKIs
4.1. EGFR
4.2. Other Driver Gene Mutations
4.3. Fusion Genes
5. The Issue of Sequencing Treatments with New Generation TKIs
6. The Issue of Resistance: Selective Pressure on Resistant Clones
7. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, L.E.; Kerr, K.M.; Menis, J.; Mok, T.S.; Nestle, U.; Passaro, A.; Peters, S.; Planchard, D.; Smit, E.F.; Solomon, B.J.; et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 339–357. [Google Scholar] [CrossRef] [PubMed]
- Pottier, C.; Fresnais, M.; Gilon, M.; Jérusalem, G.; Longuespée, R.; Sounni, N.E. Tyrosine Kinase Inhibitors in Cancer: Breakthrough and Challenges of Targeted Therapy. Cancers 2020, 12, 731. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Wu, Y.-L.; Thongprasert, S.; Yang, C.-H.; Chu, D.-T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al. Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Attili, I.; Karachaliou, N.; Conte, P.; Bonanno, L.; Rosell, R. Therapeutic approaches for T790M mutation positive non-small-cell lung cancer. Expert Rev. Anticancer Ther. 2018, 18, 1021–1030. [Google Scholar] [CrossRef]
- Herrera-Juárez, M.; Serrano-Gómez, C.; Bote-de-Cabo, H.; Paz-Ares, L. Targeted therapy for lung cancer: Beyond EGFR and ALK. Cancer 2023, 129, 1803–1820. [Google Scholar] [CrossRef]
- Attili, I.; Del Re, M.; Guerini-Rocco, E.; Crucitta, S.; Pisapia, P.; Pepe, F.; Barberis, M.; Troncone, G.; Danesi, R.; de Marinis, F.; et al. The role of molecular heterogeneity targeting resistance mechanisms to lung cancer therapies. Expert Rev. Mol. Diagn. 2021, 21, 757–766. [Google Scholar] [CrossRef]
- Ullah, A.; Leong, S.W.; Wang, J.; Wu, Q.; Ghauri, M.A.; Sarwar, A.; Su, Q.; Zhang, Y. Cephalomannine inhibits hypoxia-induced cellular function via the suppression of APEX1/HIF-1α interaction in lung cancer. Cell Death Dis. 2021, 12, 490. [Google Scholar] [CrossRef]
- Gerritse, S.L.; Labots, M.; ter Heine, R.; Dekker, H.; Poel, D.; Tauriello, D.V.F.; Nagtegaal, I.D.; Van Den Hombergh, E.; Van Erp, N.; Verheul, H.M.W. High-Dose Intermittent Treatment with the Multikinase Inhibitor Sunitinib Leads to High Intra-Tumor Drug Exposure in Patients with Advanced Solid Tumors. Cancers 2022, 14, 6061. [Google Scholar] [CrossRef]
- Moes-Sosnowska, J.; Szpechcinski, A.; Chorostowska-Wynimko, J. Clinical significance of TP53 alterations in advanced NSCLC patients treated with EGFR, ALK and ROS1 tyrosine kinase inhibitors: An update. Tumour Biol. 2023; preprint. [Google Scholar] [CrossRef]
- Sequist, L.V.; Yang, J.C.; Yamamoto, N.; O’Byrne, K.; Hirsh, V.; Mok, T.; Geater, S.L.; Orlov, S.; Tsai, C.M.; Boyer, M.; et al. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2013, 31, 3327–3334. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.L.; Zhou, C.; Hu, C.P.; Feng, J.; Lu, S.; Huang, Y.; Li, W.; Hou, M.; Shi, J.H.; Lee, K.Y.; et al. Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): An open-label, randomised phase 3 trial. Lancet Oncol. 2014, 15, 213–222. [Google Scholar] [CrossRef]
- Yang, J.C.; Wu, Y.L.; Schuler, M.; Sebastian, M.; Popat, S.; Yamamoto, N.; Zhou, C.; Hu, C.P.; O’Byrne, K.; Feng, J.; et al. Afatinib versus cisplatin-based chemotherapy for EGFR mutation-positive lung adenocarcinoma (LUX-Lung 3 and LUX-Lung 6): Analysis of overall survival data from two randomised, phase 3 trials. Lancet Oncol. 2015, 16, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Paz-Ares, L.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Hirsh, V.; Boyer, M.; Yang, J.C.; Mok, T.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Overall survival data from the phase IIb LUX-Lung 7 trial. Ann. Oncol. 2017, 28, 270–277. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Lee, M.; Linke, R.; Rosell, R.; Corral, J.; et al. Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib with Gefitinib in Patients with Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2244–2250. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.S.; Cheng, Y.; Zhou, X.; Lee, K.H.; Nakagawa, K.; Niho, S.; Chawla, A.; Rosell, R.; Corral, J.; Migliorino, M.R.; et al. Updated Overall Survival in a Randomized Study Comparing Dacomitinib with Gefitinib as First-Line Treatment in Patients with Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. Drugs 2021, 81, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Sequist, L.V.; Geater, S.L.; Tsai, C.M.; Mok, T.S.; Schuler, M.; Yamamoto, N.; Yu, C.J.; Ou, S.H.; Zhou, C.; et al. Clinical activity of afatinib in patients with advanced non-small-cell lung cancer harbouring uncommon EGFR mutations: A combined post-hoc analysis of LUX-Lung 2, LUX-Lung 3, and LUX-Lung 6. Lancet Oncol. 2015, 16, 830–838. [Google Scholar] [CrossRef]
- Mok, T.S.; Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Kim, H.R.; Ramalingam, S.S.; Shepherd, F.A.; He, Y.; Akamatsu, H.; Theelen, W.S.; et al. Osimertinib or Platinum-Pemetrexed in EGFR T790M-Positive Lung Cancer. N. Engl. J. Med. 2017, 376, 629–640. [Google Scholar] [CrossRef]
- Papadimitrakopoulou, V.A.; Mok, T.S.; Han, J.Y.; Ahn, M.J.; Delmonte, A.; Ramalingam, S.S.; Kim, S.W.; Shepherd, F.A.; Laskin, J.; He, Y.; et al. Osimertinib versus platinum-pemetrexed for patients with EGFR T790M advanced NSCLC and progression on a prior EGFR-tyrosine kinase inhibitor: AURA3 overall survival analysis. Ann. Oncol. 2020, 31, 1536–1544. [Google Scholar] [CrossRef]
- Soria, J.C.; Ohe, Y.; Vansteenkiste, J.; Reungwetwattana, T.; Chewaskulyong, B.; Lee, K.H.; Dechaphunkul, A.; Imamura, F.; Nogami, N.; Kurata, T.; et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 113–125. [Google Scholar] [CrossRef]
- Ramalingam, S.S.; Vansteenkiste, J.; Planchard, D.; Cho, B.C.; Gray, J.E.; Ohe, Y.; Zhou, C.; Reungwetwattana, T.; Cheng, Y.; Chewaskulyong, B.; et al. Overall Survival with Osimertinib in Untreated, EGFR-Mutated Advanced NSCLC. N. Engl. J. Med. 2020, 382, 41–50. [Google Scholar] [CrossRef]
- Thress, K.S.; Paweletz, C.P.; Felip, E.; Cho, B.C.; Stetson, D.; Dougherty, B.; Lai, Z.; Markovets, A.; Vivancos, A.; Kuang, Y.; et al. Acquired EGFR C797S mutation mediates resistance to AZD9291 in non-small cell lung cancer harboring EGFR T790M. Nat. Med. 2015, 21, 560–562. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Jänne, P.A.; Mok, T.; Peters, S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat. Cancer 2021, 2, 377–391. [Google Scholar] [CrossRef] [PubMed]
- Riely, G.J.; Neal, J.W.; Camidge, D.R.; Spira, A.I.; Piotrowska, Z.; Costa, D.B.; Tsao, A.S.; Patel, J.D.; Gadgeel, S.M.; Bazhenova, L.; et al. Activity and Safety of Mobocertinib (TAK-788) in Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations from a Phase I/II Trial. Cancer Discov. 2021, 11, 1688–1699. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ramalingam, S.S.; Kim, T.M.; Kim, S.W.; Yang, J.C.; Riely, G.J.; Mekhail, T.; Nguyen, D.; Garcia Campelo, M.R.; Felip, E.; et al. Treatment Outcomes and Safety of Mobocertinib in Platinum-Pretreated Patients with EGFR Exon 20 Insertion-Positive Metastatic Non-Small Cell Lung Cancer: A Phase 1/2 Open-label Nonrandomized Clinical Trial. JAMA Oncol. 2021, 7, e214761. [Google Scholar] [CrossRef]
- Takeda’s Exkivity Sputters in Lung Cancer Trial, with Accelerated Approval on the Line. Available online: https://www.fiercepharma.com/pharma/takedas-exkivity-sputters-lung-cancer-trial-accelerated-approval-and-jj-rivalry-line (accessed on 1 October 2023).
- Treatment with RYBREVANT® (amivantamab-vmjw) Plus Chemotherapy Resulted in Statistically Significant and Clinically Meaningful Improvement in Progression-Free Survival in Patients with Newly Diagnosed EGFR Exon 20 Insertion Mutation-Positive Non-Small Cell Lung Cancer. Available online: https://www.jnj.com/treatment-with-rybrevant-amivantamab-vmjw-plus-chemotherapy-resulted-in-statistically-significant-and-clinically-meaningful-improvement-in-progression-free-survival-in-patients-with-newly-diagnosed-egfr-exon-20-insertion-mutation-positive-non-small-cell-lung-cancer (accessed on 1 October 2023).
- Neal, J.; Doebele, R.; Riely, G.; Spira, A.; Horn, L.; Piotrowska, Z.; Costa, D.; Zhang, S.; Bottino, D.; Zhu, J.; et al. P1.13-44 Safety, PK, and Preliminary Antitumor Activity of the Oral EGFR/HER2 Exon 20 Inhibitor TAK-788 in NSCLC. J. Thorac. Oncol. 2018, 13, S599. [Google Scholar] [CrossRef]
- Zhou, C.; Li, X.; Wang, Q.; Gao, G.; Zhang, Y.; Chen, J.; Shu, Y.; Hu, Y.; Fan, Y.; Fang, J.; et al. Pyrotinib in HER2-Mutant Advanced Lung Adenocarcinoma After Platinum-Based Chemotherapy: A Multicenter, Open-Label, Single-Arm, Phase II Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 2753–2761. [Google Scholar] [CrossRef]
- Le, X.; Cornelissen, R.; Garassino, M.; Clarke, J.M.; Tchekmedyian, N.; Goldman, J.W.; Leu, S.Y.; Bhat, G.; Lebel, F.; Heymach, J.V.; et al. Poziotinib in Non-Small-Cell Lung Cancer Harboring HER2 Exon 20 Insertion Mutations After Prior Therapies: ZENITH20-2 Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 710–718. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Shaw, A.T.; Kim, D.W.; Nakagawa, K.; Seto, T.; Crinó, L.; Ahn, M.J.; De Pas, T.; Besse, B.; Solomon, B.J.; Blackhall, F.; et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N. Engl. J. Med. 2013, 368, 2385–2394. [Google Scholar] [CrossRef]
- Novello, S.; Mazières, J.; Oh, I.J.; de Castro, J.; Migliorino, M.R.; Helland, Å.; Dziadziuszko, R.; Griesinger, F.; Kotb, A.; Zeaiter, A.; et al. Alectinib versus chemotherapy in crizotinib-pretreated anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer: Results from the phase III ALUR study. Ann. Oncol. 2018, 29, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Peters, S.; Camidge, D.R.; Shaw, A.T.; Gadgeel, S.; Ahn, J.S.; Kim, D.-W.; Ou, S.-H.I.; Pérol, M.; Dziadziuszko, R.; Rosell, R.; et al. Alectinib versus Crizotinib in Untreated ALK-Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 829–838. [Google Scholar] [CrossRef] [PubMed]
- Mok, T.; Camidge, D.R.; Gadgeel, S.M.; Rosell, R.; Dziadziuszko, R.; Kim, D.W.; Pérol, M.; Ou, S.I.; Ahn, J.S.; Shaw, A.T.; et al. Updated overall survival and final progression-free survival data for patients with treatment-naive advanced ALK-positive non-small-cell lung cancer in the ALEX study. Ann. Oncol. 2020, 31, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Camidge, D.R.; Kim, H.R.; Ahn, M.J.; Yang, J.C.H.; Han, J.Y.; Hochmair, M.J.; Lee, K.H.; Delmonte, A.; Garcia Campelo, M.R.; Kim, D.W.; et al. Brigatinib Versus Crizotinib in ALK Inhibitor-Naive Advanced ALK-Positive NSCLC: Final Results of Phase 3 ALTA-1L Trial. J. Thorac. Oncol. 2021, 16, 2091–2108. [Google Scholar] [CrossRef] [PubMed]
- Shaw, A.T.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Liu, G.; Mazieres, J.; Kim, D.W.; Mok, T.; Polli, A.; et al. First-Line Lorlatinib or Crizotinib in Advanced ALK-Positive Lung Cancer. N. Engl. J. Med. 2020, 383, 2018–2029. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.J.; Bauer, T.M.; Mok, T.S.K.; Liu, G.; Mazieres, J.; de Marinis, F.; Goto, Y.; Kim, D.W.; Wu, Y.L.; Jassem, J.; et al. Efficacy and safety of first-line lorlatinib versus crizotinib in patients with advanced, ALK-positive non-small-cell lung cancer: Updated analysis of data from the phase 3, randomised, open-label CROWN study. Lancet Respir. Med. 2023, 11, 354–366. [Google Scholar] [CrossRef]
- Shaw, A.T.; Friboulet, L.; Leshchiner, I.; Gainor, J.F.; Bergqvist, S.; Brooun, A.; Burke, B.J.; Deng, Y.L.; Liu, W.; Dardaei, L.; et al. Resensitization to Crizotinib by the Lorlatinib ALK Resistance Mutation L1198F. N. Engl. J. Med. 2016, 374, 54–61. [Google Scholar] [CrossRef]
- Shaw, A.T.; Ou, S.H.; Bang, Y.J.; Camidge, D.R.; Solomon, B.J.; Salgia, R.; Riely, G.J.; Varella-Garcia, M.; Shapiro, G.I.; Costa, D.B.; et al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med. 2014, 371, 1963–1971. [Google Scholar] [CrossRef]
- Gainor, J.F.; Tseng, D.; Yoda, S.; Dagogo-Jack, I.; Friboulet, L.; Lin, J.J.; Hubbeling, H.G.; Dardaei, L.; Farago, A.F.; Schultz, K.R.; et al. Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in ROS1-Positive Non-Small-Cell Lung Cancer. JCO Precis. Oncol. 2017, 1, 1–13. [Google Scholar] [CrossRef]
- Shaw, A.T.; Solomon, B.J.; Chiari, R.; Riely, G.J.; Besse, B.; Soo, R.A.; Kao, S.; Lin, C.C.; Bauer, T.M.; Clancy, J.S.; et al. Lorlatinib in advanced ROS1-positive non-small-cell lung cancer: A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2019, 20, 1691–1701. [Google Scholar] [CrossRef]
- Drilon, A.; Siena, S.; Dziadziuszko, R.; Barlesi, F.; Krebs, M.G.; Shaw, A.T.; de Braud, F.; Rolfo, C.; Ahn, M.J.; Wolf, J.; et al. Entrectinib in ROS1 fusion-positive non-small-cell lung cancer: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Dziadziuszko, R.; Krebs, M.G.; De Braud, F.; Siena, S.; Drilon, A.; Doebele, R.C.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Locally Advanced or Metastatic ROS1 Fusion-Positive Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2021, 39, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.-M.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: A randomised, open-label, phase 3 trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef] [PubMed]
- Ou, S.I.; Jänne, P.A.; Leal, T.A.; Rybkin, I.I.; Sabari, J.K.; Barve, M.A.; Bazhenova, L.; Johnson, M.L.; Velastegui, K.L.; Cilliers, C.; et al. First-in-Human Phase I/IB Dose-Finding Study of Adagrasib (MRTX849) in Patients with Advanced KRAS(G12C) Solid Tumors (KRYSTAL-1). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 2530–2538. [Google Scholar] [CrossRef]
- Jänne, P.A.; Riely, G.J.; Gadgeel, S.M.; Heist, R.S.; Ou, S.I.; Pacheco, J.M.; Johnson, M.L.; Sabari, J.K.; Leventakos, K.; Yau, E.; et al. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRAS(G12C) Mutation. N. Engl. J. Med. 2022, 387, 120–131. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Clark, J.W.; Weiss, J.; Ou, S.I.; Camidge, D.R.; Solomon, B.J.; Otterson, G.A.; Villaruz, L.C.; Riely, G.J.; Heist, R.S.; et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration. Nat. Med. 2020, 26, 47–51. [Google Scholar] [CrossRef]
- Wolf, J.; Seto, T.; Han, J.Y.; Reguart, N.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.W.; Hida, T.; de Jonge, M.; Orlov, S.V.; et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 944–957. [Google Scholar] [CrossRef]
- Paik, P.K.; Felip, E.; Veillon, R.; Sakai, H.; Cortot, A.B.; Garassino, M.C.; Mazieres, J.; Viteri, S.; Senellart, H.; Van Meerbeeck, J.; et al. Tepotinib in Non-Small-Cell Lung Cancer with MET Exon 14 Skipping Mutations. N. Engl. J. Med. 2020, 383, 931–943. [Google Scholar] [CrossRef]
- Lu, S.; Fang, J.; Li, X.; Cao, L.; Zhou, J.; Guo, Q.; Liang, Z.; Cheng, Y.; Jiang, L.; Yang, N.; et al. Once-daily savolitinib in Chinese patients with pulmonary sarcomatoid carcinomas and other non-small-cell lung cancers harbouring MET exon 14 skipping alterations: A multicentre, single-arm, open-label, phase 2 study. Lancet Respir. Med. 2021, 9, 1154–1164. [Google Scholar] [CrossRef]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Subbiah, V.; Velcheti, V.; Tuch, B.B.; Ebata, K.; Busaidy, N.L.; Cabanillas, M.E.; Wirth, L.J.; Stock, S.; Smith, S.; Lauriault, V.; et al. Selective RET kinase inhibition for patients with RET-altered cancers. Ann. Oncol. 2018, 29, 1869–1876. [Google Scholar] [CrossRef]
- Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Shao-Weng Tan, D.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in Patients with RET Fusion-Positive Non-Small-Cell Lung Cancer: Updated Safety and Efficacy from the Registrational LIBRETTO-001 Phase I/II Trial. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 385–394. [Google Scholar] [CrossRef]
- Griesinger, F.; Curigliano, G.; Thomas, M.; Subbiah, V.; Baik, C.S.; Tan, D.S.W.; Lee, D.H.; Misch, D.; Garralda, E.; Kim, D.W.; et al. Safety and efficacy of pralsetinib in RET fusion-positive non-small-cell lung cancer including as first-line therapy: Update from the ARROW trial. Ann. Oncol. 2022, 33, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Hashemi, S.M.S.; Mazieres, J.; Kim, T.M.; Quoix, E.; Souquet, P.J.; Barlesi, F.; Baik, C.; et al. Phase 2 Study of Dabrafenib Plus Trametinib in Patients with BRAF V600E-Mutant Metastatic NSCLC: Updated 5-Year Survival Rates and Genomic Analysis. J. Thorac. Oncol. 2022, 17, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Riely, G.J.; Smit, E.F.; Ahn, M.J.; Felip, E.; Ramalingam, S.S.; Tsao, A.; Johnson, M.; Gelsomino, F.; Esper, R.; Nadal, E.; et al. Phase II, Open-Label Study of Encorafenib Plus Binimetinib in Patients with BRAF(V600)-Mutant Metastatic Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 3700–3711. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Tan, D.S.W.; Lassen, U.N.; Leyvraz, S.; Liu, Y.; Patel, J.D.; Rosen, L.; Solomon, B.; Norenberg, R.; Dima, L.; et al. Efficacy and Safety of Larotrectinib in Patients with Tropomyosin Receptor Kinase Fusion-Positive Lung Cancers. JCO Precis. Oncol. 2022, 6, e2100418. [Google Scholar] [CrossRef]
- Demetri, G.D.; De Braud, F.; Drilon, A.; Siena, S.; Patel, M.R.; Cho, B.C.; Liu, S.V.; Ahn, M.J.; Chiu, C.H.; Lin, J.J.; et al. Updated Integrated Analysis of the Efficacy and Safety of Entrectinib in Patients with NTRK Fusion-Positive Solid Tumors. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 1302–1312. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Park, K.; Tan, E.H.; O’Byrne, K.; Zhang, L.; Boyer, M.; Mok, T.; Hirsh, V.; Yang, J.C.; Lee, K.H.; Lu, S.; et al. Afatinib versus gefitinib as first-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): A phase 2B, open-label, randomised controlled trial. Lancet Oncol. 2016, 17, 577–589. [Google Scholar] [CrossRef]
- Reungwetwattana, T.; Nakagawa, K.; Cho, B.C.; Cobo, M.; Cho, E.K.; Bertolini, A.; Bohnet, S.; Zhou, C.; Lee, K.H.; Nogami, N.; et al. CNS Response to Osimertinib Versus Standard Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors in Patients with Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 3290–3297. [Google Scholar] [CrossRef]
- Soria, J.C.; Tan, D.S.W.; Chiari, R.; Wu, Y.L.; Paz-Ares, L.; Wolf, J.; Geater, S.L.; Orlov, S.; Cortinovis, D.; Yu, C.J.; et al. First-line ceritinib versus platinum-based chemotherapy in advanced ALK-rearranged non-small-cell lung cancer (ASCEND-4): A randomised, open-label, phase 3 study. Lancet 2017, 389, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Solomon, B.J.; Bauer, T.M.; Ignatius Ou, S.H.; Liu, G.; Hayashi, H.; Bearz, A.; Penkov, K.; Wu, Y.L.; Arrieta, O.; Jassem, J.; et al. Post Hoc Analysis of Lorlatinib Intracranial Efficacy and Safety in Patients with ALK-Positive Advanced Non-Small-Cell Lung Cancer from the Phase III CROWN Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3593–3602. [Google Scholar] [CrossRef]
- Thomas, M.; Garassino, M.; Felip, E.; Sakai, H.; Le, X.; Veillon, R.; Smit, E.; Mazieres, J.; Cortot, A.; Raskin, J.; et al. OA03.05 Tepotinib in Patients with MET Exon 14 (METex14) Skipping NSCLC: Primary Analysis of the Confirmatory VISION Cohort C. J. Thorac. Oncol. 2022, 17, S9–S10. [Google Scholar] [CrossRef]
- Wolf, J.; Garon, E.B.; Groen, H.J.M.; Tan, D.S.-W.; Robeva, A.; Mouhaer, S.L.; Carbini, M.; Chassot-Agostinho, A.; Heist, R.S. Capmatinib in MET exon 14-mutated, advanced NSCLC: Updated results from the GEOMETRY mono-1 study. J. Clin. Oncol. 2021, 39, 9020. [Google Scholar] [CrossRef]
- Vansteenkiste, J.F.; Smit, E.F.; Groen, H.J.M.; Garon, E.B.; Heist, R.S.; Hida, T.; Nishio, M.; Kokowski, K.; Grohe, C.; Reguart, N.; et al. 1285P Capmatinib in patients with METex14-mutated advanced non-small cell lung cancer who received prior immunotherapy: The phase II GEOMETRY mono-1 study. Ann. Oncol. 2020, 31, S830. [Google Scholar] [CrossRef]
- Garon, E.B.; Heist, R.S.; Seto, T.; Han, J.-Y.; Reguart, N.; Groen, H.J.; Tan, D.S.; Hida, T.; de Jonge, M.J.; Orlov, S.V.; et al. Abstract CT082: Capmatinib in METex14-mutated (mut) advanced non-small cell lung cancer (NSCLC): Results from the phase II GEOMETRY mono-1 study, including efficacy in patients (pts) with brain metastases (BM). Cancer Res. 2020, 80, CT082. [Google Scholar] [CrossRef]
- Skoulidis, F.; Li, B.T.; Dy, G.K.; Price, T.J.; Falchook, G.S.; Wolf, J.; Italiano, A.; Schuler, M.; Borghaei, H.; Barlesi, F.; et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N. Engl. J. Med. 2021, 384, 2371–2381. [Google Scholar] [CrossRef]
- Negrao, M.V.; Spira, A.I.; Heist, R.S.; Jänne, P.A.; Pacheco, J.M.; Weiss, J.; Gadgeel, S.M.; Velastegui, K.; Yang, W.; Der-Torossian, H.; et al. Intracranial Efficacy of Adagrasib in Patients from the KRYSTAL-1 Trial with KRASG12C–Mutated Non–Small-Cell Lung Cancer Who Have Untreated CNS Metastases. J. Clin. Oncol. 2023, 41, 4472–4477. [Google Scholar] [CrossRef]
- Subbiah, V.; Gainor, J.F.; Oxnard, G.R.; Tan, D.S.W.; Owen, D.H.; Cho, B.C.; Loong, H.H.; McCoach, C.E.; Weiss, J.; Kim, Y.J.; et al. Intracranial Efficacy of Selpercatinib in RET Fusion-Positive Non-Small Cell Lung Cancers on the LIBRETTO-001 Trial. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 4160–4167. [Google Scholar] [CrossRef]
- Zeng, Y.D.; Liao, H.; Qin, T.; Zhang, L.; Wei, W.D.; Liang, J.Z.; Xu, F.; Dinglin, X.X.; Ma, S.X.; Chen, L.K. Blood-brain barrier permeability of gefitinib in patients with brain metastases from non-small-cell lung cancer before and during whole brain radiation therapy. Oncotarget 2015, 6, 8366–8376. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, W.; Wu, J.; Chen, Z.; Tang, Y.; Zhang, H.; Liang, J.; Xian, H.; Zhang, S. The concentration of erlotinib in the cerebrospinal fluid of patients with brain metastasis from non-small-cell lung cancer. Mol. Clin. Oncol. 2014, 2, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Togashi, Y.; Masago, K.; Fukudo, M.; Terada, T.; Fujita, S.; Irisa, K.; Sakamori, Y.; Kim, Y.H.; Mio, T.; Inui, K.; et al. Cerebrospinal fluid concentration of erlotinib and its active metabolite OSI-420 in patients with central nervous system metastases of non-small cell lung cancer. J. Thorac. Oncol. 2010, 5, 950–955. [Google Scholar] [CrossRef] [PubMed]
- Tamiya, A.; Tamiya, M.; Nishihara, T.; Shiroyama, T.; Nakao, K.; Tsuji, T.; Takeuchi, N.; Isa, S.I.; Omachi, N.; Okamoto, N.; et al. Cerebrospinal Fluid Penetration Rate and Efficacy of Afatinib in Patients with EGFR Mutation-positive Non-small Cell Lung Cancer with Leptomeningeal Carcinomatosis: A Multicenter Prospective Study. Anticancer Res. 2017, 37, 4177–4182. [Google Scholar] [CrossRef]
- Ballard, P.; Yates, J.W.; Yang, Z.; Kim, D.W.; Yang, J.C.; Cantarini, M.; Pickup, K.; Jordan, A.; Hickey, M.; Grist, M.; et al. Preclinical Comparison of Osimertinib with Other EGFR-TKIs in EGFR-Mutant NSCLC Brain Metastases Models, and Early Evidence of Clinical Brain Metastases Activity. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 5130–5140. [Google Scholar] [CrossRef] [PubMed]
- Nanjo, S.; Hata, A.; Okuda, C.; Kaji, R.; Okada, H.; Tamura, D.; Irie, K.; Okada, H.; Fukushima, S.; Katakami, N. Standard-dose osimertinib for refractory leptomeningeal metastases in T790M-positive EGFR-mutant non-small cell lung cancer. Br. J. Cancer 2018, 118, 32–37. [Google Scholar] [CrossRef]
- Yang, J.C.H.; Kim, S.W.; Kim, D.W.; Lee, J.S.; Cho, B.C.; Ahn, J.S.; Lee, D.H.; Kim, T.M.; Goldman, J.W.; Natale, R.B.; et al. Osimertinib in Patients with Epidermal Growth Factor Receptor Mutation-Positive Non-Small-Cell Lung Cancer and Leptomeningeal Metastases: The BLOOM Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 538–547. [Google Scholar] [CrossRef]
- Wu, Y.L.; Ahn, M.J.; Garassino, M.C.; Han, J.Y.; Katakami, N.; Kim, H.R.; Hodge, R.; Kaur, P.; Brown, A.P.; Ghiorghiu, D.; et al. CNS Efficacy of Osimertinib in Patients with T790M-Positive Advanced Non-Small-Cell Lung Cancer: Data from a Randomized Phase III Trial (AURA3). J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2018, 36, 2702–2709. [Google Scholar] [CrossRef]
- Bauer, T.M.; Shaw, A.T.; Johnson, M.L.; Navarro, A.; Gainor, J.F.; Thurm, H.; Pithavala, Y.K.; Abbattista, A.; Peltz, G.; Felip, E. Brain Penetration of Lorlatinib: Cumulative Incidences of CNS and Non-CNS Progression with Lorlatinib in Patients with Previously Treated ALK-Positive Non-Small-Cell Lung Cancer. Target. Oncol. 2020, 15, 55–65. [Google Scholar] [CrossRef]
- Gadgeel, S.M.; Gandhi, L.; Riely, G.J.; Chiappori, A.A.; West, H.L.; Azada, M.C.; Morcos, P.N.; Lee, R.M.; Garcia, L.; Yu, L.; et al. Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): Results from the dose-finding portion of a phase 1/2 study. Lancet Oncol. 2014, 15, 1119–1128. [Google Scholar] [CrossRef]
- Lee, J.; Choi, Y.; Han, J.; Park, S.; Jung, H.A.; Su, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. Osimertinib Improves Overall Survival in Patients with EGFR-Mutated NSCLC with Leptomeningeal Metastases Regardless of T790M Mutational Status. J. Thorac. Oncol. 2020, 15, 1758–1766. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Han, J.-Y.; Lee, K.H.; Kim, S.-W.; Kim, D.-W.; Lee, Y.-G.; Cho, E.K.; Kim, J.-H.; Lee, G.-W.; Lee, J.-S.; et al. Lazertinib in patients with EGFR mutation-positive advanced non-small-cell lung cancer: Results from the dose escalation and dose expansion parts of a first-in-human, open-label, multicentre, phase 1–2 study. Lancet Oncol. 2019, 20, 1681–1690. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Han, J.Y.; Kim, S.W.; Lee, K.H.; Cho, E.K.; Lee, Y.G.; Kim, D.W.; Kim, J.H.; Lee, G.W.; Lee, J.S.; et al. A Phase 1/2 Study of Lazertinib 240 mg in Patients with Advanced EGFR T790M-Positive NSCLC After Previous EGFR Tyrosine Kinase Inhibitors. J. Thorac. Oncol. 2022, 17, 558–567. [Google Scholar] [CrossRef] [PubMed]
- Cho, B.C.; Ahn, M.J.; Kang, J.H.; Soo, R.A.; Reungwetwattana, T.; Yang, J.C.; Cicin, I.; Kim, D.W.; Wu, Y.L.; Lu, S.; et al. Lazertinib Versus Gefitinib as First-Line Treatment in Patients with EGFR-Mutated Advanced Non-Small-Cell Lung Cancer: Results from LASER301. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 4208–4217. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.C.; Camidge, D.R.; Yang, C.T.; Zhou, J.; Guo, R.; Chiu, C.H.; Chang, G.C.; Shiah, H.S.; Chen, Y.; Wang, C.C.; et al. Safety, Efficacy, and Pharmacokinetics of Almonertinib (HS-10296) in Pretreated Patients with EGFR-Mutated Advanced NSCLC: A Multicenter, Open-label, Phase 1 Trial. J. Thorac. Oncol. 2020, 15, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Wang, Q.; Zhang, G.; Dong, X.; Yang, C.; Song, Y.; Chang, G.; Lu, Y.; Pan, H.; Chiu, C.; et al. OA02.03 The Third Generation EGFR Inhibitor (EGFR-TKI) HS-10296 in Advanced NSCLC Patients with Resistance to First Generation EGFR-TKI. J. Thorac. Oncol. 2019, 14, S208–S209. [Google Scholar] [CrossRef]
- Park, S.; Ku, B.M.; Jung, H.A.; Sun, J.M.; Ahn, J.S.; Lee, S.H.; Park, K.; Ahn, M.J. EGFR C797S as a Resistance Mechanism of Lazertinib in Non-small Cell Lung Cancer with EGFR T790M Mutation. Cancer Res. Treat. 2020, 52, 1288–1290. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Chen, Z.H.; Zhang, X.C.; Xu, C.R.; Yan, H.H.; Xie, Z.; Chuai, S.K.; Ye, J.Y.; Han-Zhang, H.; Zhang, Z.; et al. Analysis of resistance mechanisms to abivertinib, a third-generation EGFR tyrosine kinase inhibitor, in patients with EGFR T790M-positive non-small cell lung cancer from a phase I trial. EBioMedicine 2019, 43, 180–187. [Google Scholar] [CrossRef]
- Wang, F.; Adjei, A.A. Does the Lung Cancer Field Need Another Third-Generation EGFR Tyrosine Kinase Inhibitor? J. Thorac. Oncol. 2020, 15, 881–883. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Q.; Zhang, G.; Dong, X.; Yang, C.-T.; Song, Y.; Chang, G.-C.; Lu, Y.; Pan, H.; Chiu, C.-H.; et al. Abstract CT190: A multicenter, open-label, single-arm, phase II study: The third generation EGFR tyrosine kinase inhibitor almonertinib for pretreated EGFR T790M-positive locally advanced or metastatic non-small cell lung cancer (APOLLO). Cancer Res. 2020, 80, CT190. [Google Scholar] [CrossRef]
- Shi, Y.; Hu, X.; Zhang, S.; Lv, D.; Wu, L.; Yu, Q.; Zhang, Y.; Liu, L.; Wang, X.; Cheng, Y.; et al. Efficacy, safety, and genetic analysis of furmonertinib (AST2818) in patients with EGFR T790M mutated non-small-cell lung cancer: A phase 2b, multicentre, single-arm, open-label study. Lancet Respir. Med. 2021, 9, 829–839. [Google Scholar] [CrossRef]
- Xiong, A.; Ren, S.; Liu, H.; Miao, L.; Wang, L.; Chen, J.; Li, W.; Li, R.; Wang, X.; Lu, Z.; et al. Efficacy and Safety of SH-1028 in Patients with EGFR T790M-Positive NSCLC: A Multicenter, Single-Arm, Open-Label, Phase 2 Trial. J. Thorac. Oncol. 2022, 17, 1216–1226. [Google Scholar] [CrossRef]
- Li, B.; Wu, L.; Pan, Y.; Pan, Z.; Liu, Y.; Fan, Y.; Ji, Y.; Fang, J.; Shi, Q.; Li, K.; et al. Efficacy and safety of ASK120067 (limertinib) in patients with locally advanced or metastatic EGFR T790M-mutated non–small cell lung cancer: A multicenter, single-arm, phase IIb study. J. Clin. Oncol. 2022, 40, 9106. [Google Scholar] [CrossRef]
- Zhou, Q.; Wu, L.; Hu, P.; An, T.; Zhou, J.; Zhang, L.; Liu, X.Q.; Luo, F.; Zheng, X.; Cheng, Y.; et al. A Novel Third-generation EGFR Tyrosine Kinase Inhibitor Abivertinib for EGFR T790M-mutant Non-Small Cell Lung Cancer: A Multicenter Phase I/II Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2022, 28, 1127–1135. [Google Scholar] [CrossRef]
- Lu, S.; Zhang, Y.; Zhang, G.; Zhou, J.; Cang, S.; Cheng, Y.; Wu, G.; Cao, P.; Lv, D.; Jian, H.; et al. Efficacy and Safety of Befotertinib (D-0316) in Patients with EGFR T790M-Mutated NSCLC That Had Progressed After Prior EGFR Tyrosine Kinase Inhibitor Therapy: A Phase 2, Multicenter, Single-Arm, Open-Label Study. J. Thorac. Oncol. 2022, 17, 1192–1204. [Google Scholar] [CrossRef]
- Shi, Y.; Zhao, Y.; Yang, S.; Zhou, J.; Zhang, L.; Chen, G.; Fang, J.; Zhu, B.; Li, X.; Shu, Y.; et al. Safety, Efficacy, and Pharmacokinetics of Rezivertinib (BPI-7711) in Patients with Advanced NSCLC with EGFR T790M Mutation: A Phase 1 Dose-Escalation and Dose-Expansion Study. J. Thorac. Oncol. 2022, 17, 708–717. [Google Scholar] [CrossRef]
- Lu, S.; Dong, X.; Jian, H.; Chen, J.; Chen, G.; Sun, Y.; Ji, Y.; Wang, Z.; Shi, J.; Lu, J.; et al. AENEAS: A Randomized Phase III Trial of Aumolertinib Versus Gefitinib as First-Line Therapy for Locally Advanced or MetastaticNon-Small-Cell Lung Cancer with EGFR Exon 19 Deletion or L858R Mutations. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2022, 40, 3162–3171. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, G.; Wang, X.; Liu, Y.; Wu, L.; Hao, Y.; Liu, C.; Zhu, S.; Zhang, X.; Li, Y.; et al. Furmonertinib (AST2818) versus gefitinib as first-line therapy for Chinese patients with locally advanced or metastatic EGFR mutation-positive non-small-cell lung cancer (FURLONG): A multicentre, double-blind, randomised phase 3 study. Lancet Respir. Med. 2022, 10, 1019–1028. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Zhou, J.; Jian, H.; Wu, L.; Cheng, Y.; Fan, Y.; Fang, J.; Chen, G.; Zhang, Z.; Lv, D.; et al. Befotertinib (D-0316) versus icotinib as first-line therapy for patients with EGFR-mutated locally advanced or metastatic non-small-cell lung cancer: A multicentre, open-label, randomised phase 3 study. Lancet Respir. Med. 2023, 11, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; et al. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature 2016, 534, 129–132. [Google Scholar] [CrossRef]
- Wang, S.; Song, Y.; Liu, D. EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett. 2017, 385, 51–54. [Google Scholar] [CrossRef]
- To, C.; Jang, J.; Chen, T.; Park, E.; Mushajiang, M.; De Clercq, D.J.H.; Xu, M.; Wang, S.; Cameron, M.D.; Heppner, D.E.; et al. Single and Dual Targeting of Mutant EGFR with an Allosteric Inhibitor. Cancer Discov. 2019, 9, 926–943. [Google Scholar] [CrossRef] [PubMed]
- Conti, C.; Campbell, J.; Woessner, R.; Guo, J.; Timsit, Y.; Iliou, M.; Wardwell, S.; Davis, A.; Chicklas, S.; Hsieh, J.; et al. Abstract 1262: BLU-701 is a highly potent, brain-penetrant and WT-sparing next-generation EGFR TKI for the treatment of sensitizing (ex19del, L858R) and C797S resistance mutations in metastatic NSCLC. Cancer Res. 2021, 81, 1262. [Google Scholar] [CrossRef]
- Shum, E.; Elamin, Y.Y.; Piotrowska, Z.; Spigel, D.R.; Reckamp, K.L.; Rotow, J.K.; Tan, D.S.-W.; Lim, S.M.; Kim, T.M.; Lin, C.-C.; et al. A phase 1/2 study of BLU-945 in patients with common activating EGFR-mutant non–small cell lung cancer (NSCLC): SYMPHONY trial in progress. J. Clin. Oncol. 2022, 40, TPS9156. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, C.; Liu, X.; Lian, Y.; Chen, H.; Song, X.; Shen, Q.; Du, G.; Guo, J.; Yan, D.; et al. Abstract 5462: BPI-361175, a 4th generation EGFR-TKI for the treatment of non-small cell lung cancer (NSCLC). Cancer Res. 2022, 82, 5462. [Google Scholar] [CrossRef]
- Zheng, S.; Deng, W.; Zheng, Q.; Yang, Y.; Li, N.; Pang, T.; Feng, X.; Taylor, S.; Ma, L.; Wu, Y.; et al. Abstract 5457: QLH11811, a selective 4th-generation EGFR inhibitor for osimertinib-resistant EGFR-mutant NSCLC. Cancer Res. 2022, 82, 5457. [Google Scholar] [CrossRef]
- Jin, T.J.; Kang, S.-U.; Kim, C.; Brenneman, J.; Song, M.; Printsev, P.; Seo, B.-B.; Lee, Y.-H.; Lee, S.-Y. Abstract 3346: BBT-207, a novel, 4th generation, epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) with broad-spectrum activity to both treatment-emergent and drug-naïve mutants for the treatment of NSCLC. Cancer Res. 2022, 82, 3346. [Google Scholar] [CrossRef]
- Kasuga, H.; Kataoka, Y.; Yamamoto, F.; Mizutani, T.; Tsuji, S.; Tanaka, S.; Mizuarai, S. Abstract 3259: TAS3351 is a 4th-generation EGFR-TKI overcoming T790M and C797S-mediated resistance in NSCLC with EGFR common mutations. Cancer Res. 2022, 82, 3259. [Google Scholar] [CrossRef]
- Yun, M.R.; Yu, M.R.; Duggirala, K.B.; Lee, K.; Lim, S.M.; Jo, A.; Seah, E.; Kim, C.; Cho, B.C. 999P JIN-A02, a fourth-generation, highly effective tyrosine kinase inhibitor with intracranial activity, targeting EGFR C797S mutations in NSCLC. Ann. Oncol. 2022, 33, S1010–S1011. [Google Scholar] [CrossRef]
- Lim, S.M.; Fujino, T.; Kim, C.; Lee, G.; Lee, Y.H.; Kim, D.W.; Ahn, J.S.; Mitsudomi, T.; Jin, T.; Lee, S.Y. BBT-176, a Novel Fourth-Generation Tyrosine Kinase Inhibitor for Osimertinib-Resistant EGFR Mutations in Non-Small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2023, 29, 3004–3016. [Google Scholar] [CrossRef]
- Huang, W.; Zhu, L.; Yan, X.; Huang, X.; Hao, J.; Li, S.; Li, X.; Chen, Z.; Jia, Y.; Li, H.; et al. Abstract 5461: H002: A wide spectrum, highly selective fourth-generation EGFR inhibitor overcoming resistance harboring C797S mutation in NSCLC. Cancer Res. 2022, 82, 5461. [Google Scholar] [CrossRef]
- Lucas, M.C.; Merchant, M.; O’Connor, M.; Smith, S.; Trombino, A.; Zhang, W.Y.; Simon, J.; Eathiraj, S.; Waters, N.; Buck, E. 27MO BDTX-1535, a CNS penetrant, irreversible inhibitor of intrinsic and acquired resistance EGFR mutations, demonstrates preclinical efficacy in NSCLC and GBM PDX models. Ann. Oncol. 2022, 33, S14. [Google Scholar] [CrossRef]
- Johnson, M.L.; Henry, J.T.; Spira, A.I.; Battiste, J.; Alnahhas, I.; Ahluwalia, M.S.; Barve, M.A.; Edenfield, W.J.; Nam, D.-H.; Eathiraj, S.; et al. A phase 1 study to assess BDTX-1535, an oral EGFR inhibitor, in patients with glioblastoma or non–small-cell lung cancer. J. Clin. Oncol. 2023, 41, TPS9156. [Google Scholar] [CrossRef]
- Robichaux, J.P.; Elamin, Y.Y.; Tan, Z.; Carter, B.W.; Zhang, S.; Liu, S.; Li, S.; Chen, T.; Poteete, A.; Estrada-Bernal, A.; et al. Mechanisms and clinical activity of an EGFR and HER2 exon 20–selective kinase inhibitor in non–small cell lung cancer. Nat. Med. 2018, 24, 638–646. [Google Scholar] [CrossRef]
- Le, X.; Goldman, J.W.; Clarke, J.M.; Tchekmedyian, N.; Piotrowska, Z.; Chu, D.; Bhat, G.; Lebel, F.M.; Socinski, M.A. Poziotinib shows activity and durability of responses in subgroups of previously treated EGFR exon 20 NSCLC patients. J. Clin. Oncol. 2020, 38, 9514. [Google Scholar] [CrossRef]
- Yu, H.A.; Tan, D.S.W.; Smit, E.F.; Spira, A.I.; Soo, R.A.; Nguyen, D.; Lee, V.H.F.; Yang, J.C.H.; Velcheti, V.; Wrangle, J.M.; et al. Phase (Ph) 1/2a study of CLN-081 in patients (pts) with NSCLC with EGFR exon 20 insertion mutations (Ins20). J. Clin. Oncol. 2022, 40, 9007. [Google Scholar] [CrossRef]
- Wang, M.; Yang, J.C.H.; Mitchell, P.L.; Fang, J.; Camidge, D.R.; Nian, W.; Chiu, C.H.; Zhou, J.; Zhao, Y.; Su, W.C.; et al. Sunvozertinib, a Selective EGFR Inhibitor for Previously Treated Non-Small Cell Lung Cancer with EGFR Exon 20 Insertion Mutations. Cancer Discov. 2022, 12, 1676–1689. [Google Scholar] [CrossRef]
- Han, B.; Zhou, C.; Wu, L.; Yu, X.; Li, Q.; Liu, F.; Shen, C. 1210P Preclinical and preliminary clinical investigations of furmonertinib in NSCLC with EGFR exon 20 insertions (20ins). Ann. Oncol. 2021, 32, S964. [Google Scholar] [CrossRef]
- Liu, S.V.; Villaruz, L.C.; Lee, V.H.F.; Zhu, V.W.; Baik, C.S.; Sacher, A.; McCoach, C.E.; Nguyen, D.; Li, J.C.; Pacheco, J.M.; et al. LBA61 First analysis of RAIN-701: Study of tarloxotinib in patients with non-small cell lung cancer (NSCLC) EGFR Exon 20 insertion, HER2-activating mutations & other solid tumours with NRG1/ERBB gene fusions. Ann. Oncol. 2020, 31, S1189. [Google Scholar]
- Oguchi, K.; Araki, H.; Tsuji, S.; Nakamura, M.; Miura, A.; Funabashi, K.; Osada, A.; Tanaka, S.; Suzuki, T.; Kobayashi, S.S.; et al. TAS2940, a novel brain-penetrable pan-ERBB inhibitor, for tumors with HER2 and EGFR aberrations. Cancer Sci. 2023, 114, 654–664. [Google Scholar] [CrossRef]
- Zhao, Y.; Murciano-Goroff, Y.R.; Xue, J.Y.; Ang, A.; Lucas, J.; Mai, T.T.; Da Cruz Paula, A.F.; Saiki, A.Y.; Mohn, D.; Achanta, P.; et al. Diverse alterations associated with resistance to KRAS(G12C) inhibition. Nature 2021, 599, 679–683. [Google Scholar] [CrossRef]
- Awad, M.M.; Liu, S.; Rybkin, I.I.; Arbour, K.C.; Dilly, J.; Zhu, V.W.; Johnson, M.L.; Heist, R.S.; Patil, T.; Riely, G.J.; et al. Acquired Resistance to KRASG12C Inhibition in Cancer. N. Engl. J. Med. 2021, 384, 2382–2393. [Google Scholar] [CrossRef] [PubMed]
- Sacher, A.; LoRusso, P.; Patel, M.R.; Miller, W.H., Jr.; Garralda, E.; Forster, M.D.; Santoro, A.; Falcon, A.; Kim, T.W.; Paz-Ares, L.; et al. Single-Agent Divarasib (GDC-6036) in Solid Tumors with a KRAS G12C Mutation. N. Engl. J. Med. 2023, 389, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Weiss, A.; Lorthiois, E.; Barys, L.; Beyer, K.S.; Bomio-Confaglia, C.; Burks, H.; Chen, X.; Cui, X.; de Kanter, R.; Dharmarajan, L.; et al. Discovery, Preclinical Characterization, and Early Clinical Activity of JDQ443, a Structurally Novel, Potent, and Selective Covalent Oral Inhibitor of KRASG12C. Cancer Discov. 2022, 12, 1500–1517. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.S.; Shimizu, T.; Solomon, B.; Heist, R.S.; Schuler, M.; Luken, M.J.D.M.; Gazzah, A.; Wermke, M.; Dooms, C.; Loong, H.H.; et al. Abstract CT033: KontRASt-01: A phase Ib/II, dose-escalation study of JDQ443 in patients (pts) with advanced, KRAS G12C-mutated solid tumors. Cancer Res. 2022, 82, CT033. [Google Scholar] [CrossRef]
- Drilon, A.; Sharma, M.R.; Johnson, M.L.; Yap, T.A.; Gadgeel, S.; Nepert, D.; Feng, G.; Reddy, M.B.; Harney, A.S.; Elsayed, M.; et al. SHP2 Inhibition Sensitizes Diverse Oncogene-Addicted Solid Tumors to Re-treatment with Targeted Therapy. Cancer Discov. 2023, 13, 1789–1801. [Google Scholar] [CrossRef] [PubMed]
- Dagogo-Jack, I.; Moonsamy, P.; Gainor, J.F.; Lennerz, J.K.; Piotrowska, Z.; Lin, J.J.; Lennes, I.T.; Sequist, L.V.; Shaw, A.T.; Goodwin, K.; et al. A Phase 2 Study of Capmatinib in Patients with MET-Altered Lung Cancer Previously Treated with a MET Inhibitor. J. Thorac. Oncol. 2021, 16, 850–859. [Google Scholar] [CrossRef]
- Krebs, M.; Spira, A.I.; Cho, B.C.; Besse, B.; Goldman, J.W.; Janne, P.A.; Ma, Z.; Mansfield, A.S.; Minchom, A.R.; Ou, S.-H.I.; et al. Amivantamab in patients with NSCLC with MET exon 14 skipping mutation: Updated results from the CHRYSALIS study. J. Clin. Oncol. 2022, 40, 9008. [Google Scholar] [CrossRef]
- Hong, D.S.; Catenacci, D.; Bazhenova, L.; Cho, B.C.; Ponz-Sarvise, M.; Heist, R.; Moreno, V.; Falchook, G.; Zhu, V.W.; Swalduz, A.; et al. Abstract P225: Preliminary interim data of elzovantinib (TPX-0022), a novel inhibitor of MET/SRC/CSF1R, in patients with advanced solid tumors harboring genetic alterations in MET: Update from the Phase 1 SHIELD-1 trial. Mol. Cancer Ther. 2021, 20, P225. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, J.; Song, Z.; Zhao, Y.; Guo, Y.; Wu, G.; Ma, Y.; Zhou, W.; Yu, X.; Gao, F.; et al. First-in-human phase I results of APG-2449, a novel FAK and third-generation ALK/ ROS1 tyrosine kinase inhibitor (TKI), in patients (pts) with second-generation TKI-resistant ALK/ROS1+ non–small cell lung cancer (NSCLC) or mesothelioma. J. Clin. Oncol. 2022, 40, 9071. [Google Scholar] [CrossRef]
- Murray, B.W.; Zhai, D.; Deng, W.; Zhang, X.; Ung, J.; Nguyen, V.; Zhang, H.; Barrera, M.; Parra, A.; Cowell, J.; et al. TPX-0131, a Potent CNS-penetrant, Next-generation Inhibitor of Wild-type ALK and ALK-resistant Mutations. Mol. Cancer Ther. 2021, 20, 1499–1507. [Google Scholar] [CrossRef]
- Pelish, H.E.; Tangpeerachaikul, A.; Kohl, N.E.; Porter, J.R.; Shair, M.D.; Horan, J.C. Abstract 1468: NUV-655 (NVL-655) is a selective, brain-penetrant ALK inhibitor with antitumor activity against the lorlatinib-resistant G1202R/L1196M compound mutation. Cancer Res. 2021, 81, 1468. [Google Scholar] [CrossRef]
- Drilon, A.E.; Zhai, D.; Rogers, E.; Deng, W.; Zhang, X.; Ung, J.; Lee, D.; Rodon, L.; Graber, A.; Zimmerman, Z.F.; et al. The next-generation RET inhibitor TPX-0046 is active in drug-resistant and naïve RET-driven cancer models. J. Clin. Oncol. 2020, 38, 3616. [Google Scholar] [CrossRef]
- Schoffski, P.; Cho, B.C.; Italiano, A.; Loong, H.H.F.; Massard, C.; Rodriguez, L.M.; Shih, J.-Y.; Subbiah, V.; Verlingue, L.; Andreas, K.; et al. BOS172738, a highly potent and selective RET inhibitor, for the treatment of RET-altered tumors including RET-fusion+ NSCLC and RET-mutant MTC: Phase 1 study results. J. Clin. Oncol. 2021, 39, 3008. [Google Scholar] [CrossRef]
- Zhao, H.; Wei, X.; Huang, Y.; Yang, Y.; Fang, W.; Ma, Y.; Chen, L.; Chen, D.; Wang, F.; Peng, R.; et al. 1329P A single-arm, open-label, multi-center, phase I study of HA121-28 in patients with advanced solid tumors. Ann. Oncol. 2021, 32, S1018. [Google Scholar] [CrossRef]
- Odintsov, I.; Kurth, R.I.; Ishizawa, K.; Delasos, L.; Lui, A.J.W.; Khodos, I.; Hagen, C.J.; Chang, Q.; Mattar, M.S.; Vojnic, M.; et al. Abstract P233: TAS0953/HM06 is effective in preclinical models of diverse tumor types driven by RET alterations. Mol. Cancer Ther. 2021, 20, P233. [Google Scholar] [CrossRef]
- Zhou, C.; Li, W.; Zhang, Y.; Song, Z.; Wang, Y.; Huang, D.; Ye, F.; Wang, Q.; Sun, Y. A first-in-human phase I, dose-escalation and dose-expansion study of SY-5007, a highly potent and selective RET inhibitor, in Chinese patients with advanced RET positive solid tumors. J. Clin. Oncol. 2023, 41, 9111. [Google Scholar] [CrossRef]
- Niu, C.; Zheng, M.; Wang, H.; Ji, K.; Li, M.; Wang, G.; Ni, R.; Liang, A.; Gong, A.; Zhang, Y.; et al. Abstract 3419: TY-1091, a highly selective and potent second-generation RET inhibitor, demonstrates superior antitumor activity in multiple RET-mutant models. Cancer Res. 2023, 83, 3419. [Google Scholar] [CrossRef]
- Hosomi, Y.; Morita, S.; Sugawara, S.; Kato, T.; Fukuhara, T.; Gemma, A.; Takahashi, K.; Fujita, Y.; Harada, T.; Minato, K.; et al. Gefitinib Alone Versus Gefitinib Plus Chemotherapy for Non-Small-Cell Lung Cancer with Mutated Epidermal Growth Factor Receptor: NEJ009 Study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2020, 38, 115–123. [Google Scholar] [CrossRef]
- Saito, R.; Sugawara, S.; Ko, R.; Azuma, K.; Morita, R.; Maemondo, M.; Oizumi, S.; Takahashi, K.; Kagamu, H.; Tsubata, Y.; et al. Phase 2 study of osimertinib in combination with platinum and pemetrexed in patients with previously untreated EGFR-mutated advanced non-squamous non-small cell lung cancer: The OPAL Study. Eur. J. Cancer 2023, 185, 83–93. [Google Scholar] [CrossRef]
- Tagrisso plus Chemotherapy Extended Median Progression-Free Survival by Nearly 9 Months in EGFR-Mutated Advanced Lung Cancer in FLAURA2 Phase III Trial. 2023. Available online: https://www.astrazeneca.com/media-centre/press-releases/2023/tagrisso-plus-chemotherapy-extended-median-progression-free-survival-by-nearly-9-months-in-egfr-mutated-advanced-lung-cancer-in-flaura2-phase-iii-trial.html (accessed on 1 October 2023).
- Sequist, L.V.; Peled, N.; Tufman, A.; Servidio, L.; Li, J.; Taylor, R.; Zhao, J. P47.11 COMPEL: Chemotherapy with/without Osimertinib in Patients with EGFRm Advanced NSCLC and Progression on First-Line Osimertinib. J. Thorac. Oncol. 2021, 16, S1101. [Google Scholar] [CrossRef]
- Oser, M.G.; Niederst, M.J.; Sequist, L.V.; Engelman, J.A. Transformation from non-small-cell lung cancer to small-cell lung cancer: Molecular drivers and cells of origin. Lancet Oncol. 2015, 16, e165–e172. [Google Scholar] [CrossRef]
- Cho, B.C.; Lee, S.H.; Han, J.Y.; Cho, E.K.; Lee, J.S.; Lee, K.H.; Curtin, J.C.; Gao, G.; Xie, J.; Schnepp, R.W.; et al. P1.16-01 Amivantamab and Lazertinib in Treatment-Naive EGFR-Mutant Non-Small Cell Lung Cancer (NSCLC). J. Thorac. Oncol. 2022, 17, S126. [Google Scholar] [CrossRef]
- 2023. Available online: https://www.prnewswire.com/news-releases/landmark-phase-3-mariposa-study-meets-primary-endpoint-resulting-in-statistically-significant-and-clinically-meaningful-improvement-in-progression-free-survival-for-rybrevant-amivantamab-vmjw-plus-lazertinib-versus-osimertinib--301941646.html (accessed on 1 October 2023).
- 2023. Available online: https://www.janssen.com/phase-3-mariposa-2-study-meets-dual-primary-endpoint-resulting-statistically-significant-and (accessed on 1 October 2023).
- Hartmaier, R.J.; Markovets, A.A.; Ahn, M.J.; Sequist, L.V.; Han, J.Y.; Cho, B.C.; Yu, H.A.; Kim, S.W.; Yang, J.C.; Lee, J.S.; et al. Osimertinib + Savolitinib to Overcome Acquired MET-Mediated Resistance in Epidermal Growth Factor Receptor-Mutated, MET-Amplified Non-Small Cell Lung Cancer: TATTON. Cancer Discov. 2023, 13, 98–113. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.j.; De Marinis, F.; Bonanno, L.; Cho, B.C.; Kim, T.M.; Cheng, S.; Novello, S.; Proto, C.; Kim, S.W.; Lee, J.S.; et al. EP08.02-140 MET Biomarker-based Preliminary Efficacy Analysis in SAVANNAH: Savolitinib+osimertinib in EGFRm NSCLC Post-Osimertinib. J. Thorac. Oncol. 2022, 17, S469–S470. [Google Scholar] [CrossRef]
- Mazieres, J.; Kim, T.M.; Lim, B.K.; Wislez, M.; Dooms, C.; Finocchiaro, G.; Hayashi, H.; Liam, C.K.; Raskin, J.; Tho, L.M.; et al. LBA52 Tepotinib + osimertinib for EGFRm NSCLC with MET amplification (METamp) after progression on first-line (1L) osimertinib: Initial results from the INSIGHT 2 study. Ann. Oncol. 2022, 33, S1419–S1420. [Google Scholar] [CrossRef]
- Yu, H.A.; Goldberg, S.B.; Le, X.; Piotrowska, Z.; Goldman, J.W.; De Langen, A.J.; Okamoto, I.; Cho, B.C.; Smith, P.; Mensi, I.; et al. Biomarker-Directed Phase II Platform Study in Patients with EGFR Sensitizing Mutation-Positive Advanced/Metastatic Non-Small Cell Lung Cancer Whose Disease Has Progressed on First-Line Osimertinib Therapy (ORCHARD). Clin. Lung Cancer 2021, 22, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Poon, E.; Mullins, S.; Watkins, A.; Williams, G.S.; Koopmann, J.O.; Di Genova, G.; Cumberbatch, M.; Veldman-Jones, M.; Grosskurth, S.E.; Sah, V.; et al. The MEK inhibitor selumetinib complements CTLA-4 blockade by reprogramming the tumor immune microenvironment. J. Immunother. Cancer 2017, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Kim, T.W.; Lee, C.B.; Goh, B.C.; Miller, W.H., Jr.; Oh, D.Y.; Jamal, R.; Chee, C.E.; Chow, L.Q.M.; Gainor, J.F.; et al. Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann. Oncol. 2019, 30, 1134–1142. [Google Scholar] [CrossRef]
- Nishino, M.; Soejima, K.; Mitsudomi, T. Brain metastases in oncogene-driven non-small cell lung cancer. Transl. Lung Cancer Res. 2019, 8, S298–S307. [Google Scholar] [CrossRef]
- Yun, M.R.; Kim, D.H.; Kim, S.Y.; Joo, H.S.; Lee, Y.W.; Choi, H.M.; Park, C.W.; Heo, S.G.; Kang, H.N.; Lee, S.S.; et al. Repotrectinib Exhibits Potent Antitumor Activity in Treatment-Naïve and Solvent-Front-Mutant ROS1-Rearranged Non-Small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 3287–3295. [Google Scholar] [CrossRef]
- Mazieres, J.; Iadeluca, L.; Shaw, A.T.; Solomon, B.J.; Bauer, T.M.; de Marinis, F.; Felip, E.; Goto, Y.; Kim, D.W.; Mok, T.; et al. Patient-reported outcomes from the randomized phase 3 CROWN study of first-line lorlatinib versus crizotinib in advanced ALK-positive non-small cell lung cancer. Lung Cancer 2022, 174, 146–156. [Google Scholar] [CrossRef] [PubMed]
- Crucitta, S.; Cucchiara, F.; Mathijssen, R.; Mateo, J.; Jager, A.; Joosse, A.; Passaro, A.; Attili, I.; Petrini, I.; van Schaik, R.; et al. Treatment-driven tumour heterogeneity and drug resistance: Lessons from solid tumours. Cancer Treat. Rev. 2022, 104, 102340. [Google Scholar] [CrossRef]
- Lim, Z.F.; Ma, P.C. Emerging insights of tumor heterogeneity and drug resistance mechanisms in lung cancer targeted therapy. J. Hematol. Oncol. 2019, 12, 134. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.V.; Lee, D.Y.; Li, B.; Quinlan, M.P.; Takahashi, F.; Maheswaran, S.; McDermott, U.; Azizian, N.; Zou, L.; Fischbach, M.A.; et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010, 141, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Malapelle, U.; Del Re, M.; Attili, I.; Russo, A.; Guerini-Rocco, E.; Fumagalli, C.; Pisapia, P.; Pepe, F.; De Luca, C.; et al. Understanding EGFR heterogeneity in lung cancer. ESMO Open 2020, 5, e000919. [Google Scholar] [CrossRef]
- Del Re, M.; Crucitta, S.; Gianfilippo, G.; Passaro, A.; Petrini, I.; Restante, G.; Michelucci, A.; Fogli, S.; de Marinis, F.; Porta, C.; et al. Understanding the Mechanisms of Resistance in EGFR-Positive NSCLC: From Tissue to Liquid Biopsy to Guide Treatment Strategy. Int. J. Mol. Sci. 2019, 20, 3951. [Google Scholar] [CrossRef]
- Oxnard, G.R.; Hu, Y.; Mileham, K.F.; Husain, H.; Costa, D.B.; Tracy, P.; Feeney, N.; Sholl, L.M.; Dahlberg, S.E.; Redig, A.J.; et al. Assessment of Resistance Mechanisms and Clinical Implications in Patients with EGFR T790M-Positive Lung Cancer and Acquired Resistance to Osimertinib. JAMA Oncol. 2018, 4, 1527–1534. [Google Scholar] [CrossRef]
- Schmid, S.; Früh, M.; Peters, S. Targeting MET in EGFR resistance in non-small-cell lung cancer-ready for daily practice? Lancet Oncol. 2020, 21, 320–322. [Google Scholar] [CrossRef]
- Shaw, A.T.; Solomon, B.J.; Besse, B.; Bauer, T.M.; Lin, C.C.; Soo, R.A.; Riely, G.J.; Ou, S.I.; Clancy, J.S.; Li, S.; et al. ALK Resistance Mutations and Efficacy of Lorlatinib in Advanced Anaplastic Lymphoma Kinase-Positive Non-Small-Cell Lung Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 1370–1379. [Google Scholar] [CrossRef]
- McCoach, C.E.; Le, A.T.; Gowan, K.; Jones, K.; Schubert, L.; Doak, A.; Estrada-Bernal, A.; Davies, K.D.; Merrick, D.T.; Bunn, P.A., Jr.; et al. Resistance Mechanisms to Targeted Therapies in ROS1(+) and ALK(+) Non-small Cell Lung Cancer. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2018, 24, 3334–3347. [Google Scholar] [CrossRef]
- Shiba-Ishii, A.; Johnson, T.W.; Dagogo-Jack, I.; Mino-Kenudson, M.; Johnson, T.R.; Wei, P.; Weinrich, S.L.; McTigue, M.A.; Walcott, M.A.; Nguyen-Phuong, L.; et al. Analysis of lorlatinib analogs reveals a roadmap for targeting diverse compound resistance mutations in ALK-positive lung cancer. Nat. Cancer 2022, 3, 710–722. [Google Scholar] [CrossRef] [PubMed]
- Yeo, M.-K.; Kim, Y.; Lee, D.H.; Chung, C.; Bae, G.E. Cosuppression of NF-κB and AICDA Overcomes Acquired EGFR-TKI Resistance in Non-Small Cell Lung Cancer. Cancers 2022, 14, 2940. [Google Scholar]
- Mongre, R.K.; Mishra, C.B.; Shukla, A.K.; Prakash, A.; Jung, S.; Ashraf-Uz-Zaman, M.; Lee, M.-S. Emerging Importance of Tyrosine Kinase Inhibitors against Cancer: Quo Vadis to Cure? Int. J. Mol. Sci. 2021, 22, 11659. [Google Scholar] [CrossRef] [PubMed]
- Drago, J.Z.; Modi, S.; Chandarlapaty, S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat. Rev. Clin. Oncol. 2021, 18, 327–344. [Google Scholar] [CrossRef] [PubMed]
- Passaro, A.; Jänne, P.A.; Peters, S. Antibody-Drug Conjugates in Lung Cancer: Recent Advances and Implementing Strategies. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2023, 41, 3747–3761. [Google Scholar] [CrossRef]
- Sequist, L.V.; Han, J.Y.; Ahn, M.J.; Cho, B.C.; Yu, H.; Kim, S.W.; Yang, J.C.; Lee, J.S.; Su, W.C.; Kowalski, D.; et al. Osimertinib plus savolitinib in patients with EGFR mutation-positive, MET-amplified, non-small-cell lung cancer after progression on EGFR tyrosine kinase inhibitors: Interim results from a multicentre, open-label, phase 1b study. Lancet Oncol. 2020, 21, 373–386. [Google Scholar] [CrossRef]
Drug | IC50 | Clinical Trial(s) | Results | Safety Profile | Ongoing Clinical Trial(s) |
---|---|---|---|---|---|
Divarasib (GDC-6036) 400 mg OD | 0.0029 nM | Phase I/II GO42144 Sacher 2023 [124] | ORR 53.4% mPFS 13.1 months | AE rate 93% G ≥ 3: 12% Most common AEs nausea (74%), diarrhea (61%), and vomiting (58%) | NAUTIKA1 NCT04302025 Biomarker-driven Neoadjuvant platform |
JDQ443 200 mg BID | 0.012 nM | Phase I–II KontRast-01 Tan 2022 [126] Phase III KontRASt-02 NCT05132075 Ongoing | ORR 57% mDoR 4 months | AE rate 71.8% G ≥ 3: 12.8% Most common AEs fatigue (30.8%) nausea (17.9%) edema (15.4%) diarrhea (12.8%) vomiting (12.8%) | KontRASt-04 JDQ433C12301 1stline JDQ433 + TNO155 vs. CT + ICI STRIDER NCT05999357 Ph II BM + KontRASt-06 NCT05445843 1st line PD-L1 neg or PD-L1+/SKT11+ |
Drug | EC/IC50 CCDC6RET Ratio | IC50G810R | Clinical Trial | Results | Ongoing Clinical Trial |
---|---|---|---|---|---|
TPX-0046 [134] | IC50 < 10 nM | + 17 nM | Phase I/II NCT04161391 | Terminated (Adverse change in the risk/benefit) | Drug withdrawn |
Zeteletinib (BOS172738) 150 mg OD | IC50 < 1 nM | Not released | Phase I/II Schöffski 2021 [135] | ORR 33% mDoR not reached | Phase I/II Schöffski 2021 |
HA121-28 600 mg OD | Data not released | Data not released | Phase I/II Zhao 2021 [136] | Post-CT ORR 41% mPFS not reached | NCT05117658 Ph II trial Post-CT |
TAS0953/HM06 [137] | IC50 0.02–s0.1 µM | + | MARGARET Phase I/II NCT04683250 | Ongoing | MARGARET Phase I/II NCT04683250 |
SY-5007 160 or 200 mg BID | IC50 < 1 nM | Not released | Phase I/II Zhou 2023 [138] | ORR 75% mDoR not reached | NCT06031558 Ph III trial Single arm |
TY-1091 [139] | IC50 < 1 nM | ++ 9.5 nM | Phase I/II NCT05675605 | Ongoing | Phase I/II NCT05675605 |
CT | Antiangiogenics | Bispecific Antibodies | ADCs or TKIs | |
---|---|---|---|---|
First line Tx | FLAURA-2 [NCT04035486] Osimertinib +/− CT (K-I common) TRIAL HAS RESULT | [NCT05263947] Icotinib + bevacizumab (K-I L858R) | CHRYSALIS [NCT02609776] Lazertinib+ amivantamab (cohort TKI naive) | [NCT05007938] Befotertinib + icotinib |
TOP [NCT04695925] Osimertinib +/− CT (K-I EGFR/p53+) | [NCT04181060] Osimertinib +/− bevacizumab (K-I sensitizing mutations) | OSTARA [NCT05801029] Lazertinib+ amivantamab (K-I common) | METLUNG [NCT05445791] 1st or 2nd TKI +metformin (KI sensitizing mutations) | |
[NCT04552613] Standard TKI+/−CT (K-I EGFR/concomitant genes+) | [NCT05507606] Osimertinib +/− bevacizumab (K-I EGFR/p53+) | MARIPOSA [NCT04487080] Lazertinib+ amivantamab (K-I common) | [NCT05880706] Osimertinib+BL-B01D1 (KI common mutations) | |
[NCT04410796] Osimertinib +/− CT (K-I ctDNA+ at C2) | [NCT04988607] Osimertinib +/− bevacizumab (K-I L858R) | |||
PACE-Lung [NCT05281406] Osimertinib +CT (K-I ctDNA+ at wk3) | AUTOMAN [NCT04770688] Osimertinib + anlotinib (KI common mutations) | |||
[NCT05209256] Furmonertinib+/− CT (K-I sensitizing mutations) | [NCT03909334] Osimertinib+/− ramucirumab (KI common mutations) | |||
[NCT04923906] Almonertinib+/− CT (K-I sensitizing mutations) | FOCUS-A [NCT04895930] furmonertinib+anlotinib (KI common EGFR) | |||
ACROSS1 [NCT04500704] Almonertinib+/− CT (K-I common mutations) | [NCT05271916] Dacomitinib+anlotinib (KI phI common; Ph II L858R) | |||
ACROSS2 [NCT04500717] Almonertinib+/− CT (K-I common mutations/Suppressor Genes+) | BELLA [NCT04575415] Bevacizumab + EGFRTKIs (observational study) | |||
[NCT03992885] Icotinib + CT (KI sensitizing mutations) | [NCT03904823] Almonertinib + famitinib (K-I sensitizing mutations) | |||
[NCT05778149] Almonertinib + anlotinib (K-I common mutations/p53) | ||||
ACTIVE/CTONG1706 [NCT02824458] Gefitinib +/− apatinib (KI common mutations) | ||||
MET-based | FLOWERS (NCT05163249) osimertinib+/− savolitinib (K-I sensitizing/MET+°) | |||
NCT04743505 Osimertinib +/− savolitinib (K-I sensitizing) | ||||
Post-3rd gen EGFR TKI | CHRYSALIS [NCT02609776] Lazertinib+ amivantamab (cohort post-TKIs) | Lung-MAP Sub-Study [NCT05642572] Osimertinib+capmatinib +/− ramucirumab (K-I sensitizing MET AMP) | ||
CHRYSALIS 2 NCT04077463 Lazertinib+ amivantamab+/− CT (cohort post-osimertinib) | CHRYSALIS 2 NCT04077463 Lazertinib+ amivantamab+/− CT (cohort post-osimertinib) | INSIGHT 2 [NCT03940703] Tepotinib +osimertinib (K-I common/MET+ç) | ||
MARIPOSA-2 [NCT04988295] CT+/+ amivantamab +/− lazertinib (KI common postosimertinib) | MARIPOSA-2 [NCT04988295] CT+/+amivantamab+/lazertinib (KI common postosimertinib) | SAVANNAH (NCT03778229) Savolitinib+/-osimertinib (K-I common/MET+§) | ||
PALOMA [NCT04606381] Sc amivantamab (KI solid tumors Common EGFR NSCLC post-TKIs) | SACHI [NCT05015608] CT vs. Osimertinib+ savolitinib (K-I common/MET+@) | |||
SAFFRON [NCT05261399] CT vs. osimertinib+savolitinib (K-I common/MET+§) | PALOMA2 [NCT05498428] Sc Amivantamab+several regimens (KI Solid Tumors Including txnaive or POSTTKIs common EGFR EGFRex20ins tx naïve) | SAFFRON [NCT05261399] CT vs. osimertinib+savolitinib (K-I common/MET+§) | ||
PALOMA-3 [NCT05388669] Lazertinib + sc vs. ev amivantamab (k-I common post CT and osimertinib) | [NCT05821933] Furmonertinib+RC108 +/- Toripalimab (k-I sensitizing/MET OE post-TKIs) | |||
AMAZE-lung [NCT05601973] Lazertinib amivantamab bevacizumab (KI post osimertinib or Lazertinib). | AMAZE-lung [NCT05601973] Lazertinib amivantamab bevacizumab (KI post osimertinib or Lazertinib). | |||
[NCT04965090] Amivantamab/lazertinib (KI common after3rdTKI and BM+) | ||||
PolyDamas [NCT05908734] amivantamab+cetrilumab (KI post osimertinib/CT) | ||||
NCT03797391 EMB-01 (KI EGFR or MET+) | ||||
[NCT05498389] EMB-01+ osimertinib (KI postTKIs) | ||||
[NCT04868877] MCLA-129+osimertinib (k-I NSCLC/solid tumours) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attili, I.; Corvaja, C.; Spitaleri, G.; Del Signore, E.; Trillo Aliaga, P.; Passaro, A.; de Marinis, F. New Generations of Tyrosine Kinase Inhibitors in Treating NSCLC with Oncogene Addiction: Strengths and Limitations. Cancers 2023, 15, 5079. https://doi.org/10.3390/cancers15205079
Attili I, Corvaja C, Spitaleri G, Del Signore E, Trillo Aliaga P, Passaro A, de Marinis F. New Generations of Tyrosine Kinase Inhibitors in Treating NSCLC with Oncogene Addiction: Strengths and Limitations. Cancers. 2023; 15(20):5079. https://doi.org/10.3390/cancers15205079
Chicago/Turabian StyleAttili, Ilaria, Carla Corvaja, Gianluca Spitaleri, Ester Del Signore, Pamela Trillo Aliaga, Antonio Passaro, and Filippo de Marinis. 2023. "New Generations of Tyrosine Kinase Inhibitors in Treating NSCLC with Oncogene Addiction: Strengths and Limitations" Cancers 15, no. 20: 5079. https://doi.org/10.3390/cancers15205079
APA StyleAttili, I., Corvaja, C., Spitaleri, G., Del Signore, E., Trillo Aliaga, P., Passaro, A., & de Marinis, F. (2023). New Generations of Tyrosine Kinase Inhibitors in Treating NSCLC with Oncogene Addiction: Strengths and Limitations. Cancers, 15(20), 5079. https://doi.org/10.3390/cancers15205079