Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Sample
2.2. Reference Standard
2.3. 18F-FDG PET/MRI Examination
2.4. Quantitative Parameters Analysis
2.5. Tumor Segmentation
2.6. Image Pre-Processing
2.7. Radiomics Features Extraction and Selection
2.8. Machine Learning Analysis
3. Results
3.1. Patient and Lesion Characteristics
3.2. Radiomics and ML Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desar, I.M.E.; van Herpen, C.M.L.; van Laarhoven, H.W.M.; Barentsz, J.O.; Oyen, W.J.G.; van der Graaf, W.T.A. Beyond RECIST: Molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat. Rev. 2009, 35, 309–321. [Google Scholar] [CrossRef]
- García-Figueiras, R.; Baleato-González, S.; Padhani, A.R.; Luna-Alcalá, A.; Vallejo-Casas, J.A.; Sala, E.; Vilanova, J.C.; Koh, D.-M.; Herranz-Carnero, M.; Vargas, H.A. How clinical imaging can assess cancer biology. Insights Imaging 2019, 10, 28. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomixzcs: Images are more than pictures, they are data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Kumar, V.; Gu, Y.; Basu, S.; Berglund, A.; Eschrich, S.A.; Schabath, M.B.; Forster, K.; Aerts, H.J.W.L.; Dekker, A.; Fenstermacher, D.; et al. Radiomics: The process and the challenges. Magn. Reson. Imaging 2012, 30, 1234–1248. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Liao, G.S.; Chou, Y.C.; Hsu, H.M.; Dai, M.S.; Yu, J.C. The prognostic value of lymph node status among breast cancer subtypes. Am. J. Surg. 2015, 209, 717–724. [Google Scholar] [CrossRef]
- Marino, M.A.; Avendano, D.; Zapata, P.; Riedl, C.C.; Pinker, K. Lymph Node Imaging in Patients with Primary Breast Cancer: Concurrent Diagnostic Tools. Oncologist 2019, 25, e231–e242. [Google Scholar] [CrossRef]
- Hersh, E.H.; King, T.A. De-escalating axillary surgery in early-stage breast cancer. Breast 2022, 62, S43–S49. [Google Scholar] [CrossRef]
- Simons, J.M.; Smidt, M.L. De-escalation of axillary management in early stage breast cancer. Ann. Breast Surg. 2020, 4, 1. [Google Scholar] [CrossRef]
- Li, Z.; Kitajima, K.; Hirata, K.; Togo, R.; Takenaka, J.; Miyoshi, Y.; Kudo, K.; Ogawa, T.; Haseyama, M. Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer. EJNMMI Res. 2021, 11, 10. [Google Scholar] [CrossRef]
- Davey, M.G.; Davey, M.S.; Boland, M.R.; Ryan, É.J.; Lowery, A.J.; Kerin, M.J. Radiomic differentiation of breast cancer molecular subtypes using pre-operative breast imaging—A systematic review and meta-analysis. Eur. J. Radiol. 2021, 144, 109996. [Google Scholar] [CrossRef]
- Sadaghiani, M.S.; Rowe, S.P.; Sheikhbahaei, S. Applications of artificial intelligence in oncologic 18F-FDG PET/CT imaging: A systematic review. Ann. Transl. Med. 2021, 9, 823. [Google Scholar] [CrossRef]
- Plecha, D.M.; Faulhaber, P. PET/MRI of the breast. Eur. J. Radiol. 2017, 94, A26–A34. [Google Scholar] [CrossRef] [PubMed]
- Pujara, A.C.; Kim, E.; Axelrod, D.; Melsaether, A.N. PET/MRI in Breast Cancer. J. Magn. Reson. Imaging 2019, 49, 328–342. [Google Scholar] [CrossRef] [PubMed]
- Romeo, V.; Clauser, P.; Rasul, S.; Kapetas, P.; Gibbs, P.; Baltzer, P.A.T.; Hacker, M.; Woitek, R.; Helbich, T.H.; Pinker, K. AI-enhanced simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Romeo, V.; Kapetas, P.; Clauser, P.; Baltzer, P.A.T.; Rasul, S.; Gibbs, P.; Hacker, M.; Woitek, R.; Pinker, K.; Helbich, T.H. A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer. Cancers 2022, 14, 3944. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, P.; Mann, R.M.; Iima, M.; Sigmund, E.E.; Clauser, P.; Gilbert, F.J.; Martincich, L.; Partridge, S.C.; Patterson, A.; Pinker, K.; et al. Diffusion-weighted imaging of the breast—A consensus and mission statement from the EUSOBI International Breast Diffusion-Weighted Imaging working group. Eur. Radiol. 2020, 30, 1436–1450. [Google Scholar] [CrossRef]
- Zöllner, F.G.; Weisser, G.; Reich, M.; Kaiser, S.; Schoenberg, S.O.; Sourbron, S.P.; Schad, L.R. UMMPerfusion: An Open Source Software Tool Towards Quantitative MRI Perfusion Analysis in Clinical Routine. J. Digit. Imaging 2013, 26, 344–352. [Google Scholar] [CrossRef]
- Romeo, V.; Cavaliere, C.; Imbriaco, M.; Verde, F.; Petretta, M.; Franzese, M.; Stanzione, A.; Cuocolo, R.; Aiello, M.; Basso, L.; et al. Tumor segmentation analysis at different post-contrast time points: A possible source of variability of quantitative DCE-MRI parameters in locally advanced breast cancer. Eur. J. Radiol. 2020, 126, 108907. [Google Scholar] [CrossRef]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef]
- Van Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Schwier, M.; van Griethuysen, J.; Vangel, M.G.; Pieper, S.; Peled, S.; Tempany, C.; Aerts, H.J.W.L.; Kikinis, R.; Fennessy, F.M.; Fedorov, A. Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci. Rep. 2019, 9, 9441. [Google Scholar] [CrossRef] [PubMed]
- Rastogi, A.K.; Narang, N.; Siddiqui, Z.A. Imbalanced big data classification: A distributed implementation of SMOTE. In Proceedings of the ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2018. [Google Scholar]
- Chen, C.; Qin, Y.; Chen, H.; Zhu, D.; Gao, F.; Zhou, X. A meta-analysis of the diagnostic performance of machine learning-based MRI in the prediction of axillary lymph node metastasis in breast cancer patients. Insights Imaging 2021, 12, 156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, L.; Zhe, X.; Tang, M.; Zhang, X.; Lei, X.; Zhang, L. The Diagnostic Performance of Machine Learning-Based Radiomics of DCE-MRI in Predicting Axillary Lymph Node Metastasis in Breast Cancer: A Meta-Analysis. Front. Oncol. 2022, 12, 799209. [Google Scholar] [CrossRef]
- Jatoi, I.; Hilsenbeck, S.G.; Clark, G.M.; Kent Osborne, C. Significance of axillary lymph node metastasis in primary breast cancer. J. Clin. Oncol. 1999, 17, 2334–2340. [Google Scholar] [CrossRef]
- Giuliano, A.E.; Ballman, K.V.; McCall, L.; Beitsch, P.D.; Brennan, M.B.; Kelemen, P.R.; Ollila, D.W.; Hansen, N.M.; Whitworth, P.W.; Blumencranz, P.W.; et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women with Invasive Breast Cancer and Sentinel Node Metastasis. JAMA 2017, 318, 918. [Google Scholar] [CrossRef]
- Galimberti, V.; Cole, B.F.; Viale, G.; Veronesi, P.; Vicini, E.; Intra, M.; Mazzarol, G.; Massarut, S.; Zgajnar, J.; Taffurelli, M.; et al. Axillary dissection versus no axillary dissection in patients with breast cancer and sentinel-node micrometastases (IBCSG 23-01): 10-year follow-up of a randomised, controlled phase 3 trial. Lancet Oncol. 2018, 19, 1385–1393. [Google Scholar] [CrossRef]
- Donker, M.; van Tienhoven, G.; Straver, M.E.; Meijnen, P.; van de Velde, C.J.H.; Mansel, R.E.; Cataliotti, L.; Westenberg, A.H.; Klinkenbijl, J.H.G.; Orzalesi, L.; et al. Radiotherapy or surgery of the axilla after a positive sentinel node in breast cancer (EORTC 10981-22023 AMAROS): A randomised, multicentre, open-label, phase 3 non-inferiority trial. Lancet Oncol. 2014, 15, 1303–1310. [Google Scholar] [CrossRef]
- Chung, H.L.; Le-Petross, H.T.; Leung, J.W.T. Imaging Updates to Breast Cancer Lymph Node Management. RadioGraphics 2021, 41, 1283–1299. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Yin, G.; Xu, W. Predictive Value of 18F-FDG PET/CT-Based Radiomics Model for Occult Axillary Lymph Node Metastasis in Clinically Node-Negative Breast Cancer. Diagnostics 2022, 12, 997. [Google Scholar] [CrossRef] [PubMed]
- Song, B.I. A machine learning-based radiomics model for the prediction of axillary lymph-node metastasis in breast cancer. Breast Cancer 2021, 28, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Morawitz, J.; Sigl, B.; Rubbert, C.; Bruckmann, N.-M.; Dietzel, F.; Häberle, L.J.; Ting, S.; Mohrmann, S.; Ruckhäberle, E.; Bittner, A.-K.; et al. Clinical decision support for axillary lymph node staging in newly diagnosed breast cancer patients based on 18 F-FDG PET/MRI and machine-learning. J. Nucl. Med. 2022, 64, 304–311. [Google Scholar] [CrossRef]
- Umutlu, L.; Kirchner, J.; Bruckmann, N.M.; Morawitz, J.; Antoch, G.; Ingenwerth, M.; Bittner, A.-K.; Hoffmann, O.; Haubold, J.; Grueneisen, J.; et al. Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor Decoding. Cancers 2021, 13, 2928. [Google Scholar] [CrossRef]
Histological Type | Number of Lesions | % |
---|---|---|
IDC | 101 | 79 |
ILC | 12 | 9 |
IDC + ILC | 5 | 4 |
Metaplastic carcinoma | 1 | 1 |
Mucinous carcinoma | 2 | 2 |
Papillary carcinoma | 4 | 3 |
Tubular carcinoma | 1 | 1 |
Apocrine carcinoma | 1 | 1 |
Total | 127 | 100 |
Molecular subtype | Number of lesions | % |
Luminal A | 12 | 9 |
Luminal B | 69 | 54 |
HER2+ | 14 | 11 |
Triple-negative | 32 | 26 |
Total | 127 | 100 |
Tumor grade | Number of lesions | % |
G1 | 12 | 9 |
G2 | 47 | 37 |
G3 | 66 | 52 |
Not available | 2 | 2 |
Total | 127 | 100 |
T2_wavelet-LHH_ngtdm_Complexity |
T2_wavelet-LLL_firstorder_Minimum |
T2_wavelet-HLH_firstorder_Kurtosis |
T2_log-sigma-1-0-mm-3D_ngtdm_Complexity |
ADC_wavelet-LHL_gldm_LargeDependenceLowGrayLevelEmphasis |
DCE_wavelet-LHH_glcm_ClusterProminence |
DCE_wavelet-LHL_firstorder_RootMeanSquare d |
DCE_wavelet-HHL_firstorder_Median |
DCE_wavelet-HHL_firstorder_Maximum |
PET_log-sigma-3-0-mm-3D_glrlm_GrayLevelVariance |
PET_wavelet-LHH_glcm_Autocorrelation |
PET_wavelet-LHH_glszm_SmallAreaHighGrayLevelEmphasis |
PET_wavelet-LHL_glszm_SmallAreaHighGrayLevelEmphasis |
SVM Classification | Ground Truth | Total | |
---|---|---|---|
Lymph Node-Positive | Lymph Node-Negative | ||
Lymph node-positive | 40 | 6 | 46 |
Lymph node-negative | 17 | 51 | 68 |
Total | 57 | 57 | 114 |
SVM Classification | Ground Truth | Total | |
---|---|---|---|
Lymph Node-Positive | Lymph Node-Negative | ||
Lymph node-positive | 19 | 0 | 19 |
Lymph node-negative | 9 | 14 | 23 |
Total | 28 | 14 | 42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeo, V.; Kapetas, P.; Clauser, P.; Rasul, S.; Cuocolo, R.; Caruso, M.; Helbich, T.H.; Baltzer, P.A.T.; Pinker, K. Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer. Cancers 2023, 15, 5088. https://doi.org/10.3390/cancers15205088
Romeo V, Kapetas P, Clauser P, Rasul S, Cuocolo R, Caruso M, Helbich TH, Baltzer PAT, Pinker K. Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer. Cancers. 2023; 15(20):5088. https://doi.org/10.3390/cancers15205088
Chicago/Turabian StyleRomeo, Valeria, Panagiotis Kapetas, Paola Clauser, Sazan Rasul, Renato Cuocolo, Martina Caruso, Thomas H. Helbich, Pascal A. T. Baltzer, and Katja Pinker. 2023. "Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer" Cancers 15, no. 20: 5088. https://doi.org/10.3390/cancers15205088
APA StyleRomeo, V., Kapetas, P., Clauser, P., Rasul, S., Cuocolo, R., Caruso, M., Helbich, T. H., Baltzer, P. A. T., & Pinker, K. (2023). Simultaneous 18F-FDG PET/MRI Radiomics and Machine Learning Analysis of the Primary Breast Tumor for the Preoperative Prediction of Axillary Lymph Node Status in Breast Cancer. Cancers, 15(20), 5088. https://doi.org/10.3390/cancers15205088