Infliximab for Treatment of Immune Adverse Events and Its Impact on Tumor Response
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Population
2.2. Data Collection and Definitions
2.3. Statistical Analysis
3. Results
3.1. Predictors of Response to Infliximab
3.2. Best Tumor Response Assessment
3.3. Progression-Free Survival
3.4. Overall Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freeman-Keller, M.; Kim, Y.; Cronin, H.; Richards, A.; Gibney, G.; Weber, J.S. Nivolumab in Resected and Unresectable Metastatic Melanoma: Characteristics of Immune-Related Adverse Events and Association with Outcomes. Clin. Cancer Res. 2016, 22, 886–894. [Google Scholar] [CrossRef] [PubMed]
- Kalfeist, L.; Galland, L.; Ledys, F.; Ghiringhelli, F.; Limagne, E.; Ladoire, S. Impact of Glucocorticoid Use in Oncology in the Immunotherapy Era. Cells 2022, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Martins, F.; Sykiotis, G.P.; Maillard, M.; Fraga, M.; Ribi, C.; Kuntzer, T.; Michielin, O.; Peters, S.; Coukos, G.; Spertini, F.; et al. New therapeutic perspectives to manage refractory immune checkpoint-related toxicities. Lancet Oncol. 2019, 20, e54–e64. [Google Scholar] [CrossRef] [PubMed]
- Larkin, J.; Chiarion-Sileni, V.; Gonzalez, R.; Grob, J.-J.; Rutkowski, P.; Lao, C.D.; Cowey, C.L.; Schadendorf, D.; Wagstaff, J.; Dummer, R.; et al. Five-Year Survival with Combined Nivolumab and Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2019, 381, 1535–1546. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Smyth, M.J.; Cretney, E.; Hayakawa, Y.; Kayagaki, N.; Yagita, H.; Okumura, K. Critical role for tumor necrosis factor–related apoptosis-inducing ligand in immune surveillance against tumor development. J. Exp. Med. 2002, 195, 161–169. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.H.; Zobniw, C.M.; Trinh, V.A.; Ma, J.; Bassett, R.L.; Abdel-Wahab, N.; Anderson, J.; Davis, J.E.; Joseph, J.; Uemura, M.; et al. Infliximab associated with faster symptom resolution compared with corticosteroids alone for the management of immune-related enterocolitis. J. Immunother. Ther. Cancer 2018, 6, 103. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Demura, Y.; Oi, M.; Tabata, M.; Tada, T.; Shiozaki, K.; Akai, M.; Ishizuka, T. Infliximab Was Found to Be Effective for Treating Immunosuppressive Drug-resistant Hepatitis due to Durvalumab. Intern. Med. 2020, 59, 3055–3059. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, J.; Pundole, X.; Tummala, S.; Palaskas, N.; Andersen, C.R.; Shoukier, M.; Abdel-Wahab, N.; Deswal, A.; Suarez-Almazor, M.E. Inflammatory Myositis in Cancer Patients Receiving Immune Checkpoint Inhibitors. Arthritis Rheumatol. 2021, 73, 866–874. [Google Scholar] [CrossRef]
- Safa, H.; Johnson, D.H.; Trinh, V.A.; E Rodgers, T.; Lin, H.; E Suarez-Almazor, M.; Fa’ak, F.; Saberian, C.; Yee, C.; A Davies, M.; et al. Immune checkpoint inhibitor related myasthenia gravis: Single center experience and systematic review of the literature. J. Immunother. Cancer 2019, 7, 319. [Google Scholar] [CrossRef]
- Lin, J.S.; Mamlouk, O.; Selamet, U.; Tchakarov, A.; Glass, W.F.; Sheth, R.A.; Layman, R.M.; Dadu, R.; Abdel-Wahab, N.; Abdelrahim, M.; et al. Infliximab for the treatment of patients with checkpoint inhibitor associated acute tubular interstitial nephritis. OncoImmunology 2021, 10, 1877415. [Google Scholar] [CrossRef]
- Huang, S.; Jordan, A.; Jenneman, D.; Shafique, M.; Holmstrom, B. Rapid Improvement Following Receipt of Infliximab in Steroid-refractory Durvalumab-Associated Grade 3 Pneumonitis. Cureus 2022, 14, e22295. [Google Scholar] [CrossRef] [PubMed]
- Kadokawa, Y.; Takagi, M.; Yoshida, T.; Tatsumi, A.; Fujita, K.; Inoue, T.; Ohe, S.; Nakai, Y.; Yamamoto, S.; Otsuka, T.; et al. Efficacy and safety of Infliximab for steroid-resistant immune-related adverse events: A retrospective study. Mol. Clin. Oncol. 2021, 14, 65. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, S.; Fukata, M.; Tatsumoto, R.; Kono, M. Refractory constrictive pericarditis caused by an immune checkpoint inhibitor properly managed with infliximab: A case report. Eur. Heart J. Case Rep. 2021, 5, ytab002. [Google Scholar] [CrossRef] [PubMed]
- Cautela, J.; Zeriouh, S.; Gaubert, M.; Bonello, L.; Laine, M.; Peyrol, M.; Paganelli, F.; Lalevee, N.; Barlesi, F.; Thuny, F. Intensified immunosuppressive therapy in patients with immune checkpoint inhibitor-induced myocarditis. J. Immunother. Cancer 2020, 8, e001887. [Google Scholar] [CrossRef] [PubMed]
- Giglio, D.; Berntsson, H.; Fred, Å.; Ny, L. Immune Checkpoint Inhibitor-Induced Polymyositis and Myasthenia Gravis with Fatal Outcome. Case Rep. Oncol. 2020, 13, 1252–1257. [Google Scholar] [CrossRef]
- Paparoupa, M.; Stupperich, S.; Goerg-Reifenberg, L.; Wittig, A.; Schuppert, F. Successful Treatment of an Immune-Mediated Colitis Induced by Checkpoint Inhibitor Therapy in a Patient with Advanced Melanoma. Case Rep. Gastroenterol. 2020, 14, 554–560. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Chen, M.; McQuade, J.L.; Appelbaum, E.; Gidley, P.W.; Nader, M. Recurrent audiovestibular dysfunction and associated neurological immune-related adverse events in a melanoma patient treated with nivolumab and ipilimumab. Head Neck 2020, 42, E35–E42. [Google Scholar] [CrossRef] [PubMed]
- Vindum, H.H.; Agnholt, J.S.; Nielsen, A.W.M.; Nielsen, M.B.; Schmidt, H. Severe steroid refractory gastritis induced by Nivolumab: A case report. World J. Gastroenterol. 2020, 26, 1971–1978. [Google Scholar] [CrossRef]
- Chang, V.A.; Simpson, D.R.; Daniels, G.A.; Piccioni, D.E. Infliximab for treatment-refractory transverse myelitis following immune therapy and radiation. J. Immunother. Cancer 2018, 6, 153. [Google Scholar] [CrossRef]
- Alhammad, R.M.; Dronca, R.S.; Kottschade, L.A.; Turner, H.J.; Staff, N.P.; Mauermann, M.L.; Tracy, J.A.; Klein, C.J. Brachial Plexus Neuritis Associated with Anti–Programmed Cell Death-1 Antibodies: Report of 2 Cases. Mayo Clin. Proc. Innov. Qual. Outcomes 2017, 1, 192–197. [Google Scholar] [CrossRef]
- Kopecký, J.; Kubeček, O.; Geryk, T.; Slováčková, B.; Hoffmann, P.; Žiaran, M.; Priester, P. Nivolumab induced encephalopathy in a man with metastatic renal cell cancer: A case report. J. Med. Case Rep. 2018, 12, 262. [Google Scholar] [CrossRef] [PubMed]
- Braaten, T.J.; Brahmer, J.R.; Forde, P.M.; Le, D.; Lipson, E.J.; Naidoo, J.; Schollenberger, M.; Zheng, L.; O Bingham, C.; Shah, A.A.; et al. Immune checkpoint inhibitor-induced inflammatory arthritis persists after immunotherapy cessation. Ann. Rheum. Dis. 2020, 79, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Araujo, D.V.; Muniz, T.P.; Yang, A.; Keshavarzi, S.; Sorotsky, H.; Butler, M.O.; Saibil, S.; Spreafico, A.; Hogg, D. Real World Outcomes and Hepatotoxicity of Infliximab in the Treatment of Steroid-Refractory Immune-Related Adverse Events. Curr. Oncol. 2021, 28, 2173–2179. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ruiz, E.; Minute, L.; Otano, I.; Alvarez, M.; Ochoa, M.C.; Belsue, V.; de Andrea, C.; Rodriguez-Ruiz, M.E.; Perez-Gracia, J.L.; Marquez-Rodas, I.; et al. Prophylactic TNF blockade uncouples efficacy and toxicity in dual CTLA-4 and PD-1 immunotherapy. Nature 2019, 569, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, N.; Zaidi, M.; Vaughan, L.; McKee, T.D.; Ahsan, E.; Pavelko, K.D.; Villasboas, J.C.; Markovic, S.; Taner, T.; Leung, N.; et al. Cytokines and Immune Cell Phenotype in Acute Kidney Injury Associated with Immune Checkpoint Inhibitors. Kidney Int. Rep. 2023, 8, 628–641. [Google Scholar] [CrossRef] [PubMed]
- Zou, F.; Faleck, D.; Thomas, A.; Harris, J.; Satish, D.; Wang, X.; Charabaty, A.; Ernstoff, M.S.; Oliva, I.C.G.; Hanauer, S.; et al. Efficacy and safety of vedolizumab and infliximab treatment for immune-mediated diarrhea and colitis in patients with cancer: A two-center observational study. J. Immunother. Cancer 2021, 9, e003277. [Google Scholar] [CrossRef] [PubMed]
- Bertrand, F.; Rochotte, J.; Colacios, C.; Montfort, A.; Tilkin-Mariamé, A.-F.; Touriol, C.; Rochaix, P.; Lajoie-Mazenc, I.; Andrieu-Abadie, N.; Levade, T.; et al. Blocking Tumor Necrosis Factor α Enhances CD8 T-cell–Dependent Immunity in Experimental Melanoma. Cancer Res. 2015, 75, 2619–2628. [Google Scholar] [CrossRef]
- Bertrand, F.; Colacios, C.; Ségui, B. TNF-R1, an immune checkpoint in melanoma? Genes Cancer 2015, 6, 369–370. [Google Scholar] [CrossRef]
- Bertrand, F.; Montfort, A.; Marcheteau, E.; Imbert, C.; Gilhodes, J.; Filleron, T.; Rochaix, P.; Andrieu-Abadie, N.; Levade, T.; Meyer, N.; et al. TNFα blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat. Commun. 2017, 8, 2256. [Google Scholar] [CrossRef]
- Lai, K.A.; Sheshadri, A.; Adrianza, A.M.; Etchegaray, M.; Balachandran, D.D.; Bashoura, L.; Shannon, V.R.; Faiz, S.A. Role of Infliximab in Immune Checkpoint Inhibitor-Induced Pneumonitis. J. Immunother. Precis. Oncol. 2020, 3, 172–174. [Google Scholar] [CrossRef]
- García-Carro, C.; Bolufer, M.; Bury, R.; Castañeda, Z.; Muñoz, E.; Felip, E.; Lorente, D.; Carreras, M.J.; Gabaldon, A.; Agraz, I.; et al. Acute kidney injury as a risk factor for mortality in oncological patients receiving checkpoint inhibitors. Nephrol. Dial. Transplant. 2022, 37, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Abdelrahim, M.; Mamlouk, O.; Lin, H.; Lin, J.; Page, V.; Abdel-Wahab, N.; Swan, J.; Selamet, U.; Yee, C.; Diab, A.; et al. Incidence, predictors, and survival impact of acute kidney injury in patients with melanoma treated with immune checkpoint inhibitors: A 10-year single-institution analysis. OncoImmunology 2021, 10, 1927313. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.L.; Yamamoto, Y.; A Perazella, M.; Dizman, N.; Shirali, A.C.; Hafez, N.; Weinstein, J.; Simonov, M.; Testani, J.M.; Kluger, H.M.; et al. Mortality after acute kidney injury and acute interstitial nephritis in patients prescribed immune checkpoint inhibitor therapy. J. Immunother. Cancer 2022, 10, e004421. [Google Scholar] [CrossRef] [PubMed]
- Lesage, C.; Longvert, C.; Prey, S.; Maanaoui, S.; Dréno, B.; Machet, L.; Zehou, O.; Kramkimel, N.; Jeudy, G.; Skowron, F.; et al. Incidence and Clinical Impact of Anti-TNFα Treatment of Severe Immune Checkpoint Inhibitor-induced Colitis in Advanced Melanoma: The Mecolit Survey. J. Immunother. 2019, 42, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Badran, Y.R.; Cohen, J.V.; Brastianos, P.K.; Parikh, A.R.; Hong, T.S.; Dougan, M. Concurrent therapy with immune checkpoint inhibitors and TNFα blockade in patients with gastrointestinal immune-related adverse events. J. Immunother. Cancer 2019, 7, 226. [Google Scholar] [CrossRef] [PubMed]
- Verheijden, R.J.; May, A.M.; Blank, C.U.; Aarts, M.J.; Berkmortel, F.W.v.D.; Eertwegh, A.J.v.D.; de Groot, J.W.B.; Boers-Sonderen, M.J.; van der Hoeven, J.J.; Hospers, G.A.; et al. Association of Anti-TNF with Decreased Survival in Steroid Refractory Ipilimumab and Anti-PD1–Treated Patients in the Dutch Melanoma Treatment Registry. Clin. Cancer Res. 2020, 26, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- Montfort, A.; Filleron, T.; Virazels, M.; Dufau, C.; Milhès, J.; Pagès, C.; Olivier, P.; Ayyoub, M.; Mounier, M.; Lusque, A.; et al. Combining Nivolumab and Ipilimumab with Infliximab or Certolizumab in Patients with Advanced Melanoma: First Results of a Phase Ib Clinical Trial. Clin. Cancer Res. 2021, 27, 1037–1047. [Google Scholar] [CrossRef]
- Hailemichael, Y.; Johnson, D.H.; Abdel-Wahab, N.; Foo, W.C.; Bentebibel, S.-E.; Daher, M.; Haymaker, C.; Wani, K.; Saberian, C.; Ogata, D.; et al. Interleukin-6 blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell 2022, 40, 509–523.e6. [Google Scholar] [CrossRef]
- Ke, W.; Zhang, L.; Dai, Y. The role of IL-6 in immunotherapy of non-small cell lung cancer (NSCLC) with immune-related adverse events (irAEs). Thorac. Cancer 2020, 11, 835–839. [Google Scholar] [CrossRef]
Cancer Type | Melanoma (n = 93) | Genitourinary (n = 37) | All (n = 185) | |
---|---|---|---|---|
Covariate | Level | Descriptive statistics | Descriptive statistics | Descriptive statistics |
Age at ICI initiation (years) | Median (IQR) | 62.99 (49.81–71.12) | 69.94 (58.33–75.61) | 63.93 (55.62–73.08) |
Duration of ICI (months) | Median (IQR) | 4.3 (1.64–12.58) | 1.38 (0.95–2.79) | 2.23 (1.02–8.25) |
Duration of infliximab (days) | Median (IQR) | 1 (1–35) | 20 (12–45) | 1 (1–34) |
Number of infliximab doses | Median (IQR) | 1 (1–2) | 2 (2–3) | 1 (1–2) |
Baseline creatinine | Median (IQR) | 0.88 (0.77–1.01) | 1 (0.8–1.3) | 0.9 (0.77–1.02) |
Time from ICI to irAE (months) | Median (IQR) | 2.76 (1.54–7.69) | 2.23 (1.15–3.94) | 2.43 (1.38–6.05) |
Time from irAE to infliximab (days) | Median (IQR) | 7 (3–27) | 7 (4–19) | 8 (4–23) |
Sex | Female | 32 (34.4%) | 8 (21.6%) | 50 (27%) |
Male | 61 (65.6%) | 29 (78.4%) | 135 (73%) | |
ICI type | Monotherapy | 24 (25.8%) | 19 (51.4%) | 76 (41.1%) |
Combination | 69 (74.2%) | 18 (48.6%) | 109 (58.9%) | |
Unknown | 1 (1.1%) | 0 (0%) | 1 (0.54%) | |
Dialysis | No | 89 (95.7%) | 36 (97.3%) | 177 (96.2%) |
Yes | 3 (3.2%) | 1 (2.7%) | 7 (3.8%) | |
Steroids before infliximab | No | 67 (72%) | 26 (70.3%) | 128 (69.2%) |
Yes | 26 (28%) | 11 (29.7%) | 57 (30.8%) | |
HTN | No | 39 (41.9%) | 8 (21.6%) | 68 (36.8%) |
Yes | 54 (58.1%) | 29 (78.4%) | 117 (63.2%) | |
DM | No | 69 (74.2%) | 24 (64.9%) | 136 (73.5%) |
Yes | 24 (25.8%) | 13 (35.1%) | 49(26.5%) | |
HLD | No | 67 (72%) | 23 (62.2%) | 123 (66.5%) |
Yes | 26 (28%) | 14 (37.8%) | 62 (33.5%) | |
CVD | No | 77 (82.8%) | 31 (83.8%) | 149 (80.5%) |
Yes | 16 (17.2%) | 6 (16.2%) | 36 (19.5%) | |
Hypothyroid | No | 59 (63.4%) | 29 (78.4%) | 130 (70.3%) |
Yes | 34 (36.6%) | 8 (21.6%) | 55 (29.7%) | |
Autoimmune disease | No | 86 (92.5%) | 37 (100%) | 172 (93%) |
Yes | 7 (7.5%) | 0 (0%) | 13 (7%) | |
AKI any time | No | 67 (72%) | 19 (51.4%) | 114 (61.6%) |
Yes | 26 (28%) | 18 (48.6%) | 71 (38.4%) | |
AKI prior to infliximab | No | 80 (86%) | 23 (62.2%) | 141 (76.2%) |
Yes | 13 (14%) | 14 (37.8%) | 44 (23.8%) | |
AKI within 1 month of infliximab | No | 75 (80.6%) | 22 (59.5%) | 128 (69.2%) |
Yes | 18 (19.4%) | 15 (40.5%) | 57 (30.8%) |
Best Tumor Response before Infliximab | Response after Infliximab, n (%) | Total, n (%) | |
---|---|---|---|
No Response | Response | ||
No response | 26 | 20 | 46 (32.62%) |
Response | 32 | 63 | 95 (67.38%) |
Total | 58 (41.13%) | 83 (58.87%) | 141 |
Covariate | Level | Melanoma | Genitourinary | ||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Cox Model | Multivariate Cox Model | Univariate Cox Model | Multivariate Cox Model | ||||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
ICI type | Monotherapy | 1.000 | 1.000 | 1.000 | |||||
Combination | 1.404 (0.711–2.773) | 0.3289 | 1.182 (0.584–2.391) | 0.6427 | 1.250 (0.533–2.934) | 0.6077 | 1.921 (0.759–4.865) | 0.1683 | |
CVD | No | 1.000 | 1.000 | ||||||
Yes | 3.897 (1.998–7.601) | <0.0001 | 3.475 (1.735–6.956) | 0.0004 | 0.539 (0.235–1.239) | 0.1458 | |||
AKI | No | 1.000 | 1.000 | ||||||
Yes | 1.755 (0.956–3.221) | 0.0696 | 1.503 (0.812–2.782) | 0.1949 | 1.110 (0.473–2.608) | 0.8104 | |||
Response | No | 1.000 | 1.000 | 1.000 | |||||
Yes | 0.662 (0.349–1.255) | 0.2061 | 0.468 (0.190–1.155) | 0.0996 | 0.246 (0.096–0.627) | 0.0033 |
Covariate | Level | Melanoma | Genitourinary | ||||||
---|---|---|---|---|---|---|---|---|---|
Univariate Cox Model | Multivariate Cox Model | Univariate Cox Model | Multivariate Cox Model | ||||||
HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
ICI type | Monotherapy | 1.000 | 1.000 | 1.000 | 1.000 | ||||
Combination | 1.266 (0.622–2.579) | 0.5158 | 1.413 (0.679–2.940) | 0.3549 | 0.741 (0.292–1.880) | 0.5282 | 1.320 (0.422–4.133) | 0.6331 | |
CVD | No | 1.000 | |||||||
Yes | 1.989 (0.997–3.969) | 0.0511 | |||||||
Myositis | No | 1.000 | 1.000 | ||||||
Yes | 10.978 (2.871–41.978) | 0.0005 | 7.637 (1.907–30.590) | 0.0041 | |||||
AKI | No | 1.000 | 1.000 | 1.000 | |||||
Yes | 2.630 (1.428–4.842) | 0.0019 | 2.269 (1.208–4.262) | 0.0109 | 0.788 (0.303–2.046) | 0.6241 | |||
Response | No | 1.000 | 1.000 | 1.000 | 1.000 | ||||
Yes | 0.414 (0.209–0.818) | 0.0112 | 0.470 (0.230–0.960) | 0.0383 | 0.283 (0.103–0.777) | 0.0144 | 0.334 (0.091–1.230) | 0.0992 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvathareddy, V.; Selamet, U.; Sen, A.A.; Mamlouk, O.; Song, J.; Page, V.D.; Abdelrahim, M.; Diab, A.; Abdel-Wahab, N.; Abudayyeh, A. Infliximab for Treatment of Immune Adverse Events and Its Impact on Tumor Response. Cancers 2023, 15, 5181. https://doi.org/10.3390/cancers15215181
Parvathareddy V, Selamet U, Sen AA, Mamlouk O, Song J, Page VD, Abdelrahim M, Diab A, Abdel-Wahab N, Abudayyeh A. Infliximab for Treatment of Immune Adverse Events and Its Impact on Tumor Response. Cancers. 2023; 15(21):5181. https://doi.org/10.3390/cancers15215181
Chicago/Turabian StyleParvathareddy, Vishnupriyadevi, Umut Selamet, Aditi A. Sen, Omar Mamlouk, Juhee Song, Valda D. Page, Maen Abdelrahim, Adi Diab, Noha Abdel-Wahab, and Ala Abudayyeh. 2023. "Infliximab for Treatment of Immune Adverse Events and Its Impact on Tumor Response" Cancers 15, no. 21: 5181. https://doi.org/10.3390/cancers15215181
APA StyleParvathareddy, V., Selamet, U., Sen, A. A., Mamlouk, O., Song, J., Page, V. D., Abdelrahim, M., Diab, A., Abdel-Wahab, N., & Abudayyeh, A. (2023). Infliximab for Treatment of Immune Adverse Events and Its Impact on Tumor Response. Cancers, 15(21), 5181. https://doi.org/10.3390/cancers15215181