New Achievements from Molecular Biology and Treatment Options for Refractory/Relapsed Ovarian Cancer—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Systematic Review
3. Cytotoxic Therapy
4. Angiogenesis
5. PARP Inhibitors
6. Immunotherapy and Potential Combinations
7. Immune Checkpoint Inhibitors (ICIs)
8. ICIs +/− Chemotherapy
9. ICIs + PARP/Antiangiogenesis
10. Promising New Approaches with Possible Future Relevance
11. Resistance to Therapeutic Agents
12. Importance of Biomarkers in Therapy Resistance
Biomarker-Adapted Decisions/Trials
13. Biomarkers That Facilitate Treatment Decisions
14. Recent Advances in Molecular Biology for Refractory OC
15. Recent Advances in Treatment Strategies for Recurrent/Refractory OC
16. Limitations
17. Future Strategies
18. Methods
19. Conclusions and Future Directions
Acknowledgments
Conflicts of Interest
References
- Chandra, A.; Pius, C.; Nabeel, M.; Nair, M.; Vishwanatha, J.K.; Ahmad, S.; Riyaz Basha, R. Ovarian cancer: Current status and strategies for improving therapeutic outcomes. Cancer Med. 2019, 8, 7018–7031. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.cancer.org/cancer/ovarian-cancer/about/key-statistics.html (accessed on 10 May 2023).
- Kurnit, K.C.; Fleming, G.F.; Lengyel, E. Updates and New Options in Advanced Epithelial Ovarian Cancer Treatment. Obstet. Gynecol. 2021, 137, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Zamwar, U.M.; Anjankar, A.P. Aetiology, Epidemiology, Histopathology, Classification, Detailed Evaluation, and Treatment of Ovarian Cancer. Cureus 2022, 14, e30561. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [PubMed]
- Kurman, R.J.; Shih, I.E.M. The Dualistic Model of Ovarian Carcinogenesis: Revisited, Revised, and Expanded. Am. J. Pathol. 2016, 186, 733–747. [Google Scholar] [CrossRef] [PubMed]
- Le Saux, O.; Ray-Coquard, I.; Labidi-Galy, S.I. Challenges for immunotherapy for the treatment of platinum resistant ovarian cancer. Semin. Cancer Biol. 2021, 77, 127–143. [Google Scholar] [CrossRef] [PubMed]
- Borella, F.; Ghisoni, E.; Giannone, G.; Cosma, S.; Benedetto, C.; Valabrega, G.; Katsaros, D. Immune Checkpoint Inhibitors in Epithelial Ovarian Cancer: An Overview on Efficacy and Future Perspectives. Diagnostics 2020, 10, 146. [Google Scholar] [CrossRef]
- Arend, R.C.; Jackson-Fisher, A.; Jacobs, I.A.; Chou, J.; Monk, B.J. Ovarian cancer: New strategies and emerging targets for the treatment of patients with advanced disease. Cancer Biol. Ther. 2021, 22, 89–105. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Yang, J.; Zhao, X.; Wei, X. Tumor Microenvironment in Ovarian Cancer: Function and Therapeutic Strategy. Front. Cell Dev. Biol. 2020, 8, 758. [Google Scholar] [CrossRef]
- Atallah, G.A.; Aziz, N.H.A.; Teik, C.K.; Shafiee, M.N.; Kampan, N.C. New Predictive Biomarkers for Ovarian Cancer. Diagnostics 2021, 11, 465. [Google Scholar] [CrossRef]
- Landen, C.N.; Molinero, L.; Hamidi, H.; Sehouli, J.; Miller, A.; Moore, K.N.; Taskiran, C.; Bookman, M.; Lindemann, K.; Anderson, C.; et al. Influence of Genomic Landscape on Cancer Immunotherapy for Newly Diagnosed Ovarian Cancer: Biomarker Analyses from the IMagyn050 Randomized Clinical Trial. Clin. Cancer Res. 2023, 29, 1698–1707. [Google Scholar] [CrossRef] [PubMed]
- Harter, P.; Sehouli, J.; Vergote, I.; Ferron, G.; Reuss, A.; Meier, W.; Greggi, S.; Mosgaard, B.J.; Selle, F.; Guyon, F.; et al. Randomized Trial of Cytoreductive Surgery for Relapsed Ovarian Cancer. DESKTOP III Investigators. N. Engl. J. Med. 2021, 385, 2123–2131. [Google Scholar] [CrossRef] [PubMed]
- Marme, F. Medikamentöse Therapie des Ovarialkarzinoms. Frauenheilkd. up2date 2021, 15, 143–162. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Wang, X.; Yu, J.; Ma, F.; Li, Z.; Zhou, Y.; Zeng, S.; Ma, X.; Li, Y.-R.; Neal, A.; et al. Targeting monoamine oxidase A-regulated tumor-associated macrophage polarization for cancer immunotherapy. Nat. Commun. 2021, 12, 3530. [Google Scholar] [CrossRef]
- Tu, L.; Guan, R.; Yang, H.; Zhou, Y.; Hong, W.; Ma, L.; Zhao, G.; Yu, M. Assessment of the expression of the immune checkpoint molecules PD-1, CTLA4, TIM-3 and LAG-3 across different cancers in relation to treatment response, tumor-infiltrating immune cells and survival. Int. J. Cancer 2020, 147, 423–439. [Google Scholar] [CrossRef]
- González-Martín, A.; Sánchez-Lorenzo, L. Immunotherapy with checkpoint inhibitors in patients with ovarian cancer: Still promising? Cancer 2019, 125 (Suppl. S24), S4616–S4622. [Google Scholar] [CrossRef]
- Morand, S.; Devanaboyina, M.; Staats, H.; Stanbery, L.; Nemunaitis, J. Ovarian Cancer Immunotherapy and Personalized Medicine Review. Int. J. Mol. Sci. 2021, 22, 6532. [Google Scholar] [CrossRef]
- Xie, K.; Fu, C.; Wang, S.; Xu, H.; Liu, S.; Shao, Y.; Gong, Z.; Wu, X.; Xu, B.; Han, J.; et al. Cancer-testis antigens in ovarian cancer: Implication for biomarkers and therapeutic targets. J. Ovarian Res. 2019, 12, 1. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, X.; Yin, Y.; Zhang, H.; Yin, F.; Guo, P.; Zhang, X.; Sun, C.; Li, S.; Han, Y.; et al. Identifying the Role of Oxidative Stress-Related Genes as Prognostic Biomarkers and Predicting the Response of Immunotherapy and Chemotherapy in Ovarian Cancer. Oxid. Med. Cell. Longev. 2022, 2022, 6575534. [Google Scholar] [CrossRef]
- Smith, T. Current Standards of Care in Platinum-Resistant Ovarian Cancer; Pharmacy Times Oncology, Ed.; Pharmacy Times: Cranbury, NJ, USA, 2022; Volume 4. [Google Scholar]
- Awada, A.; Ahmad, S.; McKenzie, N.D.; Holloway, R.W. Immunotherapy in the Treatment of Platinum-Resistant Ovarian Cancer: Current Perspectives. OncoTargets Ther. 2022, 15, 853–866. [Google Scholar] [CrossRef]
- Singh, V.; Sheikh, A.; Abourehab, M.A.S.; Kesharwani, P. Dostarlimab as a Miracle Drug: Rising Hope against Cancer Treatment. Biosensors 2022, 12, 617. [Google Scholar] [CrossRef]
- Boussios, S.; Abson, C.; Moschetta, M.; Rassy, E.; Karathanasi, A.; Bhat, T.; Ghumman, F.; Sheriff, M.; Pavlidis, N. Poly (ADP-Ribose) Polymerase Inhibitors: Talazoparib in Ovarian Cancer and Beyond. Drugs R D 2020, 20, 55–73. [Google Scholar] [CrossRef] [PubMed]
- Garcia, C.; Ring, K.L. The Role of PD-1 Checkpoint Inhibition in Gynecologic Malignancies. Curr. Treat. Options Oncol. 2018, 19, 70. [Google Scholar] [CrossRef] [PubMed]
- Vergote, I.; Scambia, G.; O’Malley, D.M.; Van Calster, B.; Park, S.Y.; Del Campo, J.M.; Meier, W.; Bamias, A.; Colombo, N.; Wenham, R.M.; et al. TRINOVA-3/ENGOT-ov2/GOG-3001 investigators. Trebananib or placebo plus carboplatin and paclitaxel as first-line treatment for advanced ovarian cancer (TRINOVA-3/ENGOT-ov2/GOG-3001): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2019, 20, 862–876. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Liu, W.; Xu, S.; Shang, H.; Li, J.; Guo, Y.; Tong, J. PARP inhibitors as maintenance therapy in newly diagnosed advanced ovarian cancer: A meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2021, 128, 485–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zheng, S.; Liu, Y.; Li, X.; Wu, J.; Sun, Y.; Liu, G. DNA damage response and PD-1/PD-L1 pathway in ovarian cancer. DNA Repair. 2021, 102, 103112. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Qi, W.; Jin, W.; Xia, B. Targeting DNA Repair Response Promotes Immunotherapy in Ovarian Cancer: Rationale and Clinical Application. Front. Immunol. 2021, 12, 661115. [Google Scholar] [CrossRef]
- Lorusso, D.; Ceni, V.; Muratore, M.; Salutari, V.; Nero, C.; Pietragalla, A.; Ciccarone, F.; Carbone, V.; Daniele, G.; Scambia, G. Emerging role of immune checkpoint inhibitors in the treatment of ovarian cancer. Expert. Opin. Emerg. Drugs 2020, 25, 445–453. [Google Scholar] [CrossRef]
- Morse, C.B.; Toukatly, M.N.; Kilgore, M.R.; Agnew, K.J.; Bernards, S.S.; Norquist, B.M.; Pennington, K.P.; Garcia, R.L.; Liao, J.B.; Swisher, E.M. Tumor infiltrating lymphocytes and homologous recombination deficiency are independently associated with improved survival in ovarian carcinoma. Gynecol. Oncol. 2019, 153, 217–222. [Google Scholar] [CrossRef]
- Stewart, M.D.; Merino Vega, D.; Arend, R.C.; Baden, J.F.; Barbash, O.; Beaubier, N.; Collins, G.; French, T.; Ghahramani, N.; Hinson, P.; et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist 2022, 27, 167–174. [Google Scholar] [CrossRef]
- Haunschild, C.E.; Tewari, K.S. The current landscape of molecular profiling in the treatment of epithelial ovarian cancer. Gynecol. Oncol. 2021, 160, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Ngoi, N.Y.L.; Tan, D.S.P. The role of homologous recombination deficiency testing in ovarian cancer and its clinical implications: Do we need it? ESMO Open 2021, 6, 100144. [Google Scholar] [CrossRef] [PubMed]
- Frey, M.K.; Pothuri, B. Homologous recombination deficiency (HRD) testing in ovarian cancer clinical practice: A review of the literature. Gynaecol. Oncol. Res. Pract. 2014, 4, 4. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, Z.; Tang, X.; Zhang, X.; Chen, Y.; Hu, T.; Zhang, H.; Guan, M.; Zhang, X.; Wu, Z. Pan-cancer analysis reveals homologous recombination deficiency score as a predictive marker for immunotherapy responders. Hum. Cell 2022, 35, 199–213. [Google Scholar] [CrossRef]
- Xie, H.; Wang, W.; Xia, B.; Jin, W.; Lou, G. Therapeutic applications of PARP inhibitors in ovarian cancer. Biomed. Pharmacother. 2020, 127, 110204. [Google Scholar] [CrossRef]
- Fumet, J.D.; Limagne, E.; Thibaudin, M.; Truntzer, C.; Bertaut, A.; Rederstorff, E.; Ghiringhelli, F. Precision medicine phase II study evaluating the efficacy of a double immunotherapy by durvalumab and tremelimumab combined with olaparib in patients with solid cancers and carriers of homologous recombination repair genes mutation in response or stable after olaparib treatment. BMC Cancer 2020, 20, 748. [Google Scholar] [CrossRef]
- Keener, A.B. Innovative therapies to tackle platinum-resistant ovarian cancer. Nature 2021, 600, S45–S47. [Google Scholar] [CrossRef]
- Vergote, I.; González-Martín, A.; Ray-Coquard, I.; Harter, P.; Colombo, N.; Pujol, P.; Lorusso, D.; Mirza, M.R.; Brasiuniene, B.; Madry, R.; et al. European experts consensus: BRCA/homologous recombination deficiency testing in first-line ovarian cancer. Ann. Oncol. 2022, 33, 276–287. [Google Scholar] [CrossRef]
- Chung, Y.M.; Khan, P.P.; Wang, H.; Tsai, W.B.; Qiao, Y.; Yu, B.; Larrick, J.W.; Hu, M.C. Sensitizing tumors to anti-PD-1 therapy by promoting NK and CD8+ T cells via pharmacological activation of FOXO3. J. Immunother. Cancer 2021, 9, e002772. [Google Scholar] [CrossRef]
- Chin, C.D.; Fares, C.M.; Konecny, G.E.; Rao, J. Biomarkers that may predict response to immunotherapy in ovarian malignancies. Curr. Opin. Obstet. Gynecol. 2020, 32, 84–90. [Google Scholar] [CrossRef]
- Fan, C.A.; Reader, J.; Roque, D.M. Review of Immune Therapies Targeting Ovarian Cancer. Curr. Treat. Options Oncol. 2018, 19, 74. [Google Scholar] [CrossRef] [PubMed]
- Boland, J.L.; Zhou, Q.; Martin, M.; Callahan, M.K.; Konner, J.; O’Cearbhaill, R.E.; Friedman, C.F.; Tew, W.; Makker, V.; Grisham, R.N.; et al. Early disease progression and treatment discontinuation in patients with advanced ovarian cancer receiving immune checkpoint blockade. Gynecol. Oncol. 2019, 152, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Paijens, S.T.; Leffers, N.; Daemen, T.; Helfrich, W.; Boezen, H.M.; Cohlen, B.J.; Melief, C.J.; de Bruyn, M.; Nijman, H.W. Antigen-specific active immunotherapy for ovarian cancer. Cochrane Database Syst. Rev. 2018, 9, CD007287. [Google Scholar] [CrossRef]
- Benard, E.; Casey, N.P.; Inderberg, E.M.; Wälchli, S. SJI 2020 special issue: A catalogue of Ovarian Cancer targets for CAR therapy. Scand. J. Immunol. 2020, 92, e12917. [Google Scholar] [CrossRef] [PubMed]
- Ghisoni, E.; Imbimbo, M.; Zimmermann, S.; Valabrega, G. Ovarian Cancer Immunotherapy: Turning up the Heat. Int. J. Mol. Sci. 2019, 20, 2927. [Google Scholar] [CrossRef]
- Pietzner, K.; Nasser, S.; Alavi, S.; Darb-Esfahani, S.; Passler, M.; Muallem, M.Z.; Sehouli, J. Checkpoint-inhibition in ovarian cancer: Rising star or just a dream? J. Gynecol. Oncol. 2018, 29, e93. [Google Scholar] [CrossRef]
- Rubinstein, M.M.; Makker, V. Optimizing immunotherapy for gynecologic cancers. Curr. Opin. Obstet. Gynecol. 2020, 32, 1–8. [Google Scholar] [CrossRef]
- Le Saux, O.; Dubois, B.; Stern, M.H.; Terme, M.; Tartour, E.; Classe, J.M.; Chopin, N.; Trédan, O.; Caux, C.; Ray-Coquard, I. Current advances in immunotherapy in ovarian cancer. Bull. Cancer 2020, 107, 465–473. [Google Scholar] [CrossRef]
- Khatoon, E.; Parama, D.; Kumar, A.; Alqahtani, M.S.; Abbas, M.; Girisa, S.; Sethi, G.; Kunnumakkara, A.B. Targeting PD-1/PD-L1 axis as new horizon for ovarian cancer therapy. Life Sci. 2022, 306, 120827. [Google Scholar] [CrossRef]
- Olino, K.; Park, T.; Ahuja, N. Exposing Hidden Targets: Combining epigenetic and immunotherapy to overcome cancer resistance. Semin. Cancer Biol. 2020, 65, 114–122. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zamarin, D. Combination Immune Checkpoint Blockade Strategies to Maximize Immune Response in Gynecological Cancers. Curr. Oncol. Rep. 2018, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Weng, S.; Wang, J.; Chen, J.; Yu, L.; Fang, X.; Yuan, Y. Preclinical rationale and clinical efficacy of antiangiogenic therapy and immune checkpoint blockade combination therapy in urogenital tumors. J. Cancer Res. Clin. Oncol. 2019, 145, 3021–3036. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Luo, J.; Ji, X.; Hu, M.; Xue, Y.; Liu, Q. Deficiency of tumor-expressed B7-H3 augments anti-tumor efficacy of anti-PD-L1 monotherapy rather than the combined chemoimmunotherapy in ovarian cancer. Pharmacol. Res. 2022, 186, 106512. [Google Scholar] [CrossRef] [PubMed]
- Moujaess, E.; Haddad, F.G.; Eid, R.; Kourie, H.R. The emerging use of immune checkpoint blockade in the adjuvant setting for solid tumors: A review. Immunotherapy 2019, 11, 1409–1422. [Google Scholar] [CrossRef]
- Marth, C.; Wieser, V.; Tsibulak, I.; Zeimet, A.G. Immunotherapy in ovarian cancer: Fake news or the real deal? Int. J. Gynecol. Cancer 2019, 29, 201–211. [Google Scholar] [CrossRef]
- Drakes, M.L.; Mehrotra, S.; Aldulescu, M.; Potkul, R.K.; Liu, Y.; Grisoli, A.; Joyce, C.; O’Brien, T.E.; Stack, M.S.; Stiff, P.J. Stratification of ovarian tumor pathology by expression of programmed cell death-1 (PD-1) and PD-ligand-1 (PD-L1) in ovarian cancer. J. Ovarian Res. 2018, 11, 43. [Google Scholar] [CrossRef]
- McGray, A.J.R.; Eppolito, C.; Miliotto, A.; Singel, K.L.; Stephenson, K.; Lugade, A.; Segal, B.H.; Keler, T.; Webster, G.; Lichty, B.; et al. A prime/boost vaccine platform efficiently identifies CD27 agonism and depletion of myeloid-derived suppressor cells as therapies that rationally combine with checkpoint blockade in ovarian cancer. Cancer Immunol. Immunother. 2021, 70, 3451–3460. [Google Scholar] [CrossRef]
- Dumitru, A.; Dobrica, E.C.; Croitoru, A.; Cretoiu, S.M.; Gaspar, B.S. Focus on PD-1/PD-L1 as a Therapeutic Target in Ovarian Cancer. Int. J. Mol. Sci. 2022, 23, 12067. [Google Scholar] [CrossRef]
- Pawłowska, A.; Suszczyk, D.; Okła, K.; Barczyński, B.; Kotarski, J.; Wertel, I. Immunotherapies based on PD-1/PD-L1 pathway inhibitors in ovarian cancer treatment. Clin. Exp. Immunol. 2019, 195, 334–344. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Y.; Liang, C.; Yang, Y.; Li, Y.; Wan, J. Classification of serous ovarian carcinoma based on immunogenomic profiling. Int. Immunopharmacol. 2021, 91, 107274. [Google Scholar] [CrossRef]
- Ojalvo, L.S.; Thompson, E.D.; Wang, T.L.; Meeker, A.K.; Shih, I.M.; Fader, A.N.; Cimino-Mathews, A.; Emens, L.A. Tumor-associated macrophages and the tumor immune microenvironment of primary and recurrent epithelial ovarian cancer. Hum. Pathol. 2018, 74, 135–147. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Jazaeri, A.A. Diagnosis and Management of Immune Checkpoint Inhibitor-related Toxicities in Ovarian Cancer: A Series of Case Vignettes. Clin. Ther. 2018, 40, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, S.; Dai, X.; Ma, L.; Chen, Y.; Bian, W.; Sun, Y. Exploration of the underlying biological differences and targets in ovarian cancer patients with diverse immunotherapy response. Front. Immunol. 2022, 13, 1007326. [Google Scholar] [CrossRef] [PubMed]
- Whitehair, R.; Peres, L.C.; Mills, A.M. Expression of the Immune Checkpoints LAG-3 and PD-L1 in High-grade Serous Ovarian Carcinoma: Relationship to Tumor-associated Lymphocytes and Germline BRCA Status. Int. J. Gynecol. Pathol. 2020, 39, 558–566. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.H.; Cho, H.W.; Ouh, Y.T.; Lee, J.K.; Chun, Y. Lymphocyte activation gene (LAG)-3 is a potential immunotherapeutic target for microsatellite stable, programmed death-ligand 1 (PD-L1)-positive endometrioid endometrial cancer. J. Gynecol. Oncol. 2023, 34, e18. [Google Scholar] [CrossRef]
- Leary, A.; Tan, D.; Ledermann, J. Immune checkpoint inhibitors in ovarian cancer: Where do we stand? Ther. Adv. Med. Oncol. 2021, 13, 17588359211039899. [Google Scholar] [CrossRef]
- Biswas, S.; Mandal, G.; Payne, K.K.; Anadon, C.M.; Gatenbee, C.D.; Chaurio, R.A.; Costich, T.L.; Moran, C.; Harro, C.M.; Rigolizzo, K.E.; et al. IgA transcytosis and antigen recognition govern ovarian cancer immunity. Nature 2021, 591, 464–470. [Google Scholar] [CrossRef]
- Indini, A.; Nigro, O.; Lengyel, C.G.; Ghidini, M.; Petrillo, A.; Lopez, S.; Raspagliesi, F.; Trapani, D.; Khakoo, S.; Bogani, G. Immune-Checkpoint Inhibitors in Platinum-Resistant Ovarian Cancer. Cancers 2021, 13, 1663. [Google Scholar] [CrossRef]
- Pujade-Lauraine, E.; Fujiwara, K.; Ledermann, J.A.; Oza, A.M.; Kristeleit, R.; Ray-Coquard, I.L.; Richardson, G.E.; Sessa, C.; Yonemori, K.; Banerjee, S.; et al. Avelumab alone or in combination with chemotherapy versuschemotherapy alone in platinum-resistant or platinum-refractory ovariancancer (JAVELIN Ovarian 200): An open-label, three-arm, randomised, phase 3 study. Lancet Oncol. 2021, 22, 1034–1046. [Google Scholar] [CrossRef]
- Arman Karakaya, Y.; Atıgan, A.; Güler, Ö.T.; Demiray, A.G.; Bir, F. The relation of CD3, CD4, CD8 and PD-1 expression with tumor type and prognosis in epithelial ovarian cancers. Ginekol. Pol. 2021, 92, 344–351. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, B.G.; Kim, J.W.; Lee, J.B.; Park, E.; Joung, J.G.; Kim, S.; Choi, C.H.; Kim, H.S. Biomarker-guided targeted therapy in platinum-resistant ovarian cancer (AMBITION; KGOG 3045): A multicentre, open-label, five-arm, uncontrolled, umbrella trial; Korean Gynecologic Oncology Group (KGOG) investigators. J. Gynecol. Oncol. 2022, 33, e45. [Google Scholar] [CrossRef] [PubMed]
- Moore, K.N.; Oza, A.M.; Colombo, N.; Oaknin, A.; Scambia, G.; Lorusso, D.; Konecny, G.E.; Banerjee, S.; Murphy, C.G.; Tanyi, J.L.; et al. randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: Primary analysis of FORWARD I. Ann. Oncol. 2021, 32, 757–765. [Google Scholar] [CrossRef] [PubMed]
- Lheureux, S.; Cristea, M.C.; Bruce, J.P.; Garg, S.; Cabanero, M.; Mantia-Smaldone, G.; Olawaiye, A.B.; Ellard, S.L.; Weberpals, J.I.; Wahner Hendrickson, A.E.; et al. Adavosertib plus gemcitabine for platinum-resistant or platinum-refractory recurrent ovarian cancer: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet 2021, 397, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Chang, S.J.; Suh, D.H.; Kong, T.W.; Song, H.; Kim, T.H.; Kim, J.W.; Kim, H.S.; Lee, S.J. A phase IA dose-escalation study of PHI-101, a new checkpoint kinase 2 inhibitor, for platinum-resistant recurrent ovarian cancer. BMC Cancer 2022, 22, 28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, T.; Li, Y.; Chen, L.; Liu, H.; Wu, Y.; Guo, H. Dendritic Cell Vaccines in Ovarian Cancer. Front. Immunol. 2021, 11, 613773. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, A.; Buzzonetti, A.; Fossati, M.; Scambia, G.; Fattorossi, A.; Madiyalakan, M.R.; Mahnke, Y.D.; Nicodemus, C. Translational immune correlates of indirect antibody immunization in a randomized phase II study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients. Cancer Immunol. Immunother. 2020, 69, 383–397. [Google Scholar] [CrossRef]
- Waki, K.; Kawano, K.; Tsuda, N.; Komatsu, N.; Yamada, A. CD4/CD8 ratio is a prognostic factor in IgG nonresponders among peptide vaccine-treated ovarian cancer patients. Cancer Sci. 2020, 111, 1124–1131. [Google Scholar] [CrossRef]
- Lee, E.; Szvetecz, S.; Polli, R.; Grauel, A.; Chen, J.; Judge, J.; Jaiswal, S.; Maeda, R.; Schwartz, S.; Voedisch, B.; et al. PAX8 lineage-driven T cell engaging antibody for the treatment of high-grade serous ovarian cancer. Sci. Rep. 2021, 11, 14841. [Google Scholar] [CrossRef]
- Ke, X.; Shen, L. Targeting cytokines secreted by CD4+ CD25high CD127low regulatory T cells inhibits ovarian cancer progression. Scand. J. Immunol. 2019, 89, e12736. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Yu, M. Immune Subtype Profiling and Establishment of Prognostic Immune-Related lncRNA Pairs in Human Ovarian Cancer. Comput. Math. Methods Med. 2022, 2022, 8338137. [Google Scholar] [CrossRef]
- Wium, M.; Ajayi-Smith, A.F.; Paccez, J.D.; Zerbini, L.F. The Role of the Receptor Tyrosine Kinase Axl in Carcinogenesis and Development of Therapeutic Resistance: An Overview of Molecular Mechanisms and Future Applications. Cancers 2021, 13, 1521. [Google Scholar] [CrossRef] [PubMed]
- van Zyl, B.; Tang, D.; Bowden, N.A. Biomarkers of platinum resistance in ovarian cancer: What can we use to improve treatment. Endocr. Relat. Cancer 2018, 25, R303–R318. [Google Scholar] [CrossRef] [PubMed]
- Olbrecht, S.; Busschaert, P.; Qian, J.; Vanderstichele, A.; Loverix, L.; Van Gorp, T.; Van Nieuwenhuysen, E.; Han, S.; Van den Broeck, A.; Coosemans, A.; et al. High-grade serous tubo-varian cancer refined with single-cell RNA sequencing: Specific cell subtypes influence survival and determine molecular subtype classification. Genome Med. 2021, 13, 111. [Google Scholar] [CrossRef] [PubMed]
- Payne, K.K.; Mine, J.A.; Biswas, S.; Chaurio, R.A.; Perales-Puchalt, A.; Anadon, C.M.; Costich, T.L.; Harro, C.M.; Walrath, J.; Ming, Q.; et al. BTN3A1 governs antitumor responses by coordinating αβ and γδ T cells. Science 2020, 369, 942–949. [Google Scholar] [CrossRef]
- Rajtak, A.; Ostrowska-Leśko, M.; Żak, K.; Tarkowski, R.; Kotarski, J.; Okła, K. Integration of local and systemic immunity in ovarian cancer: Implications for immunotherapy. Front. Immunol. 2022, 13, 1018256. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; He, X.; Wang, Q. Targeted drug delivery system for ovarian cancer microenvironment: Improving the effects of immunotherapy. Front. Immunol. 2022, 13, 1035997. [Google Scholar] [CrossRef]
- Wu, Q.; Tian, R.; He, X.; Liu, J.; Ou, C.; Li, Y.; Fu, X. Machine learning-based integration develops an immune-related risk model for predicting prognosis of high-grade serous ovarian cancer and providing therapeutic strategies. Front. Immunol. 2023, 14, 1164408. [Google Scholar] [CrossRef]
- Truxova, I.; Cibula, D.; Spisek, R.; Fucikova, J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J. Immunother. Cancer 2023, 11, e005968. [Google Scholar] [CrossRef]
- Cao, B.; Liu, M.; Wang, L.; Liang, B.; Feng, Y.; Chen, X.; Shi, Y.; Zhang, J.; Ye, X.; Tian, Y.; et al. Use of chimeric antigen receptor NK-92 cells to target mesothelin in ovarian cancer. Biochem. Biophys. Res. Commun. 2020, 524, 96–102. [Google Scholar] [CrossRef]
- Banville, A.C.; Wouters, M.C.A.; Oberg, A.L.; Goergen, K.M.; Maurer, M.J.; Milne, K.; Ashkani, J.; Field, E.; Ghesquiere, C.; Jones, S.J.M.; et al. Co-expression patterns of chimeric antigen receptor (CAR)-T cell target antigens in primary and recurrent ovarian cancer. Gynecol. Oncol. 2021, 160, 520–529. [Google Scholar] [CrossRef]
- Lu, X.; Ji, C.; Jiang, L.; Zhu, Y.; Zhou, Y.; Meng, J.; Gao, J.; Lu, T.; Ye, J.; Yan, F. Tumour microenvironment-based molecular profiling reveals ideal candidates for high-grade serous ovarian cancer immunotherapy. Cell Prolif. 2021, 54, e12979. [Google Scholar] [CrossRef] [PubMed]
- Felices, M.; Wesley, E.; Bendzick, L.E.; Kodal, B.; Hopps, R.; Grzywacz, B.; Hinderlie, P.; Miller, J.S.; Geller, M.A. Reverse Translation Identifies the Synergistic Role of Immune Checkpoint Blockade and IL15 to Enhance Immunotherapy of Ovarian Cancer. Cancer Immunol. Res. 2023, 11, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, K.; Xiao, Y.; Feng, B.; Mikule, K.; Ma, X.; Feng, N.; Vellano, C.P.; Federico, L.; Marszalek, J.R.; et al. Niraparib activates interferon signaling and potentiates anti-PD-1 antibody efficacy in tumor models. Sci. Rep. 2019, 9, 1853. [Google Scholar] [CrossRef]
- Zhu, Z.; Geng, R.; Zhang, Y.; Liu, J.; Bai, J. Exosome-Associated Gene Signature for Predicting the Prognosis of Ovarian Cancer Patients. J. Immunol. Res. 2023, 2023, 8727884. [Google Scholar] [CrossRef] [PubMed]
- Ding, B.; Yan, W.; Shen, S.; Meng, D.; Chen, X.; Wang, S.; Shen, Y. Immune-Related Genes’ Prognostic, Therapeutic and Diagnostic Value in Ovarian Cancer Immune-Related Gene Biomarker in Ovarian Cancer. Cancer Control 2023, 30, 10732748231168756. [Google Scholar] [CrossRef]
- Monette, A.; Bergeron, D.; Ben Amor, A.; Meunier, L.; Caron, C.; Mes-Masson, A.M.; Kchir, N.; Hamzaoui, K.; Jurisica, I.; Lapointe, R. Immune-enrichment of non-small cell lung cancer baseline biopsies for multiplex profiling define prognostic immune checkpoint combinations for patient stratification. J. Immunother. Cancer 2019, 7, 86. [Google Scholar] [CrossRef]
- Shen, W.; Jiang, W.; Ye, S.; Sun, M.; Yang, H.; Shan, B. Identification of epigenetic genes for predicting prognosis and immunotherapy response of ovarian cancer. Jpn. J. Clin. Oncol. 2022, 52, 742–751. [Google Scholar] [CrossRef]
- Al-Rawi, D.H.; Rusk, N.; Friedman, C.F. The Search for Genomic Biomarkers of Response to Immunotherapy in Ovarian Cancer. Clin. Cancer Res. 2023, 29, 1645–1647. [Google Scholar] [CrossRef]
- Huang, L.J.; Deng, X.F.; Chang, F.; Wu, X.L.; Wu, Y.; Diao, Q.Z. Prognostic significance of programmed cell death ligand 1 expression in patients with ovarian carcinoma: A systematic review and meta-analysis. Medicine 2018, 97, e12858. [Google Scholar] [CrossRef]
- Kandalaft, L.E.; Odunsi, K.; Coukos, G. Immune Therapy Opportunities in Ovarian Cancer. Am. Soc. Clin. Oncol. Educ. Book 2020, 40, e228-40. [Google Scholar] [CrossRef]
- Zhu, M.M.T.; Burugu, S.; Gao, D.; Yu, J.; Kos, Z.; Leung, S.; Horst, B.A.; Nielsen, T.O. Evaluation of glucocorticoid-induced TNF receptor (GITR) expression in breast cancer and across multiple tumor types. Mod. Pathol. 2020, 33, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Markman, M. Genomic-Based Therapy of Gynecologic Malignancies. Acta Med. Acad. 2019, 48, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Yu, M.; Zhong, S.; You, Y.; Feng, F. Neoantigens and the tumor microenvironment play important roles in the prognosis of high-grade serous ovarian cancer. J. Ovarian Res. 2022, 15, 18. [Google Scholar] [CrossRef]
- Mills, A.M.; Peres, L.C.; Meiss, A.; Ring, K.L.; Modesitt, S.C.; Abbott, S.E.; Alberg, A.J.; Bandera, E.V.; Barnholtz-Sloan, J.; Bondy, M.L.; et al. Targetable Immune Regulatory Molecule Expression in High-Grade Serous Ovarian Carcinomas in African American Women: A Study of PD-L1 and IDO in 112 Cases From the African American Cancer Epidemiology Study (AACES). Int. J. Gynecol. Pathol. 2019, 38, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Laverdure, J.P.; Lanoix, J.; Durette, C.; Côté, C.; Bonneil, É.; Laumont, C.M.; Gendron, P.; Vincent, K.; Courcelles, M.; et al. Proteogenomics Uncovers a Vast Repertoire of Shared Tumor-Specific Antigens in Ovarian Cancer. Cancer Immunol. Res. 2020, 8, 544–555. [Google Scholar] [CrossRef]
- Azarianpour, S.; Corredor, G.; Bera, K.; Leo, P.; Fu, P.; Toro, P.; Joehlin-Price, A.; Mokhtari, M.; Mahdi, H.; Madabhushi, A. Computational image features of immune architecture is associated with clinical benefit and survival in gynecological cancers across treatment modalities. J. Immunother. Cancer 2022, 10, e003833. [Google Scholar] [CrossRef]
- Hornburg, M.; Desbois, M.; Lu, S.; Guan, Y.; Lo, A.A.; Kaufman, S.; Elrod, A.; Lotstein, A.; DesRochers, T.M.; Munoz-Rodriguez, J.L.; et al. Single-cell dissection of cellular components and interactions shaping the tumor immune phenotypes in ovarian cancer. Cancer Cell 2021, 39, 928–944.e6. [Google Scholar] [CrossRef]
- Greppi, M.; Tabellini, G.; Patrizi, O.; Candiani, S.; Decensi, A.; Parolini, S.; Sivori, S.; Pesce, S.; Paleari, L.; Marcenaro, E. Strengthening the AntiTumor NK Cell Function for the Treatment of Ovarian Cancer. Int. J. Mol. Sci. 2019, 20, 890. [Google Scholar] [CrossRef]
- Prokunina-Olsson, L. Genetics Helps to Find Synergy for Immune Checkpoint and Targeted Combination Therapies. Cancer Res. 2019, 79, 5476–5478. [Google Scholar] [CrossRef]
- Gong, X.; Chi, H.; Strohmer, D.F.; Teichmann, A.T.; Xia, Z.; Wang, Q. Exosomes: A potential tool for immunotherapy of ovarian cancer. Front. Immunol. 2023, 13, 1089410. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Lee, J.M.; Gao, B.; Miller, R.; Lee, J.Y.; Colombo, N.; Vergote, I.; Credille, K.M.; Young, S.R.; McNeely, S.; et al. A Phase 2 study of prexasertib (LY2606368) in platinum resistant or refractory recurrent ovarian cancer. Gynecol. Oncol. 2022, 167, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Raman, C.; Chen, J.Y.; Slominski, A.T. How cancer hijacks the body’s homeostasis through the neuroendocrine system. Trends Neurosci. 2023, 46, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Hirabayashi, K.; Ahn, S.; Porterfield Kren, N.; Montgomery, S.A.; Wang, X.; Tiruthani, K.; Mirlekar, B.; Michaud, D.; Greene, K.; et al. Antitumor Responses in the Absence of Toxicity in Solid Tumors by Targeting B7-H3 via Chimeric Antigen Receptor T Cells. Cancer Cell 2019, 35, 221–237.e8. [Google Scholar] [CrossRef] [PubMed]
- McMullen, M.; Madariaga, A.; Lheureux, S. New approaches for targeting platinum-resistant ovarian cancer. Semin. Cancer Biol. 2021, 77, 167–181. [Google Scholar] [CrossRef]
Current Studies of Immunotherapy | Phase of Studies | Drugs (Groups of Active Ingredients) |
---|---|---|
MITO 33 NCT04679064 https://clinicaltrials.gov/search?cond=NCT04679064 accessed on 29 October 2023 | Phase III | Niraparib + dostarlimab vs. Pegylated liposomal doxorubicin/paclitaxel/gemcitabine/ topotecan +/− bevacizumab PARP+ chemotherapy +/− VEGF |
AGO-Ovar 2.29 NCT03353831 https://clinicaltrials.gov/search?cond=NCT03353831 accessed on 29 October 2023 | Phase III | Chemotherapy + bevacizumab +/− atezolizumab Chemotherapy + VEGF +/− ICI |
AGO oVar 2.36 MIRASOL NCT04209855 https://clinicaltrials.gov/search?cond=NCT04209855 accessed on 29 October 2023 | Phase III | Mirvetuximab soravtansine vs. paclitaxel/topotecan/pegylated liposomal doxorubicin Antibody–drug conjugate targeting folate receptor α (FRα) vs. chemotherapy |
NCT04931342 (BOUQUET/WO42178)/(AGO 2.40) https://clinicaltrials.gov/search?cond=NCT04209855&intr=NCT04931342 accessed on 29 October 2023 | Phase II | Ipatasertib/cobimetinib/trastuzumab emtansine/atezolizumab/bevacizumab/paclitaxel/giredestrant/abemaciclib/inavolisib/palbociclib/letrozole/olaparib/luteinizing hormone-releasing hormone (LHRH) agonists/cyclophosphamide AKT inhibitor/VEGF/ICI/PARP/chemotherapy |
NCT05116189 (MK-3475-B96/KEYNOTE-B96/ENGOT-ov65) https://clinicaltrials.gov/search?cond=NCT04209855&intr=NCT05116189 accessed on 29 October 2023 | Phase III | +/−Pembrolizumab + paclitaxel ± bevacizumab ICI + chemotherapy +/− VEGF |
NCT05092360 Artistry-7 https://clinicaltrials.gov/search?cond=NCT04209855&intr=NCT05092360 accessed on 29 October 2023 | Phase III | Nemvaleukin and pembrolizumab vs. pembrolizumab vs. nemvaleukin vs. pegylated liposomal doxorubicin (PLD) or paclitaxel or topotecan or gemcitabine ICI/cytokine |
EPIK-O NCT04729387 https://clinicaltrials.gov/search?cond=NCT04729387 accessed on 29 October 2023 | Phase III | Alpelisib + olaparib vs. paclitaxel or PLD PI3K − Inhibitors + PARP |
LEAP-005 NCT03797326 (MK-7902-005/E7080-G000-224/LEAP-005) https://clinicaltrials.gov/search?cond=NCT03797326 accessed on 29 October 2023 | Phase II | Lenvatinib +/− pembrolizumab TKI +/− ICI |
BOLD trial (NCT04015739) https://clinicaltrials.gov/search?cond=NCT04015739 accessed on 29 October 2023 | Phase II | Bevacizumab + olaparib + durvalumab (MEDI 4736) VEGF + PARP + ICI |
OPAL trial (NCT03574779) https://clinicaltrials.gov/search?cond=NCT03574779 accessed on 29 October 2023 | Phase II | TSR-042, bevacizumab, and niraparib ICI/VEGF/PARP |
AVB-S6-500 NCT04729608 https://clinicaltrials.gov/search?cond=NCT04729608 accessed on 29 October 2023 | Phase III | Paclitaxel +/− batiraxcept Chemotherapy +/− Axl receptor tyrosine kinase inhibitors |
NCT04019288 AVB-S6-500 + durvalumab https://clinicaltrials.gov/search?cond=NCT04019288 accessed on 29 October 2023 | Phase I/II | Batiraxcept + durvalumab Axl receptor tyrosine kinase inhibitors + ICI |
Clinical Role | Clinial Utility/Trial | |||
---|---|---|---|---|
Biomarkers | Predictive/Prognostic Biomarker | Prognosis | Cancer Therapy | Clinial Utility |
Folate receptor alpha (FRα) FOLR1 | Predictive | Use of FRα-binding antibody mirvetuximab soravtansin | Chemoresistance; FDA approved for FRα-positive, platinum-resistant EOC | |
PD-1/PD-L1 expression Programmed cell death protein 1 | Predictive Prognostic | PD-1/PD-L1 expression | Phase Ib trial used anti-PD-L1 antibody (avelumab) with improved prognosis in PD-L1-positive vs. PD-L1-negative tumors | High expression in HGSOC is associated with favorable prognosis |
TILs | Prognostic | TILs | High expression in HGSOC is associated with favorable prognosis; reduces platinum resistance | |
BRCA | Predictive | BRCA1/2 positive | Use of PARPi | Predictive of response to PARPi |
HRD | Predictive | Use of PARPi | HRD positivity is a clinical predictor for PARP sensitivity | |
MSI | Predictive | |||
PARP | Efficacy in recurrent platinum-sensitive OC regardless of BRC mutation | |||
PTEN | ||||
Tumor mutational burden (TMB) | Predictive | Pembrolizumab | Therapy with pembrolizumab in high TMB | |
TP53 | Predictive | |||
AXL | Prognostic | AXL overexpression | Overexpression has worse prognosis; potential therapeutic target | |
VEGF | Prognostic | VEGF overexpression in tissue | Use of VEGF inhibitors like bevacizumab delaying disease progression | High expression of VEGF is associated with worse PFS |
VEGFR2 | VEGF overexpression in tissue | Tyrosine kinase inhibitor apatinib | Phase I trial; short-term effect | |
CTLA-4 | Prognostic | T-lymphocyte-associated protein 4 antibody (ICI) | Combination of anti-PD-1 nivolumab and anti-CTLA-4 ipilimumab showed promising results in platinum-resistant EOC; combination with PARPi | |
WEE-1 inhibitors | Prognostic | Inhibitor of cell-cycle protein Wee1 (adavosertib) in a phase II trial | Improved OS compared to chemotherapy alone | |
ATR inhibitors | ||||
Selective checkpoint kinase 2 (Chk2) inhibitor | PHI-101, an orally available, selective checkpoint kinase 2 (Chk2) inhibitor | Combined with PARPi in phase Ia trial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bachmann, C. New Achievements from Molecular Biology and Treatment Options for Refractory/Relapsed Ovarian Cancer—A Systematic Review. Cancers 2023, 15, 5356. https://doi.org/10.3390/cancers15225356
Bachmann C. New Achievements from Molecular Biology and Treatment Options for Refractory/Relapsed Ovarian Cancer—A Systematic Review. Cancers. 2023; 15(22):5356. https://doi.org/10.3390/cancers15225356
Chicago/Turabian StyleBachmann, Cornelia. 2023. "New Achievements from Molecular Biology and Treatment Options for Refractory/Relapsed Ovarian Cancer—A Systematic Review" Cancers 15, no. 22: 5356. https://doi.org/10.3390/cancers15225356
APA StyleBachmann, C. (2023). New Achievements from Molecular Biology and Treatment Options for Refractory/Relapsed Ovarian Cancer—A Systematic Review. Cancers, 15(22), 5356. https://doi.org/10.3390/cancers15225356