Current Data and Future Perspectives on Patients with Atrial Fibrillation and Cancer
Abstract
:Simple Summary
Abstract
1. Introduction and Epidemiology: Atrial Fibrillation in Cancer Patients
2. Risk Factors and Pathogenesis of Atrial Fibrillation in Cancer Patients
3. Management of Atrial Fibrillation in the Setting of Cancer
3.1. Rate and Rhythm Control
3.2. Non-Pharmacological Management of AF in the Setting of Cancer
3.3. Anticoagulant Treatment
- (a)
- Risk–benefit decision regarding anticoagulation: ischemic and bleeding risk
- (b) Choice of anticoagulant therapy.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lyon, A.R.; López-Fernández, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. 2022, 43, 4229–4361. [Google Scholar] [CrossRef] [PubMed]
- Madnick, D.L.; Fradley, M.G. Atrial Fibrillation and Cancer Patients: Mechanisms and Management. Curr. Cardiol. Rep. 2022, 24, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Aghel, N.; Baro Vila, R.C.; Lui, M.; Hillis, C.; Leong, D.P. Diagnosis and Management of Cardiovascular Effects of Bruton’s Tyrosine Kinase Inhibitors. Curr. Cardiol. Rep. 2023, 25, 941–958. [Google Scholar] [CrossRef] [PubMed]
- Boriani, G.; Menna, P.; Morgagni, R.; Minotti, G.; Vitolo, M. Ibrutinib and Bruton’s tyrosine kinase inhibitors in chronic lymphocytic leukemia: Focus on atrial fibrillation and ventricular tachyarrhythmias/sudden cardiac death. Chemotherapy 2022, 68, 61–72. [Google Scholar] [CrossRef]
- O’Neal, W.T.; Lakoski, S.G.; Qureshi, W.; Judd, S.E.; Howard, G.; Howard, V.J.; Cushman, M.; Soliman, E.Z. Relation between cancer and atrial fibrillation (from the REasons for Geographic and Racial Differences in Stroke Study). Am. J. Cardiol. 2015, 115, 1090–1094. [Google Scholar] [CrossRef]
- Ay, C.; Grilz, E.; Nopp, S.; Moik, F.; Königsbrügge, O.; Klimek, P.; Thurner, S.; Posch, F.; Pabinger, I. Atrial fibrillation and cancer: Prevalence and relative risk from a nationwide study. Res. Pract. Thromb. Haemost. 2022, 7, 100026. [Google Scholar] [CrossRef]
- Han, H.; Chen, L.; Lin, Z.; Wei, X.; Guo, W.; Yu, Y.; Wu, C.; Cao, Y.; He, J. Prevalence, trends, and outcomes of atrial fibrillation in hospitalized patients with metastatic cancer: Findings from a national sample. Cancer Med. 2021, 10, 5661–5670. [Google Scholar] [CrossRef]
- Guha, A.; Fradley, M.G.; Dent, S.F.; Weintraub, N.L.; Lustberg, M.B.; Alonso, A.; Addison, D. Incidence, risk factors, and mortality of atrial fibrillation in breast cancer: A SEER-Medicare analysis. Eur. Heart J. 2022, 43, 300–312. [Google Scholar] [CrossRef]
- Lubitz, S.A.; Yin, X.; Fontes, J.D.; Magnani, J.W.; Rienstra, M.; Pai, M.; Villalon, M.L.; Vasan, R.S.; Pencina, M.J.; Levy, D.; et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA 2010, 304, 263–2269. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498, Erratum in Eur. Heart J. 2021, 42, 507; Erratum in Eur. Heart J. 2021, 42, 546–547; Erratum in Eur. Heart J. 2021, 42, 4194. [Google Scholar] [CrossRef]
- Rumgay, H.; Murphy, N.; Ferrari, P.; Soerjomataram, I. Alcohol and Cancer: Epidemiology and Biological Mechanisms. Nutrients 2021, 13, 3173. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.P.; Choi, E.K.; Han, K.D.; Park, S.H.; Jung, J.H.; Park, S.H.; Ahn, H.J.; Lim, J.H.; Lee, S.R.; Oh, S. Risk of Atrial Fibrillation According to Cancer Type: A Nationwide Population-Based Study. JACC CardioOncol. 2021, 3, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, I.; Colombo, A.; Bacchiani, G.; Cipolla, C.M.; Cardinale, D.M. Incidence, Management, Prevention and Outcome of Post-Operative Atrial Fibrillation in Thoracic Surgical Oncology. J. Clin. Med. 2019, 9, 37. [Google Scholar] [CrossRef]
- Farmakis, D.; Parissis, J.; Filippatos, G. Insights into onco-cardiology: Atrial fibrillation in cancer. J. Am. Coll. Cardiol. 2014, 63, 945–953. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, T.; Martín-García, A.; Roldán Rabadán, I.; Mitroi, C.; Mazón Ramos, P.; Díez-Villanueva, P.; Escobar Cervantes, C.; Alonso Martín, C.; Alonso Salinas, G.L.; Arenas, M.; et al. Atrial Fibrillation in Active Cancer Patients: Expert Position Paper and Recommendations. Rev. Esp. Cardiol. 2019, 72, 749–759, (In English & Spanish). [Google Scholar] [CrossRef] [PubMed]
- Buza, V.; Rajagopalan, B.; Curtis, A.B. Cancer Treatment-Induced Arrhythmias: Focus on Chemotherapy and Targeted Therapies. Circ. Arrhythmia Electrophysiol. 2017, 10, e005443. [Google Scholar] [CrossRef]
- Hu, Y.F.; Chen, Y.J.; Lin, Y.J.; Chen, S.A. Inflammation and the pathogenesis of atrial fibrillation. Nat. Rev. Cardiol. 2015, 12, 230–243. [Google Scholar] [CrossRef]
- Cheng, W.L.; Kao, Y.H.; Chen, S.A.; Chen, Y.J. Pathophysiology of cancer therapy-provoked atrial fibrillation. Int. J. Cardiol. 2016, 219, 186–194. [Google Scholar] [CrossRef]
- Yao, C.; Veleva, T.; Scott, L., Jr.; Cao, S.; Li, L.; Chen, G.; Jeyabal, P.; Pan, X.; Alsina, K.M.; Abu-TahaDr, I.; et al. Enhanced cardiomyocyte NLRP3 inflammasome signalling promotes atrial fibrillation. Circulation 2018, 138, 2227–2242. [Google Scholar] [CrossRef]
- Moloney, J.N.; Cotter, T.G. ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 2018, 80, 50–64. [Google Scholar] [CrossRef]
- Rudolph, V.; Andrié, R.P.; Rudolph, T.K.; Friedrichs, K.; Klinke, A.; Hirsch-Hoffmann, B.; Schwoerer, A.P.; Lau, D.; Fu, X.; Klingel, K.; et al. Myeloperoxidase acts as a profibrotic mediator of atrial fibrillation. Nat. Med. 2010, 16, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Leiva, O.; AbdelHameid, D.; Connors, J.M.; Cannon, C.P.; Bhatt, D.L. Common Pathophysiology in Cancer, Atrial Fibrillation, Atherosclerosis, and Thrombosis: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol. 2021, 3, 619–634. [Google Scholar] [CrossRef] [PubMed]
- Ganatra, S.; Sharma, A.; Shah, S.; Chaudhry, G.M.; Martin, D.T.; Neilan, T.G.; Mahmood, S.S.; Barac, A.; Groarke, J.D.; Hayek, S.S.; et al. Ibrutinib-Associated Atrial Fibrillation. JACC Clin. Electrophysiol. 2018, 4, 1491–1500. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yang, P.; Roden, D.M.; Darbar, D. Novel KCNA5 mutation implicates tyrosine kinase signaling in human atrial fibrillation. Heart Rhythm 2010, 7, 1246–1252. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.; Yuan, M.; Tian, C.; Yang, Y.; Wang, X.; Zhang, X.; Sun, Y.; He, T.; Han, S.; et al. Anticancer therapy-induced atrial fibrillation: Electrophysiology and related mechanisms. Front. Pharmacol. 2018, 9, 1058. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, J.; Moslehi, J.J.; Bersell, K.R.; Funck-Brentano, C.; Roden, D.M.; Salem, J.E. Anticancer drug-induced cardiac rhythm disorders: Current knowledge and basic underlying mechanisms. Pharmacol. Ther. 2018, 189, 89–103. [Google Scholar] [CrossRef]
- Onaitis, M.; D’Amico, T.; Zhao, Y.; O’Brien, S.; Harpole, D. Risk factors for atrial fibrillation after lung cancer surgery: Analysis of the Society of Thoracic Surgeons general thoracic surgery database. Ann. Thorac. Surg. 2010, 90, 368–374. [Google Scholar] [CrossRef]
- Kumar, M.; Lopetegui-Lia, N.; Malouf, C.A.; Almnajam, M.; Coll, P.P.; Kim, A.S. Atrial fibrillation in older adults with cancer. J. Geriatr. Cardiol. 2022, 19, 1–8. [Google Scholar]
- Suter, T.M.; Ewer, M.S. Cancer drugs and the heart: Importance and management. Eur. Heart J. 2013, 34, 1102–1111. [Google Scholar] [CrossRef]
- Butany, J.; Leong, S.W.; Carmichael, K.; Komeda, M. A 30-year analysis of cardiac neoplasms at autopsy. Can. J. Cardiol. 2005, 21, 675–680. [Google Scholar]
- Gibson, T.M.; Li, Z.; Green, D.M.; Armstrong, G.T.; Mulrooney, D.A.; Srivastava, D.; Bhakta, N.; Ness, K.K.; Hudson, M.M.; Robison, L.L. Blood Pressure Status in Adult Survivors of Childhood Cancer: A Report from the St. Jude Lifetime Cohort Study. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1705–1713. [Google Scholar] [CrossRef] [PubMed]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef] [PubMed]
- Vaziri, S.M.; Larson, M.G.; Benjamin, E.J.; Levy, D. Echocardiographic predictors of nonrheumatic atrial fibrillation. The Framingham Heart Study. Circulation 1994, 89, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Seko, Y.; Kato, T.; Haruna, T.; Izumi, T.; Miyamoto, S.; Nakane, E.; Inoko, M. Association between atrial fibrillation, atrial enlargement, and left ventricular geometric remodeling. Sci. Rep. 2018, 8, 6366. [Google Scholar] [CrossRef]
- Anile, M.; Telha, V.; Diso, D.; De Giacomo, T.; Sciomer, S.; Rendina, E.A.; Coloni, G.F.; Venuta, F. Left atrial size predicts the onset of atrial fibrillation after major pulmonary resections. Eur. J. Cardiothorac. Surg. 2012, 41, 1094–1097. [Google Scholar] [CrossRef]
- Heist, E.K.; Mansour, M.; Ruskin, J.N. Rate control in atrial fibrillation: Targets, methods, resynchronization considerations. Circulation 2011, 124, 2746–2755. [Google Scholar] [CrossRef]
- Echt, D.S.; Ruskin, J.N. Use of Flecainide for the Treatment of Atrial Fibrillation. Am. J. Cardiol. 2020, 125, 1123–1133. [Google Scholar] [CrossRef]
- Hammann, F.; Gotta, V.; Conen, K.; Medinger, M.; Cesana, P.; Rochlitz, C.; Taegtmeyer, A.B. Pharmacokinetic interaction between taxanes and amiodarone leading to severe toxicity. Br. J. Clin. Pharmacol. 2017, 83, 927–930. [Google Scholar] [CrossRef]
- Su, V.Y.; Hu, Y.W.; Chou, K.T.; Ou, S.M.; Lee, Y.C.; Lin, E.Y.; Chen, T.J.; Tzeng, C.H.; Liu, C.J. Amiodarone and the risk of cancer: A nationwide population-based study. Cancer 2013, 119, 1699–1705. [Google Scholar] [CrossRef]
- Tamargo, J.; Caballero, R.; Delpón, E. Cancer chemotherapy and cardiac arrhythmias: A review. Drug Saf. 2015, 38, 129–152. [Google Scholar] [CrossRef]
- Ganatra, S.; Abraham, S.; Kumar, A.; Parikh, R.; Patel, R.; Khadke, S.; Kumar, A.; Liu, V.; Diaz, A.N.R.; Neilan, T.G.; et al. Efficacy and safety of catheter ablation for atrial fibrillation in patients with history of cancer. Cardiooncology 2023, 9, 19. [Google Scholar] [CrossRef] [PubMed]
- Kanmanthareddy, A.; Vallakati, A.; Reddy Yeruva, M.; Dixit, S.; DIBiase, L.; Mansour, M.; Boolani, H.; Gunda, S.; Bunch, T.J.; Day, J.D.; et al. Pulmonary vein isolation for atrial fibrillation in the postpneumonectomy population: A feasibility, safety, and outcomes study. J. Cardiovasc. Electrophysiol. 2015, 26, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, N.A.; Upadhyay, G.A.; Ellenbogen, K.A.; McAlister, F.A.; Choudhry, N.K.; Singh, J.P. Atrioventricular nodal ablation in atrial fibrillation: A meta-analysis and systematic review. Circ. Arrhythm Electrophysiol. 2012, 5, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Leader, A.; Mendelson Cohen, N.; Afek, S.; Jaschek, R.; Frajman, A.; Itzhaki Ben Zadok, O.; Raanani, P.; Lishner, M.; Spectre, G. Arterial Thromboembolism in Patients With AF and CHA2DS2-VASc Score 0-2 With and Without Cancer. JACC CardioOncol. 2023, 5, 174–185. [Google Scholar] [CrossRef] [PubMed]
- Pastori, D.; Marang, A.; Bisson, A.; Menichelli, D.; Herbert, J.; Lip, G.Y.H.; Fauchier, L. Thromboembolism, mortality, and bleeding in 2,435,541 atrial fibrillation patients with and without cancer: A nationwide cohort study. Cancer 2021, 127, 2122–2129. [Google Scholar] [CrossRef]
- Patell, R.; Gutierrez, A.; Rybicki, L.; Khorana, A.A. Usefulness of CHADS2 and CHA2DS2-VASc scores for stroke prediction in patients with cancer and atrial fibrillation. Am. J. Cardiol. 2017, 120, 2182–2186. [Google Scholar] [CrossRef]
- O’Neal, W.T.; Claxton, J.S.; Sandesara, P.B.; MacLehose, R.F.; Chen, L.Y.; Bengtson, L.G.S.; Chamberlain, A.M.; Norby, F.L.; Lutsey, P.L.; Alonso, A. Provider Specialty, Anticoagulation, and Stroke Risk in Patients With Atrial Fibrillation and Cancer. J. Am. Coll. Cardiol. 2018, 72, 1913–1922. [Google Scholar] [CrossRef]
- Apostolakis, S.; Lane, D.A.; Guo, Y.; Buller, H.; Lip, G.Y.H. Performance of the HEMORR 2 HAGES, ATRIA, and HAS-BLED bleeding risk-prediction scores in nonwarfarin anticoagulated atrial fibrillation patients. J. Am. Coll. Cardiol. 2013, 61, 386–387. [Google Scholar] [CrossRef]
- Farmakis, D.; Papakotoulas, P.; Angelopoulou, E.; Bischiniotis, T.; Giannakoulas, G.; Kliridis, P.; Richter, D.; Paraskevaidis, I. Anticoagulation for atrial fibrillation in active cancer. Oncol. Lett. 2022, 23, 124. [Google Scholar] [CrossRef]
- Angelini, D.E.; Radivoyevitch, T.; McCrae, K.R.; Khorana, A.A. Bleeding incidence and risk factors among cancer patients treated with anticoagulation. Am. J. Hematol. 2019, 94, 780–785. [Google Scholar] [CrossRef]
- Delluc, A.; Wang, T.F.; Yap, E.S.; Ay, C.; Schaefer, J.; Carrier, M.; Noble, S. Anticoagulation of cancer patients with non-valvular atrial fibrillation receiving chemotherapy: Guidance from the SSC of the ISTH. J. Thromb. Haemost. 2019, 17, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.T.; Hellkamp, A.S.; Becker, R.C.; Berkowitz, S.D.; Breithardt, G.; Fox, K.A.A.; Hacke, W.; Halperin, J.L.; Hankey, G.J.; Mahaffey, K.W.; et al. Efficacy and safety of rivaroxaban vs. warfarin in patients with non-valvular atrial fibrillation and a history of cancer: Observations from ROCKET AF. Eur. Heart J. Qual. Care Clin. Outcomes 2019, 5, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Norby, F.L.; Datta, Y.H.; Lutsey, P.L.; MacLehose, R.F.; Chen, L.Y.; Alonso, A. Comparative effectiveness of direct oral anticoagulants and warfarin in patients with cancer and atrial fibrillation. Blood Adv. 2018, 2, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Melloni, C.; Dunning, A.; Granger, C.B.; Thomas, L.; Khouri, M.G.; Garcia, D.A.; Hylek, E.M.; Hanna, M.; Wallentin, L.; Gersh, B.J.; et al. Efficacy and Safety of Apixaban Versus Warfarin in Patients with Atrial Fibrillation and a History of Cancer: Insights from the ARISTOTLE Trial. Am. J. Med. 2017, 130, 1440–1448.e1. [Google Scholar] [CrossRef] [PubMed]
- Fanola, C.L.; Ruff, C.T.; Murphy, S.A.; Jin, J.; Duggal, A.; Babilonia, N.A.; Sritara, P.; Mercuri, M.F.; Kamphuisen, P.W.; Antman, E.M.; et al. Efficacy and Safety of Edoxaban in Patients With Active Malignancy and Atrial Fibrillation: Analysis of the ENGAGE AF—TIMI 48 Trial. J. Am. Heart Assoc. 2018, 7, e008987. [Google Scholar] [CrossRef] [PubMed]
- Sawant, A.C.; Kumar, A.; Mccray, W.; Tetewsky, S.; Parone, L.; Sridhara, S.; Prakash, M.P.H.; Tse, G.; Liu, T.; Kanwar, N.; et al. Superior safety of direct oral anticoagulants compared to Warfarin in patients with atrial fibrillation and underlying cancer: A national veterans affairs database study. J. Geriatr. Cardiol. 2019, 16, 706–709. [Google Scholar]
- Deitelzweig, S.; Keshishian, A.V.; Zhang, Y.; Kang, A.; Dhamane, A.D.; Luo, X.; Klem, C.; Ferri, M.; Jiang, J.; Yuce, H.; et al. Effectiveness and Safety of Oral Anticoagulants among Nonvalvular Atrial Fibrillation Patients with Active Cancer. JACC CardioOncol. 2021, 3, 411–424. [Google Scholar] [CrossRef] [PubMed]
- Mariani, M.V.; Magnocavallo, M.; Straito, M.; Piro, A.; Severino, P.; Iannucci, G.; Chimenti, C.; Mancone, M.; Rocca, D.G.D.; Forleo, G.B.; et al. Direct oral anticoagulants versus vitamin K antagonists in patients with atrial fibrillation and cancer a meta-analysis. J. Thromb. Thrombolysis 2021, 51, 419–429. [Google Scholar] [CrossRef]
- Yang, P.; Zhu, D.; Xu, X.; Shen, W.; Wang, C.; Jiang, Y.; Xu, G.; Wu, Q. Efficacy and safety of oral anticoagulants in atrial fibrillation patients with cancer-a network meta-analysis. Heart Fail. Rev. 2020, 25, 823–831. [Google Scholar] [CrossRef]
- Potter, A.S.; Patel, A.; Khawaja, M.; Chen, C.; Zheng, H.; Kaczmarek, J.; Gao, F.; Karimzad, K.; Song, J.; Koutroumpakis, E.; et al. Outcomes by Class of Anticoagulant Use for Nonvalvular Atrial Fibrillation in Patients with Active Cancer. JACC CardioOncol. 2022, 4, 341–350. [Google Scholar] [CrossRef]
- Mehta, H.B.; An, H.; Ardeshirrouhanifard, S.; Raji, M.A.; Alexander, G.C.; Segal, J.B. Comparative Effectiveness and Safety of Direct Oral Anticoagulants Versus Warfarin among Adults with Cancer and Atrial Fibrillation. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008951. [Google Scholar] [CrossRef]
- Ardeshirrouhanifard, S.; An, H.; Goyal, R.K.; Raji, M.A.; Segal, J.B.; Alexander, G.C.; Mehta, H.B. Use of oral anticoagulants among individuals with cancer and atrial fibrillation in the United States, 2010–2016. Pharmacotherapy 2022, 42, 375–386. [Google Scholar] [CrossRef]
- Carbone, A.; Bottino, R.; D’Andrea, A.; Russo, V. Direct Oral Anticoagulants for Stroke Prevention in Special Populations: Beyond the Clinical Trials. Biomedicines 2023, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Mosarla, R.C.; Vaduganathan, M.; Qamar, A.; Moslehi, J.; Piazza, G.; Giugliano, R.P. Anticoagulation Strategies in Patients with Cancer: JACC Review Topic of the Week. J. Am. Coll. Cardiol. 2019, 73, 1336–1349. [Google Scholar] [CrossRef] [PubMed]
- Leszek, P.; Klotzka, A.; Bartuś, S.; Burchardt, P.; Czarnecka, A.M.; Długosz-Danecka, M.; Gierlotka, M.; Koseła-Paterczyk, H.; Krawczyk-Ożóg, A.; Kubiatowski, T.; et al. A practical approach to the ESC 2022 cardio-oncology guidelines. Comments by a team of experts: Cardiologists and oncologists. Kardiol. Pol. 2023. online ahead of print. [Google Scholar]
- Isogai, T.; Saad, A.M.; Abushouk, A.I.; Shekhar, S.; Kuroda, S.; Gad, M.M.; Wazni, O.M.; Krishnaswamy, A.; Kapadia, S.R. Procedural and Short-Term Outcomes of Percutaneous Left Atrial Appendage Closure in Patients with Cancer. Am. J. Cardiol. 2021, 141, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Peixoto de Miranda, É.J.F.; Takahashi, T.; Iwamoto, F.; Yamashiro, S.; Samano, E.; Macedo, A.V.S.; Ramacciotti, E. Drug-Drug Interactions of 257 Antineoplastic and Supportive Care Agents with 7 Anticoagulants: A Comprehensive Review of Interactions and Mechanisms. Clin. Appl. Thromb./Hemost. 2020, 26, 1076029620936325. [Google Scholar] [CrossRef] [PubMed]
- Wu, V.C.; Wang, C.L.; Huang, Y.T.; Lan, W.C.; Wu, M.; Kuo, C.F.; Chen, S.W.; Chu, P.H.; Wen, M.S.; Kuo, C.C.; et al. Novel Oral Anticoagulant versus Warfarin in Cancer Patients with Atrial Fibrillation: An 8-Year Population-Based Cohort Study. J. Cancer 2020, 11, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Yasui, T.; Shioyama, W.; Oboshi, M.; Oka, T.; Fujita, M. Oral Anticoagulants in Japanese Patients with Atrial Fibrillation and Active Cancer. Intern. Med. 2019, 58, 1845–1849. [Google Scholar] [CrossRef]
- Kim, K.; Lee, Y.J.; Kim, T.H.; Uhm, J.S.; Pak, H.N.; Lee, M.H.; Joung, B. Effect of Non-vitamin K Antagonist Oral Anticoagulants in Atrial Fibrillation Patients with Newly Diagnosed Cancer. Korean Circ. J. 2018, 48, 406–417. [Google Scholar] [CrossRef]
- Ording, A.G.; Horváth-Puhó, E.; Adelborg, K.; Pedersen, L.; Prandoni, P.; Sørensen, H.T. Thromboembolic and bleeding complications during oral anticoagulation therapy in cancer patients with atrial fibrillation: A Danish nationwide population-based cohort study. Cancer Med. 2017, 6, 1165–1172. [Google Scholar] [CrossRef] [PubMed]
- Tran, E.; Ledbetter, L.E. A retrospective evaluation of direct oral anticoagulant (DOAC) management strategies in patients with cancer on active chemotherapy. J. Thromb. Thrombolysis 2023, 55, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Parrini, I.; Lucà, F.; Rao, C.M.; Parise, G.; Micali, L.R.; Musumeci, G.; La Meir, M.; Colivicchi, F.; Gulizia, M.M.; Gelsomino, S. Superiority of Direct Oral Anticoagulants over Vitamin K Antagonists in Oncological Patients with Atrial Fibrillation: Analysis of Efficacy and Safety Outcomes. J. Clin. Med. 2022, 11, 5712. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xu, Z.; Luo, J.; Yu, P.; Ma, J.; Yuan, P.; Zhu, W. Effectiveness and Safety of DOACs vs. VKAs in AF Patients with Cancer: Evidence from Randomized Clinical Trials and Observational Studies. Front. Cardiovasc. Med. 2021, 8, 766377. [Google Scholar] [CrossRef]
Drugs | Grade of Interaction | Consequences | Molecular Mechanisms |
---|---|---|---|
Diltiazem/Verapamil | Major | Increased plasma availability of ibrutinib (from 6- to 9-fold) | Diltiazem/verapamil are inhibitors of CYP450 3A4 |
Amiodarone/Dronedarone | Major | Increased plasma availability of ibrutinib (from 6- to 9-fold) | Amiodarone/verapamil are inhibitors of CYP450 3A4 |
Digoxin | Moderate | Increased plasma availability of digoxin | Ibrutinib inhibits P-glycoprotein |
Factor Xa Inhibitors (Apixaban, Edoxaban, Rivaroxaban) | Moderate | Increased plasma availability of factor Xa inhibitors | Ibrutinib inhibits P-glycoprotein and induces CYP450 3A4 |
Direct Thrombin Inhibitor (Dabigatran) | Major | Increased plasma availability of dabigatran | Ibrutinib inhibits P-glycoprotein |
Points | Condition | |
---|---|---|
H—Hypertension | 1 | Systolic blood pressure > 160 mmHg. |
A—Abnormal Liver or Renal Function | 1 each | Abnormal renal function: dialysis, creatinine > 2.3 mg/dL, transplantation. Abnormal liver function: chronic hepatitis, cirrhosis, bilirubin > 2 ULN, ALT > 3 ULN. |
S—Stroke | 1 | Previous history, particularly lacunar. |
B—Bleeding | 1 | Recent bleeding, anemia, etc. |
L—Labile INR | 1 | Unstable/high INR or TTR < 60%. |
E—Elderly | 1 | Age > 65 years, extreme frailty. |
D—Drugs or Alcohol | 1 each | Prior alcohol or drug usage: history: ≥8 drinks/week; drugs: concomitant antiplatelets, NSAID use, etc. |
Points | ||
---|---|---|
H—Hepatic or Renal Disease | 1 each | |
E—Ethanol Abuse | 1 | |
M—Malignancy History | 1 | |
O—Older (Age > 75 Years) | 1 | |
R—Reduced Platelet Count or Function | 1 | Includes aspirin use and any thrombocytopenia or blood dyscrasia, like hemophilia. |
R—Rebleeding Risk | 2 | |
H—Hypertension (Uncontrolled) | 1 | |
A—Anemia | 1 | Hgb < 13 g/dL for men; Hgb < 12 g/dL for women. |
G—Genetic Factors | 1 | CYP 2C9 single-nucleotide polymorphisms. |
E—Excessive Fall Risk | 1 | |
S—Stroke History | 1 |
Publication Year | Trial/Reference | Type of Evidence | Prospective/Retrospective | Number of Patients | Drug | Summary of Evidence |
---|---|---|---|---|---|---|
2019 | ROCKET-AF [52] | Subgroup analysis of RCT | Prospective | 640 | Rivaroxaban | No efficacy or safety differences. Increased risk of bleeding. |
2017 | ARISTOTLE [54] | Subgroup analysis of RCT | Prospective | 1236 | Apixaban | Similar efficacy in preventing stroke and systemic embolism. No increase in major bleeding. |
2018 | ENGAGE AF-TIMI 48 [55] | Subgroup analysis of RCT | Prospective | 1153 | Edoxaban | Similar efficacy and safety. |
2018 | Shah S, et al. [53] | Administrative analysis | Retrospective | 16,096 | Various NOACs | Lower or similar rates of bleeding and stroke and a lower rate of incident VTE. |
2022 | Potter AS, et al. [60] | Single-center database analysis | Retrospective | 1133 | Various NOACs | Similar risks for cerebrovascular accident, gastrointestinal bleeding, and intracranial hemorrhage. |
2020 | Wu VC, et al. [68] | Administrative analysis | Retrospective | 336 | Various NOACs | Reduced IS/SE, major bleeding, and ICH compared to warfarin. |
2019 | Yasui T, et al. [69] | Single-center database analysis | Retrospective | 127 | Various NOACs | Similar rates of IS, SE, and major bleeding. |
2018 | Kim K, et al. [70] | Single-center database analysis | Retrospective | 388 | Various NOACs | NOACs associated with lower incidences of IS/SE, major bleeding, and all-cause mortality. |
2017 | Ording AG, et al. [71] | Administrative analysis | Retrospective | 1809 | Various NOACs | Similar risks of SE or bleeding in patients with and without cancer. |
2021 | Mariani MV, et al. [58] | Meta-analysis | Prospective/Retrospective | 46,424 | Various NOACs | NOACs associated with reduction in thromboembolic events and major bleeding. |
2023 | Tran E, et al. [72] | Single-center database analysis | Retrospective | 58 | Various NOACs | Evidence for management issues during chemotherapy. |
2022 | Parrini I, et al. [73] | Meta-analysis | Prospective/Retrospective | 228,497 | Various NOACs | NOACs showed better efficacy and safety outcomes than warfarin. |
2021 | Liu F, et al. [74] | Meta-analysis | Prospective/Retrospective | 248,218 | Various NOACs | Reduction in SE, VTE, and intracranial and GI bleeding. Same risk of IS, MI, CV death, all-cause death, major bleeding, and major or NMCR bleeding. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Luca, L.; Camilli, M.; Canale, M.L.; Mistrulli, R.; Andreoli, F.; Giacalone, G.; Turazza, F.M.; Gabrielli, D.; Bisceglia, I. Current Data and Future Perspectives on Patients with Atrial Fibrillation and Cancer. Cancers 2023, 15, 5357. https://doi.org/10.3390/cancers15225357
De Luca L, Camilli M, Canale ML, Mistrulli R, Andreoli F, Giacalone G, Turazza FM, Gabrielli D, Bisceglia I. Current Data and Future Perspectives on Patients with Atrial Fibrillation and Cancer. Cancers. 2023; 15(22):5357. https://doi.org/10.3390/cancers15225357
Chicago/Turabian StyleDe Luca, Leonardo, Massimiliano Camilli, Maria Laura Canale, Raffaella Mistrulli, Federico Andreoli, Guido Giacalone, Fabio Maria Turazza, Domenico Gabrielli, and Irma Bisceglia. 2023. "Current Data and Future Perspectives on Patients with Atrial Fibrillation and Cancer" Cancers 15, no. 22: 5357. https://doi.org/10.3390/cancers15225357
APA StyleDe Luca, L., Camilli, M., Canale, M. L., Mistrulli, R., Andreoli, F., Giacalone, G., Turazza, F. M., Gabrielli, D., & Bisceglia, I. (2023). Current Data and Future Perspectives on Patients with Atrial Fibrillation and Cancer. Cancers, 15(22), 5357. https://doi.org/10.3390/cancers15225357