Future Perspectives in the Second Line Therapeutic Setting for Non-Oncogene Addicted Non-Small-Cell Lung Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Chemotherapy ± Antiangiogenic Agents
3.1.1. Chemotherapy
3.1.2. Chemotherapy Plus Anti-Angiogenic Agents
3.1.3. Antibody-Drug Conjugates (ADCs)
3.2. Anti-TROP2 ADCs
3.3. Anti-CEACAM5 ADCs
3.4. Anti-MET ADCs
3.5. Anti-Her2 (for Non-HER2-Mutated Patients) ADCs
3.6. Rechallenge with Immunotherapy
3.6.1. PD-1/PDL1 Inhibitor Monotherapy Rechallenge
3.6.2. PD-1/PDL1 Inhibitors Plus Anti-Angiogenic-Agents
3.6.3. PD-1/PDL1 Blockers in Association with Novel ICIs
3.7. Novel Immunotherapeutic Agents
Cytokines Blockers and Interleukins
3.8. Bispecific Antibodies
3.9. Cellular Immunotherapy
3.10. Vaccines
4. Future Perspectives
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef]
- Abughanimeh, O.; Kaur, A.; El Osta, B.; Ganti, A.K. Novel targeted therapies for advanced non-small lung cancer. Semin. Oncol. 2022, 49, 326–336. [Google Scholar] [CrossRef]
- Tan, A.C.; Tan, D.S.W. Targeted Therapies for Lung Cancer Patients with Oncogenic Driver Molecular Alterations. J. Clin. Oncol. 2022, 40, 611–625. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Pembrolizumab versus Chemotherapy for PD-L1–Positive Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2016, 375, 1823–1833. [Google Scholar] [CrossRef]
- Sezer, A.; Kilickap, S.; Gümüş, M.; Bondarenko, I.; Özgüroğlu, M.; Gogishvili, M.; Turk, H.M.; Cicin, I.; Bentsion, D.; Gladkov, O.; et al. Cemiplimab monotherapy for first-line treatment of advanced non-small-cell lung cancer with PD-L1 of at least 50%: A multicentre, open-label, global, phase 3, randomised, controlled trial. Lancet 2021, 397, 592–604. [Google Scholar] [CrossRef]
- Herbst, R.S.; Giaccone, G.; de Marinis, F.; Reinmuth, N.; Vergnenegre, A.; Barrios, C.H.; Morise, M.; Felip, E.; Andric, Z.; Geater, S.; et al. Atezolizumab for First-Line Treatment of PD-L1–Selected Patients with NSCLC. N. Engl. J. Med. 2020, 383, 1328–1339. [Google Scholar] [CrossRef]
- Gandhi, L.; Rodríguez-Abreu, D.; Gadgeel, S.; Esteban, E.; Felip, E.; De Angelis, F.; Domine, M.; Clingan, P.; Hochmair, M.J.; Powell, S.F.; et al. Pembrolizumab plus Chemotherapy in Metastatic Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 378, 2078–2092. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Luft, A.; Vicente, D.; Tafreshi, A.; Gümüş, M.; Mazières, J.; Hermes, B.; Çay Şenler, F.; Csőszi, T.; Fülöp, A.; et al. Pembrolizumab plus Chemotherapy for Squamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2018, 379, 2040–2051. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Ciuleanu, T.-E.; Cobo, M.; Schenker, M.; Zurawski, B.; Menezes, J.; Richardet, E.; Bennouna, J.; Felip, E.; Juan-Vidal, O.; et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): An international, randomised, open-label, phase 3 trial. Lancet Oncol. 2021, 22, 198–211. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Five-Year Outcomes with Pembrolizumab Versus Chemotherapy for Metastatic Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50. J. Clin. Oncol. 2021, 39, 2339–2349. [Google Scholar] [CrossRef]
- Garassino, M.C.; Gadgeel, S.; Speranza, G.; Felip, E.; Esteban, E.; Dómine, M.; Hochmair, M.J.; Powell, S.F.; Bischoff, H.G.; Peled, N.; et al. Pembrolizumab Plus Pemetrexed and Platinum in Nonsquamous Non–Small-Cell Lung Cancer: 5-Year Outcomes from the Phase 3 KEYNOTE-189 Study. J. Clin. Oncol. 2023, 41, 1992–1998. [Google Scholar] [CrossRef]
- Novello, S.; Kowalski, D.M.; Luft, A.; Gümüş, M.; Vicente, D.; Mazières, J.; Rodríguez-Cid, J.; Tafreshi, A.; Cheng, Y.; Lee, K.H.; et al. Pembrolizumab Plus Chemotherapy in Squamous Non–Small-Cell Lung Cancer: 5-Year Update of the Phase III KEYNOTE-407 Study. J. Clin. Oncol. 2023, 41, 1999–2006. [Google Scholar] [CrossRef]
- Shepherd, F.A.; Dancey, J.; Ramlau, R.; Mattson, K.; Gralla, R.; O’rourke, M.; Levitan, N.; Gressot, L.; Vincent, M.; Burkes, R.; et al. Prospective randomized trial of docetaxel versus best supportive care in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy. J. Clin. Oncol. 2000, 18, 2095–2103. [Google Scholar] [CrossRef]
- Schuette, W.; Nagel, S.; Blankenburg, T.; Lautenschlaeger, C.; Hans, K.; Schmidt, E.-W.; Dittrich, I.; Schweisfurth, H.; von Weikersthal, L.F.; Raghavachar, A.; et al. Phase III study of second-line chemotherapy for advanced non-small-cell lung cancer with weekly compared with 3-weekly docetaxel. J. Clin. Oncol. 2005, 23, 8389–8395. [Google Scholar] [CrossRef]
- Crinò, L.; Mosconi, A.M.; Scagliotti, G.; Selvaggi, G.; Novello, S.; Rinaldi, M.; Della Giulia, M.; Gridelli, C.; Rossi, A.; Calandri, C.; et al. Gemcitabine as second-line treatment for advanced non-small-cell lung cancer: A phase II trial. J. Clin. Oncol. 1999, 17, 2081. [Google Scholar] [CrossRef]
- Fossella, F.V.; DeVore, R.; Kerr, R.N.; Crawford, J.; Natale, R.R.; Dunphy, F.; Kalman, L.; Miller, V.; Lee, J.S.; Moore, M.; et al. Randomized phase III trial of docetaxel versus vinorelbine or ifosfamide in patients with advanced non-small-cell lung cancer previously treated with platinum-containing chemotherapy regimens. The TAX 320 Non-Small Cell Lung Cancer Study Group. J. Clin. Oncol. 2000, 18, 2354–2362. [Google Scholar] [CrossRef]
- Yoneshima, Y.; Morita, S.; Ando, M.; Nakamura, A.; Iwasawa, S.; Yoshioka, H.; Goto, Y.; Takeshita, M.; Harada, T.; Hirano, K.; et al. Phase 3 Trial Comparing Nanoparticle Albumin-Bound Paclitaxel With Docetaxel for Previously Treated Advanced NSCLC. J. Thorac. Oncol. 2021, 16, 1523–1532. [Google Scholar] [CrossRef]
- Hanna, N.; Shepherd, F.A.; Fossella, F.V.; Pereira, J.R.; De Marinis, F.; von Pawel, J.; Gatzemeier, U.; Tsao, T.C.Y.; Pless, M.; Muller, T.; et al. Randomized phase III trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J. Clin. Oncol. 2004, 22, 1589–1597. [Google Scholar] [CrossRef]
- Nokihara, H.; Lu, S.; Mok, T.; Nakagawa, K.; Yamamoto, N.; Shi, Y.; Zhang, L.; Soo, R.; Yang, J.; Sugawara, S.; et al. Randomized controlled trial of S-1 versus docetaxel in patients with non-small-cell lung cancer previously treated with platinum-based chemotherapy (East Asia S-1 Trial in Lung Cancer). Ann. Oncol. 2017, 28, 2698–2706. [Google Scholar] [CrossRef]
- Park, S.E.; Lee, S.H.; Ahn, J.S.; Ahn, M.-J.; Park, K.; Sun, J.-M. Increased Response Rates to Salvage Chemotherapy Administered after PD-1/PD-L1 Inhibitors in Patients with Non–Small Cell Lung Cancer. J. Thorac. Oncol. 2018, 13, 106–111. [Google Scholar] [CrossRef]
- Tone, M.; Izumo, T.; Awano, N.; Kuse, N.; Inomata, M.; Jo, T.; Yoshimura, H.; Miyamoto, S.; Kunitoh, H. Treatment effect and safety profile of salvage chemotherapy following immune checkpoint inhibitors in lung cancer. Lung Cancer Manag. 2019, 4, LMT12. [Google Scholar] [CrossRef]
- de Langen, A.J.; Johnson, M.L.; Mazieres, J.; Dingemans, A.-M.C.; Mountzios, G.; Pless, M.; Wolf, J.; Schuler, M.; Lena, H.; Skoulidis, F.; et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: A randomised, open-label, phase 3 trial. Lancet 2023, 401, 733–746. [Google Scholar] [CrossRef]
- Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunological Effects of Conventional Chemotherapy and Targeted Anticancer Agents. Cancer Cell 2015, 28, 690–714. [Google Scholar] [CrossRef]
- De Sousa Linhares, A.; Battin, C.; Jutz, S.; Leitner, J.; Hafner, C.; Tobias, J.; Wiedermann, U.; Kundi, M.; Zlabinger, G.J.; Grabmeier-Pfistershammer, K.; et al. Therapeutic PD-L1 antibodies are more effective than PD-1 antibodies in blocking PD-1/PD-L1 signaling. Sci. Rep. 2019, 9, 11472. [Google Scholar] [CrossRef]
- Hilberg, F.; Roth, G.J.; Krssak, M.; Kautschitsch, S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel, A.; Quant, J.; et al. BIBF 1120: Triple Angiokinase Inhibitor with Sustained Receptor Blockade and Good Antitumor Efficacy. Cancer Res. 2008, 68, 4774–4782. [Google Scholar] [CrossRef]
- Wind, S.; Schmid, U.; Freiwald, M.; Marzin, K.; Lotz, R.; Ebner, T.; Stopfer, P.; Dallinger, C. Clinical Pharmacokinetics and Pharmacodynamics of Nintedanib. Clin. Pharmacokinet. 2019, 58, 1131–1147. [Google Scholar] [CrossRef]
- Tu, J.; Xu, H.; Ma, L.; Li, C.; Qin, W.; Chen, X.; Yi, M.; Sun, L.; Liu, B.; Yuan, X. Nintedanib enhances the efficacy of PD-L1 blockade by upregulating MHC-I and PD-L1 expression in tumor cells. Theranostics 2022, 12, 747–766. [Google Scholar] [CrossRef]
- Reck, M.; Kaiser, R.; Mellemgaard, A.; Douillard, J.-Y.; Orlov, S.; Krzakowski, M.; von Pawel, J.; Gottfried, M.; Bondarenko, I.; Liao, M.; et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): A phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014, 15, 143–155. [Google Scholar] [CrossRef]
- Grohé, C.; Wehler, T.; Dechow, T.; Henschke, S.; Schuette, W.; Dittrich, I.; Hammerschmidt, S.; Müller-Huesmann, H.; Schumann, C.; Krüger, S.; et al. Nintedanib plus docetaxel after progression on first-line immunochemotherapy in patients with lung adenocarcinoma: Cohort C of the non-interventional study, VARGADO. Transl. Lung Cancer Res. 2022, 11, 2010–2021. [Google Scholar] [CrossRef]
- Garon, E.B.; Ciuleanu, T.-E.; Arrieta, O.; Prabhash, K.; Syrigos, K.N.; Goksel, T.; Park, K.; Gorbunova, V.; Kowalyszyn, R.D.; Pikiel, J.; et al. Ramucirumab plus docetaxel versus placebo plus docetaxel for second-line treatment of stage IV non-small-cell lung cancer after disease progression on platinum-based therapy (REVEL): A multicentre, double-blind, randomised phase 3 trial. Lancet 2014, 384, 665–673. [Google Scholar] [CrossRef]
- Cortot, A.B.; Audigier-Valette, C.; Molinier, O.; Le Moulec, S.; Barlesi, F.; Zalcman, G.; Dumont, P.; Pouessel, D.; Poulet, C.; Fontaine-Delaruelle, C.; et al. Weekly paclitaxel plus bevacizumab versus docetaxel as second- or third-line treatment in advanced non-squamous non–small-cell lung cancer: Results of the IFCT-1103 ULTIMATE study. Eur. J. Cancer 2020, 131, 27–36. [Google Scholar] [CrossRef]
- Brueckl, W.M.; Reck, M.; Rittmeyer, A.; Kollmeier, J.; Wesseler, C.; Wiest, G.H.; Christopoulos, P.; Stenzinger, A.; Tufman, A.; Hoffknecht, P.; et al. Efficacy of docetaxel plus ramucirumab as palliative second-line therapy following first-line chemotherapy plus immune-checkpoint-inhibitor combination treatment in patients with non-small cell lung cancer (NSCLC) UICC stage IV. Transl. Lung Cancer Res. 2021, 10, 3093–3105. [Google Scholar] [CrossRef]
- Garon, E.B.; Visseren-Grul, C.; Rizzo, M.T.; Puri, T.; Chenji, S.; Reck, M. Clinical outcomes of ramucirumab plus docetaxel in the treatment of patients with non-small cell lung cancer after immunotherapy: A systematic literature review. Front. Oncol. 2023, 13, 1247879. [Google Scholar] [CrossRef]
- Kato, R.; Hayashi, H.; Chiba, Y.; Miyawaki, E.; Shimizu, J.; Ozaki, T.; Fujimoto, D.; Toyozawa, R.; Nakamura, A.; Kozuki, T.; et al. Propensity score–weighted analysis of chemotherapy after PD-1 inhibitors versus chemotherapy alone in patients with non–small cell lung cancer (WJOG10217L). J. Immunother. Cancer 2020, 8, e000350. [Google Scholar] [CrossRef]
- Remon, J.; Lacas, B.; Herbst, R.; Reck, M.; Garon, E.B.; Scagliotti, G.V.; Ramlau, R.; Hanna, N.; Vansteenkiste, J.; Yoh, K.; et al. ANSELMA collaborative group. Antiangiogenic Second-line Lung cancer Meta-Analysis on individual patient data in non-small cell lung cancer: ANSELMA. Eur. J. Cancer 2022, 166, 112–125. [Google Scholar] [CrossRef]
- Khan, K.A.; Kerbel, R.S. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 2018, 15, 310–324. [Google Scholar] [CrossRef]
- Horvath, L.; Thienpont, B.; Zhao, L.; Wolf, D.; Pircher, A. Overcoming immunotherapy resistance in non-small cell lung cancer (NSCLC)—Novel approaches and future outlook. Mol. Cancer 2020, 19, 141. [Google Scholar] [CrossRef]
- Fukumura, D.; Kloepper, J.; Amoozgar, Z.; Duda, D.G.; Jain, R.K. Enhancing cancer immunotherapy using antiangiogenics: Opportunities and challenges. Nat. Rev. Clin. Oncol. 2018, 15, 325–340. [Google Scholar] [CrossRef]
- Popat, S.; Grohé, C.; Corral, J.; Reck, M.; Novello, S.; Gottfried, M.; Radonjic, D.; Kaiser, R. Anti-angiogenic agents in the age of resistance to immune checkpoint inhibitors: Do they have a role in non-oncogene-addicted non-small cell lung cancer? Lung Cancer 2020, 144, 76–84. [Google Scholar] [CrossRef]
- Goulet, D.R.; Atkins, W.M. Considerations for the Design of Antibody-Based Therapeutics. J. Pharm. Sci. 2020, 109, 74–103. [Google Scholar] [CrossRef]
- Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 2017, 16, 315–337. [Google Scholar] [CrossRef]
- Heist, R.S.; Guarino, M.J.; Masters, G.; Purcell, W.T.; Starodub, A.N.; Horn, L.; Scheff, R.J.; Bardia, A.; Messersmith, W.A.; Berlin, J.; et al. Therapy of Advanced Non–Small-Cell Lung Cancer With an SN-38-Anti-Trop-2 Drug Conjugate, Sacituzumab Govitecan. J. Clin. Oncol. 2017, 35, 2790–2797. [Google Scholar] [CrossRef]
- Shimizu, T.; Sands, J.; Yoh, K.; Spira, A.; Garon, E.B.; Kitazono, S.; Johnson, M.L.; Meric-Bernstam, F.; Tolcher, A.W.; Yamamoto, N.; et al. First-in-Human, Phase I Dose-Escalation and Dose-Expansion Study of Trophoblast Cell-Surface Antigen 2–Directed Antibody-Drug Conjugate Datopotamab Deruxtecan in Non–Small-Cell Lung Cancer: TROPION-PanTumor01. J. Clin. Oncol. 2023, 41, 4678–4687. [Google Scholar] [CrossRef]
- Ahn, M.-J.; Lisberg, A.; Paz-Ares, L.; Cornelissen, R.; Girard, N.; Pons-Tostivint, E.; Baz, D.V.; Sugawara, S.; Dols, M.C.; Pérol, M.; et al. LBA12 Datopotamab deruxtecan (Dato-DXd) vs docetaxel in previously treated advanced/metastatic (adv/met) non-small cell lung cancer (NSCLC): Results of the randomized phase III study TROPION-Lung01. Ann. Oncol. 2023, 34, S1305–S1306. [Google Scholar] [CrossRef]
- Goldenberg, D.M.; Cardillo, T.M.; Govindan, S.V.; Rossi, E.A.; Sharkey, R.M. Trop-2 is a novel target for solid cancer therapy with sacituzumab govitecan (IMMU-132), an antibody-drug conjugate (ADC). Oncotarget 2015, 6, 22496–22512. [Google Scholar] [CrossRef]
- Garassino, M.C.; Reznick, D.; Liu, S.Y.; Reinmuth, N.; Girard, N.; de Marinis, F.; Mekan, S.F.; Patel, R.; Ding, M.; Paz-Ares, L. EVOKE-01: A phase 3 study of sacituzumab govitecan (SG) versus docetaxel in patients with non–small cell lung cancer (NSCLC) progressing on or after platinum-based chemotherapy and checkpoint inhibitors. J. Clin. Oncol. 2022, 40 (Suppl. 16), TPS9149. [Google Scholar] [CrossRef]
- Decary, S.; Berne, P.-F.; Nicolazzi, C.; Lefebvre, A.-M.; Dabdoubi, T.; Cameron, B.; Rival, P.; Devaud, C.; Prades, C.; Bouchard, H.; et al. Preclinical Activity of SAR408701: A Novel Anti-CEACAM5–maytansinoid Antibody–drug Conjugate for the Treatment of CEACAM5-positive Epithelial Tumors. Clin. Cancer Res. 2020, 26, 6589–6599. [Google Scholar] [CrossRef]
- Gazzah, A.; Ricordel, C.; Cousin, S.; Cho, B.C.; Calvo, E.; Kim, T.M.; Helissey, C.; Kim, J.-S.; Vieito, M.; Boni, V.; et al. Efficacy and safety of the antibody-drug conjugate (ADC) SAR408701 in patients (pts) with non-squamous non-small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). J. Clin. Oncol. 2020, 38 (Suppl. 15), 9505. [Google Scholar] [CrossRef]
- Ricordel, C.; Barlesi, F.; Cousin, S.; Cho, B.C.; Calvo, E.; Kim, T.M.; Helissey, C.; Kim, J.-S.; Vieito, M.; Boni, V.; et al. Safety and efficacy of tusamitamab ravtansine (SAR408701) in long-term treated patients with nonsquamous non–small cell lung cancer (NSQ NSCLC) expressing carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5). J. Clin. Oncol. 2022, 40 (Suppl. 16), 9039. [Google Scholar] [CrossRef]
- Johnson, M.L.; Chadjaa, M.; Yoruk, S.; Besse, B. Phase III trial comparing antibody-drug conjugate (ADC) SAR408701 with docetaxel in patients with metastatic nsq non-small cell lung cancer (NSQ NSCLC) failing chemotherapy and immunotherapy. J. Clin. Oncol. 2020, 38 (Suppl. 15), TPS9625. [Google Scholar] [CrossRef]
- Ma, P.C.; Jagadeeswaran, R.; Jagadeesh, S.; Tretiakova, M.S.; Nallasura, V.; Fox, E.A.; Hansen, M.; Schaefer, E.; Naoki, K.; Lader, A.; et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005, 65, 1479–1488. [Google Scholar] [CrossRef]
- Wang, J.; Anderson, M.G.; Oleksijew, A.; Vaidya, K.S.; Boghaert, E.R.; Tucker, L.; Zhang, Q.; Han, E.K.; Palma, J.P.; Naumovski, L.; et al. ABBV-399, a c-Met Antibody–Drug Conjugate that Targets Both MET–Amplified and c-Met–Overexpressing Tumors, Irrespective of MET Pathway Dependence. Clin. Cancer Res. 2017, 23, 992–1000. [Google Scholar] [CrossRef]
- Camidge, D.R.; Bar, J.; Horinouchi, H.; Goldman, J.W.; Moiseenko, F.V.; Filippova, E.; Cicin, I.; Bradbury, P.A.; Daaboul, N.; Tomasini, P.; et al. Telisotuzumab vedotin (Teliso-V) monotherapy in patients (pts) with previously treated c-Met–overexpressing (OE) advanced non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2022, 40 (Suppl. 16), 9016. [Google Scholar] [CrossRef]
- Camidge, D.R.; Barlesi, F.; Goldman, J.W.; Morgensztern, D.; Heist, R.; Vokes, E.; Spira, A.; Angevin, E.; Su, W.-C.; Hong, D.S.; et al. Phase Ib Study of Telisotuzumab Vedotin in Combination with Erlotinib in Patients With c-Met Protein–Expressing Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2023, 41, 1105–1115. [Google Scholar] [CrossRef]
- Waqar, S.N.; Redman, M.W.; Arnold, S.M.; Hirsch, F.R.; Mack, P.C.; Schwartz, L.H.; Gandara, D.R.; Stinchcombe, T.E.; Leighl, N.B.; Ramalingam, S.S.; et al. A Phase II Study of Telisotuzumab Vedotin in Patients With c–MET-positive Stage IV or Recurrent Squamous Cell Lung Cancer (LUNG-MAP Sub-study S1400K, NCT03574753). Clin. Lung Cancer 2021, 22, 170–177. [Google Scholar] [CrossRef]
- Ren, S.; Wang, J.; Ying, J.; Mitsudomi, T.; Lee, D.; Wang, Z.; Chu, Q.; Mack, P.; Cheng, Y.; Duan, J.; et al. Consensus for HER2 alterations testing in non-small-cell lung cancer. ESMO Open 2022, 7, 100395. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Li, B.T.; Smit, E.F.; Goto, Y.; Nakagawa, K.; Udagawa, H.; Mazières, J.; Nagasaka, M.; Bazhenova, L.; Saltos, A.N.; Felip, E.; et al. Trastuzumab Deruxtecan in HER2-Mutant Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2022, 386, 241–251. [Google Scholar] [CrossRef]
- Smit, E.; Felip, E.; Uprety, D.; Nakagawa, K.; Paz-Ares, L.; Pacheco, J.; Li, B.; Planchard, D.; Baik, C.; Goto, Y.; et al. Trastuzumab deruxtecan in patients (pts) with HER2-overexpressing (HER2-OE) metastatic non-small cell lung cancer (NSCLC): Results from the DESTINY-Lung01 trial. Ann. Oncol. 2022, 33, S994–S995. [Google Scholar] [CrossRef]
- Herbst, R.S.; Garon, E.B.; Kim, D.-W.; Cho, B.C.; Perez-Gracia, J.L.; Han, J.-Y.; Arvis, C.D.; Majem, M.; Forster, M.D.; Monnet, I.; et al. Long-Term Outcomes and Retreatment Among Patients with Previously Treated, Programmed Death-Ligand 1–Positive, Advanced Non–Small-Cell Lung Cancer in the KEYNOTE-010 Study. J. Clin. Oncol. 2020, 38, 1580–1590. [Google Scholar] [CrossRef]
- Rodriguez-Abreu, D.; Wu, Y.-L.; Boyer, M.; Garassino, M.; Mok, T.; Cheng, Y.; Hui, R.; Kowalski, D.; Robinson, A.; Brahmer, J.; et al. OA15.06 Pooled Analysis of Outcomes with Second-Course Pembrolizumab Across 5 Phase 3 Studies of Non-Small-Cell Lung Cancer. J. Thorac. Oncol. 2022, 17, S42–S43. [Google Scholar] [CrossRef]
- Aix, S.P.; Costa, E.C.; Bosch-Barrera, J.; Font, E.F.; Guirado, M.; Sarto, J.C.; Tarruella, M.M.; Vidal, O.J.; Portulas, E.D.; Diz, P.; et al. 160P Pembrolizumab re-challenge in patients with relapsed non-small cell lung cancer (NSCLC): A preliminary report of the REPLAY phase II trial—Cohort I. Ann. Oncol. 2021, 32, S1450. [Google Scholar] [CrossRef]
- Tian, T.; Yu, M.; Yu, Y.; Wang, K.; Tian, P.; Luo, Z.; Ding, Z.; Wang, Y.; Gong, Y.; Zhu, J.; et al. Immune checkpoint inhibitor (ICI)-based treatment beyond progression with prior immunotherapy in patients with stage IV non-small cell lung cancer: A retrospective study. Transl. Lung Cancer Res. 2022, 11, 1027–1037. [Google Scholar] [CrossRef]
- Cai, Z.; Zhan, P.; Song, Y.; Liu, H.; Lv, T. Safety and efficacy of retreatment with immune checkpoint inhibitors in non-small cell lung cancer: A systematic review and meta-analysis. Transl. Lung Cancer Res. 2022, 11, 1555–1566. [Google Scholar] [CrossRef]
- Motzer, R.; Alekseev, B.; Rha, S.-Y.; Porta, C.; Eto, M.; Powles, T.; Grünwald, V.; Hutson, T.E.; Kopyltsov, E.; Méndez-Vidal, M.J.; et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N. Engl. J. Med. 2021, 384, 1289–1300. [Google Scholar] [CrossRef]
- Taylor, M.H.; Lee, C.-H.; Makker, V.; Rasco, D.; Dutcus, C.E.; Wu, J.; Stepan, D.E.; Shumaker, R.C.; Motzer, R.J. Phase IB/II Trial of Lenvatinib Plus Pembrolizumab in Patients with Advanced Renal Cell Carcinoma, Endometrial Cancer, and Other Selected Advanced Solid Tumors. J. Clin. Oncol. 2020, 38, 1154–1163. [Google Scholar] [CrossRef]
- Leighl, N.B.; Hui, R.; Rodríguez-Abreu, D.; Nishio, M.; Hellmann, M.D.; Lee, C.; Deng, X.; Kush, D.; Borghaei, H.; Gainor, J. Abstract CT289: Pembrolizumab plus lenvatinib vs docetaxel in patients with previously treated metastatic non-small-cell lung cancer (NSCLC) and PD after platinum-doublet chemotherapy and immunotherapy: Phase 3, randomized, open-label LEAP-008 trial. Cancer Res. 2020, 80 (Suppl. 16), CT289. [Google Scholar] [CrossRef]
- Leal, T.A.; Berz, D.; Rybkin, I.; Iams, W.T.; Bruno, D.; Blakely, C.; Spira, A.; Patel, M.; Waterhouse, D.M.; Richards, D.; et al. 43P MRTX-500: Phase II trial of sitravatinib (sitra)+ nivolumab (nivo) in patients (pts) with nsq (NSQ) non-small cell lung cancer (NSCLC) progressing on or after prior checkpoint inhibitor (CPI) therapy. Ann. Oncol. 2021, 32 (Suppl. 5), S949–S1039. [Google Scholar] [CrossRef]
- Percent, I.J.; Reynolds, C.H.; Konduri, K.; Whitehurst, M.T.; Nidhiry, E.A.; Yanagihara, R.H.; Nagasaka, M.; Schreeder, M.T.; Uyeki, J.; Azzi, G.; et al. Phase III trial of sitravatinib plus nivolumab versus. docetaxel for treatment of NSCLC after platinum-based chemotherapy and immunotherapy (SAPPHIRE). J. Clin. Oncol. 2020, 38 (Suppl. 15), TPS9635. [Google Scholar] [CrossRef]
- Neal, J.W.; Santoro, A.; Viteri, S.; Aix, S.P.; Fang, B.; Lim, F.L.; Gentzler, R.D.; Goldschmidt, J.H.; Khrizman, P.; Massarelli, E.; et al. Cabozantinib (C) plus atezolizumab (A) or C alone in patients (pts) with advanced non–small cell lung cancer (aNSCLC) previously treated with an immune checkpoint inhibitor (ICI): Results from Cohorts 7 and 20 of the COSMIC-021 study. J. Clin. Oncol. 2022, 40 (Suppl. 16), 9005. [Google Scholar] [CrossRef]
- Neal, J.W.; Kundu, P.; Tanaka, T.; Enquist, I.; Patel, S.; Balestrini, A.; Wang, J.; Newsom-Davis, T.; Goto, Y.; Pavlakis, N.; et al. CONTACT-01: A phase III, randomized study of atezolizumab plus cabozantinib versus docetaxel in patients with metastatic non-small cell lung cancer (mNSCLC) previously treated with PD-L1/PD-1 inhibitors and platinum-containing chemotherapy. J. Clin. Oncology 2021, 39 (Suppl. 15), TPS9134. [Google Scholar] [CrossRef]
- Herbst, R.S.; Arkenau, H.-T.; Santana-Davila, R.; Calvo, E.; Paz-Ares, L.; A Cassier, P.; Bendell, J.; Penel, N.; Krebs, M.G.; Martin-Liberal, J.; et al. Ramucirumab plus pembrolizumab in patients with previously treated advanced non-small-cell lung cancer, gastro-oesophageal cancer, or urothelial carcinomas (JVDF): A multicohort, non-randomised, open-label, phase 1a/b trial. Lancet Oncol. 2019, 20, 1109–1123. [Google Scholar] [CrossRef]
- Herbst, R.S.; Arkenau, H.T.; Bendell, J.; Arrowsmith, E.; Wermke, M.; Soriano, A.; Penel, N.; Santana-Davila, R.; Bischoff, H.; Chau, I.; et al. Phase 1 Expansion Cohort of Ramucirumab Plus Pembrolizumab in Advanced Treatment-Naive NSCLC. J. Thorac. Oncol. 2021, 16, 289–298. [Google Scholar] [CrossRef]
- Reckamp, K.L.; Redman, M.W.; Dragnev, K.H.; Minichiello, K.; Villaruz, L.C.; Faller, B.; Al Baghdadi, T.; Hines, S.; Everhart, L.; Highleyman, L.; et al. Phase II Randomized Study of Ramucirumab and Pembrolizumab Versus Standard of Care in Advanced Non–Small-Cell Lung Cancer Previously Treated with Immunotherapy—Lung-MAP S1800A. J. Clin. Oncol. 2022, 40, 2295–2307. [Google Scholar] [CrossRef]
- Niu, J.; Maurice-Dror, C.; Lee, D.; Kim, D.-W.; Nagrial, A.; Voskoboynik, M.; Chung, H.; Mileham, K.; Vaishampayan, U.; Rasco, D.; et al. First-in-human phase 1 study of the anti-TIGIT antibody vibostolimab as monotherapy or with pembrolizumab for advanced solid tumors, including non-small-cell lung cancer☆. Ann. Oncol. 2022, 33, 169–180. [Google Scholar] [CrossRef]
- Pembrolizumab/Vibostolimab Coformulation (MK-7684A) or Pembrolizumab/Vibostolimab Coformulation Plus Docetaxel Versus Docetaxel for Metastatic Non-Small Cell Lung Cancer (NSCLC) with Progressive Disease after Platinum Doublet Chemotherapy and Immunotherapy (MK-7684A-002, KEYVIBE-002). ClinicalTrials.gov. Updated 5 January 2023. Available online: https://clinicaltrials.gov/ct2/show/study/NCT04725188 (accessed on 17 March 2023).
- Frentzas, S.; Meniawy, T.; Kao, S.C.H.; Wang, R.; Zuo, Y.; Zheng, H.; Tan, W. AdvanTIG-105: Phase 1 dose-escalation study of anti-TIGIT mAb ociperlimab (BGB-A1217) in combination with tislelizumab in patients with advanced solid tumors. J. Clin. Oncol. 2021, 39 (Suppl. 15), 2583. [Google Scholar] [CrossRef]
- Curigliano, G.; Gelderblom, H.; Mach, N.; Doi, T.; Tai, D.; Forde, P.M.; Sarantopoulos, J.; Bedard, P.L.; Lin, C.-C.; Hodi, F.S.; et al. Phase I/Ib Clinical Trial of Sabatolimab, an Anti–TIM-3 Antibody, Alone and in Combination with Spartalizumab, an Anti–PD-1 Antibody, in Advanced Solid Tumors. Clin. Cancer Res. 2021, 27, 3620–3629. [Google Scholar] [CrossRef]
- Falchook, G.S.; Ribas, A.; Davar, D.; Eroglu, Z.; Wang, J.S.; Luke, J.J.; Hamilton, E.P.; Di Pace, B.; Wang, T.; Ghosh, S.; et al. Phase 1 trial of TIM-3 inhibitor cobolimab monotherapy and in combination with PD-1 inhibitors nivolumab or dostarlimab (AMBER). J. Clin. Oncol. 2022, 40 (Suppl. 16), 2504. [Google Scholar] [CrossRef]
- Maruhashi, T.; Sugiura, D.; Okazaki, I.-M.; Okazaki, T. LAG-3: From molecular functions to clinical applications. J. Immunother. Cancer 2020, 8, e001014. [Google Scholar] [CrossRef]
- Krebs, M.; Majem, M.; Felip, E.; Forster, M.; Doger, B.; Clay, T.; Carcereny, E.; Peguero, J.; Horn, L.; Bajaj, P.; et al. A phase II study (TACTI-002) of eftilagimod alpha (a soluble LAG-3 protein) with pembrolizumab in PD-L1 unselected patients with metastatic non-small cell lung (NSCLC) or head and neck carcinoma (HNSCC). J. Immunother. Cancer 2020. [Google Scholar] [CrossRef]
- Majem, M.; Forster, M.D.; Krebs, M.G.; Peguero, J.; Clay, T.D.; Felip, E.; Iams, W.; Roxburgh, P.; de Speville, B.D.; Bajaj, P.; et al. Final data from a phase II study (TACTI-002) of eftilagimod alpha (soluble LAG-3) and pembrolizumab in 2nd line metastatic NSCLC pts resistant to PD-1/PD-L1 inhibitors. J. Thorac. Oncol. 2023, 18, S35–S88. [Google Scholar] [CrossRef]
- Gram, H. Preclinical characterization and clinical development of ILARIS® (canakinumab) for the treatment of autoinflammatory diseases. Curr. Opin. Chem. Biol. 2016, 32, 1–9. [Google Scholar] [CrossRef]
- Multhoff, G.; Molls, M.; Radons, J. Chronic Inflammation in Cancer Development. Front. Immunol. 2012, 2, 98. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Goto, Y.; Lim, W.D.T.; Halmos, B.; Cho, B.C.; Dols, M.C.; Gonzalez-Larriba, J.L.; Zhou, C.; Demedts, I.; Atmaca, A.; et al. Canakinumab (CAN)+ docetaxel (DTX) for the second-or third-line (2/3L) treatment of advanced non-small cell lung cancer (NSCLC): CANOPY-2 phase III results. Ann. Oncol. 2021, 32, S953–S954. [Google Scholar] [CrossRef]
- Akhurst, R.J. Targeting TGF-β Signaling for Therapeutic Gain. Cold Spring Harb. Perspect. Biol. 2017, 9, a022301. [Google Scholar] [CrossRef]
- Paz-Ares, L.; Kim, T.M.; Vicente, D.; Felip, E.; Lee, D.H.; Lee, K.H.; Lin, C.-C.; Flor, M.J.; Di Nicola, M.; Alvarez, R.M.; et al. Bintrafusp Alfa, a Bifunctional Fusion Protein Targeting TGF-β and PD-L1, in Second-Line Treatment of Patients with NSCLC: Results From an Expansion Cohort of a Phase 1 Trial. J. Thorac. Oncol. 2020, 15, 1210–1222. [Google Scholar] [CrossRef]
- Klapper, J.A.; Downey, S.G.; Smith, F.O.; Yang, J.C.; Hughes, M.S.; Kammula, U.S.; Sherry, R.M.; Royal, R.E.; Steinberg, S.M.; Rosenberg, S. High-dose interleukin-2 for the treatment of metastatic renal cell carcinoma: A retrospective analysis of response and survival in patients treated in the surgery branch at the National Cancer Institute between 1986 and 2006. Cancer 2008, 113, 293–301. [Google Scholar] [CrossRef]
- Briukhovetska, D.; Dörr, J.; Endres, S.; Libby, P.; Dinarello, C.A.; Kobold, S. Interleukins in cancer: From biology to therapy. Nat. Rev. Cancer 2021, 21, 481–499. [Google Scholar] [CrossRef]
- Rosen, D.B.; Kvarnhammar, A.M.; Laufer, B.; Knappe, T.; Karlsson, J.J.; Hong, E.; Lee, Y.-C.; Thakar, D.; Zúñiga, L.A.; Bang, K.; et al. TransCon IL-2 β/γ: A novel long-acting prodrug with sustained release of an IL-2Rβ/γ-selective IL-2 variant with improved pharmacokinetics and potent activation of cytotoxic immune cells for the treatment of cancer. J. Immunother. Cancer 2022, 10, e004991. [Google Scholar] [CrossRef]
- Raeber, M.E.; Sahin, D.; Karakus, U.; Boyman, O. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine 2023, 90, 104539. [Google Scholar] [CrossRef]
- Suurs, F.V.; Hooge, M.N.L.-D.; de Vries, E.G.; de Groot, D.J.A. A review of bispecific antibodies and antibody constructs in oncology and clinical challenges. Pharmacol. Ther. 2019, 201, 103–119. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, Y.; Zang, A.; Cheng, Y.; Zhang, Y.; Wang, X.; Chen, Z.; Qu, S.; He, J.; Chen, C.; et al. First-in-human phase I/Ib study of QL1706 (PSB205), a bifunctional PD1/CTLA4 dual blocker, in patients with advanced solid tumors. J. Hematol. Oncol. 2023, 16, 50. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Y.; Liu, J.; Luo, S.-X.; Li, Q.; Zou, W.; Wang, Z.; Peng, Y.; Xiao, S.; Wang, H.; et al. SI-B003 (PD-1/CTLA-4) in patients with advanced solid tumors: A phase I study. J. Clin. Oncol. 2023, 41 (Suppl. 16), e14668. [Google Scholar] [CrossRef]
- Rohrberg, K.S.; Brandão, M.; Alvarez, E.C.; Felip, E.; Gort, E.H.; Hiltermann, T.J.N.; Izumi, H.; Kim, D.-W.; Kim, S.-W.; Paz-Ares, L.G.; et al. Safety, pharmacokinetics (PK), pharmacodynamics (PD) and preliminary efficacy of AZD2936, a bispecific antibody targeting PD-1 and TIGIT, in checkpoint inhibitor (CPI)-experienced advanced/metastatic non-small-cell lung cancer (NSCLC): First report of ARTEMIDE-01. J. Clin. Oncol. 2023, 41 (Suppl. 16), 9050. [Google Scholar] [CrossRef]
- Scharpenseel, H.; Hanssen, A.; Loges, S.; Mohme, M.; Bernreuther, C.; Peine, S.; Lamszus, K.; Goy, Y.; Petersen, C.; Westphal, M.; et al. EGFR and HER3 expression in circulating tumor cells and tumor tissue from non-small cell lung cancer patients. Sci. Rep. 2019, 9, 7406. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, L.; Fang, W.; Yang, Y.; Huang, Y.; Zou, W.; Wang, Z.; Ding, M.; Peng, Y.; Xiao, S.; et al. SI-B001 plus chemotherapy in patients with locally advanced or metastatic EGFR/ALK wild-type non-small cell lung cancer: A phase II, multicenter, open-label study. J. Clin. Oncol. 2023, 41 (Suppl. 16), 9025. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, Y.; Zhao, Y.; Fang, W.; Zhao, H.; Huang, Y.; Yang, Y.; Chen, L.; Hou, X.; Zou, W.; et al. BL-B01D1, a first-in-class EGFRxHER3 bispecific antibody-drug conjugate (ADC), in patients with locally advanced or metastatic solid tumor: Results from a first-in-human phase 1 study. J. Clin. Oncol. 2023, 41 (Suppl. 16), 3001. [Google Scholar] [CrossRef]
- Kilic, A.; Landreneau, R.J.; Luketich, J.D.; Pennathur, A.; Schuchert, M.J. Density of tumor infiltrating lymphocytes correlates with disease recurrence and survival in patients with large non-small-cell lung cancer tumors. J. Surg. Res. 2011, 167, 207–210. [Google Scholar] [CrossRef]
- Schalper, K.A.; Brown, J.; Carvajal-Hausdorf, D.; McLaughlin, J.; Velcheti, V.; Syrigos, K.N.; Herbst, R.S.; Rimm, D.L. Objective measurement and clinical significance of TILs in non-small cell lung cancer. JNCI J. Natl. Cancer Inst. 2015, 107, dju435. [Google Scholar] [CrossRef]
- Rohaan, M.W.; Borch, T.H.; Van Den Berg, J.H.; Met, Ö.; Kessels, R.; Geukes Foppen, M.H.; Stoltenborg Granhøj, J.; Nuijen, B.; Nijenhuis, C.; Jedema, I.; et al. Tumor-Infiltrating Lymphocyte Therapy or Ipilimumab in Advanced Melanoma. N. Engl. J. Med. 2022, 387, 2113–2125. [Google Scholar] [CrossRef]
- Creelan, B.C.; Wang, C.; Teer, J.K.; Toloza, E.M.; Yao, J.; Kim, S.; Landin, A.M.; Mullinax, J.E.; Saller, J.J.; Saltos, A.N.; et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: A phase 1 trial. Nat. Med. 2021, 27, 1410–1418. [Google Scholar] [CrossRef]
- Katiyar, V.; Chesney, J.; Kloecker, G. Cellular Therapy for Lung Cancer: Focusing on Chimeric Antigen Receptor T (CAR T) Cells and Tumor-Infiltrating Lymphocyte (TIL) Therapy. Cancers 2023, 15, 3733. [Google Scholar] [CrossRef]
- Imbimbo, M.; Wetterwald, L.; Friedlaender, A.; Parikh, K.; Addeo, A. Cellular Therapy in NSCLC: Between Myth and Reality. Curr. Oncol. Rep. 2023, 25, 1161–1174. [Google Scholar] [CrossRef]
- Besse, B.; Campelo, M.G.; Dols, M.C.; Quoix, E.; Madroszyk, A.; Felip, E.; Cappuzzo, F.; Denis, F.; Hilgers, W.; Romano, G.; et al. Activity of OSE-2101 in HLA-A2+ non-small cell lung cancer (NSCLC) patients after failure to immune checkpoint inhibitors (IO): Final results of phase III Atalante-1 randomised trial. Ann. Oncol. 2021, 32, S1325. [Google Scholar] [CrossRef]
- Landi, L.; Delmonte, A.; Bonetti, A.; Pasello, G.; Metro, G.; Mazzoni, F.; Borra, G.; Giannarelli, D.; Andrikou, K.; Mangiola, D.; et al. Combi-TED: A new trial testing Tedopi® with docetaxel or nivolumab in metastatic non-small-cell lung cancer progressing after first line. Futur. Oncol. 2022, 18, 4457–4464. [Google Scholar] [CrossRef]
Study (Ref.) | Design | Treatment | Population | Nr. | Outcomes |
---|---|---|---|---|---|
Shepherd FA. et al. [13] | Prospective Randomized | Docetaxel vs. BSC | Progressed on first-line platinum-based chemotherapy | 104 | PFS 10.6 vs. 6.7 weeks OS 7.0 vs. 4.6 months |
Schuette W. et al. [14] | Phase III | Docetaxel w. vs. 3 weekly | Progressed on first-line platinum-based chemotherapy | 215 | OS 6.3 vs. 9.2 months ORR 10.5% vs. 12.6% |
Crinò L. et al. [15] | Phase II | Gemcitabine | stage IIIB or IV | 83 | mDoR 29 weeks |
Yoneshima Y et al. [17] | Non inferiority Phase III | Nab-paclitaxel vs. Docetaxel | Progressed on first-line platinum-based chemotherapy | 503 | OS 16.2 vs. 13.6 months PFS 4.2 vs. 3.4 months ORR 29.9% vs. 15.4% |
Hanna N, et al. [18] | Non inferiority Phase III | Pemetrexed vs Docetaxel | Progressed on first-line chemotherapy | 571 | PFS 2.9 vs 2.9 months OS 8.3 vs 7.9 months |
Nokihara H, et al. [19] | Non inferiority Phase III | S-1 vs. Docetaxel | Progressed on at least first-line platinum-based chemotherapy | 1154 | PFS 2.86 vs. 2.89 months OS 12.75 vs. 12.52 months |
LUME-Lung 1 Reck M. et al. [28] | Phase III | Docetaxel ± Nintedanib | Progressed on first-line platinum-based chemotherapy Adenocarcinomas | 655 | PFS 3.4 vs. 2.7 months OS 10.1 vs. 9.1 months OS 12.6 vs. 10.3 months |
VARGADO Grohè C. et al. [29] | Prospective no interventional | Nintedanib + Docetaxel | Previously treated with chemotherapy-IO (cohort C) | 135 | DCR 72.5% PFS 4.8 months |
REVEL Garon EB. [30] | Phase III | Ramucirumab ± Docetaxel | Progressed on first-line platinum-based chemotherapy | 1825 | PFS 4.5 vs. 3 months OS 10.5 vs. 9.1 months |
ULTIMATE Cortot AB. et al. [32] | Phase III | Paclitaxel weekly vs. Docetaxel | Previously treated with 1 or 2 prior lines | 166 | PFS 5.4 vs. 3.9 months ORR 22.5% vs. 5.5% OS 9.9 vs. 10.8 |
Ph. | Treatment | Population | Nr. | Outcomes |
---|---|---|---|---|
I/II | Datopotamab Deruxtecan | Previously treated NSCLC unselected for TROP-2 | 180 | ORR 26% mDOR 10.5 months mPFS 6.9 months mOS 10.4 months |
III | Datopotamab Deruxtecan vs Docetaxel | Pretreated patients with advanced/metastatic NSCLC | 604 | ORR 26.4% vs. 12.8% PFS 4.4 vs. 3.7 months mDoR 7.1 vs. 5.6 months OS 12.4 vs. 11 months |
I/II | Sacituzumab Govitecan | Previously treated NSCLC unselected for TROP-2 | 54 | ORR 19% mDoR 6 months mPFS 5.2 months mOS 9.5 months |
II | Tusamitamab Ravtansine | Non-squamous previously treated moderate CEACAM5 high CEACAM5 | 28 64 | ORR 7.1% ORR 20.3% |
II | Telisotuzumab Vedotin | Metastatic NSCLC, ≤2 prior lines, ≤1 line of chemotherapy, MET amplification | 136 | No-squamous: ORR 36.5% mDoR 6.9 months Squamous: ORR 11.1% mDoR 4.4 months |
II | Trastuzumab Deruxtecan 5.4 mg/kg | HER2 amplified NSCLC | 41 | ORR 34.1% mPFS 6.7 months mOS 11.7 months |
Trastuzumab Deruxtecan 6.4 mg/kg | 49 | ORR 26.5% mPFS 5.7 months mOS 12.4 months | ||
Ib/II | Lenvatinib + Pembrolizumab | Previously treated NSCLC | 21 | ORR 33% mDoR 10.9 months mPFS 5.9 months |
II | Sitravatinib + Nivolumab (no-squamous) | Non-squamous NSCLC previously treated with chemotherapy and ICIs | 68 | ORR 16% mPFS 6 months mOS 15 months mDoR 13 months |
II | Cabozantinib + Atezolizumab | Progression to prior ICI and ≤2 prior lines of systemic therapy excluding VEGFR TKI | 81 | ORR 19% mDoR 5.8 months DCR 80% mPFS 4.5 months mOS 13.8 months |
III | Cabozantinib + Atezolizumab vs. Docetaxel | Previously treated with chemotherapy and ICIs | 366 | mOS 10.7 vs. 10.5 months mPFS 4.6 vs. 4.0 months ORR 11% vs. 13.3% |
II | Ramucirumab + Pembrolizumab vs Investigator choice chemotherapy | Previously treated with chemotherapy and ICIs | 166 | mOS 14.5 vs. 11.6 months mPFS 4.5 vs. 5.2 months ORR 22% vs. 28% mDoR 12.9 vs. 5.6 months |
I | Vibostolimab + Pembrolizumab | Previously treated NSCLC | 38 | ORR 3% |
I | Ociperlimab + Tisletizumab | Pan tumor, previously treated | 24 | 1 PR 9 SD |
I/Ib | Sabatolimab + Spartalizumab | Previously treated NSCLC | 6 | 1/6 PR |
II | Eftilagimod alpha + Pembrolizumab | PD-1/PDL1-resistant NSCLC | 36 | ORR 8.3% DCR 33% |
I | TILs + Nivolumab | Previous immunotherapy | 20 | 11 pts reduction tumor burden 3 confirmed responses |
III | Canakimumab + Docetaxel vs. Docetaxel | Previous chemotherapy + immunotherapy sequential or concomitant | 237 | mOS 10.5 vs. 11.3 months mPFS 4.17 vs. 4.21 months |
I | Bintrafusp alfa | Previous platinum-based chemotherapy PD-L1 positive PD-L1 high | 80 | ORR 25% ORR 36% ORR 85.7% |
III | Tedopi vs. Docetaxel or Pemetrexed | HLA2 + Previous chemotherapy + immunotherapy sequential or concomitant | 118 | mOS 1.1 vs. 7.5 months ORR 8% vs. 18% mPFS 2.7 vs. 3.4 months 6m DCR 25% vs. 24% |
I | QL1706 | Previously treated NSCLC Immuno naïve | 149 | ORR 14% mDoR NR ORR 24% |
I | BL-B01D1 | Previously treated NSCLC | 42 | ORR 40.5%, DCR 95.5% |
Study | Ph | Treatment | Population | Nr. |
---|---|---|---|---|
NCT05555732 | III | Datopotamab Deruxtecan + Pembrolizumab with or without chemotherapy | No Prior Therapy for Advanced or Metastatic PD-L1 TPS < 50% nonsquamous NSCLC without Actionable Genomic Alterations | 975 |
NCT05215340 | III | Datopotamab Deruxtecan + Pembrolizumab vs. Pembrolizumab | Treatment-naïve Subjects with Advanced or Metastatic PD-L1 High (TPS ≥ 50%) NSCLC without Actionable Genomic Alterations | 740 |
NCT05089734 | III | Sacituzumab Govitecan vs. Docetaxel | Metastatic NSCLC with Progression on or After Platinum-Based Chemotherapy and Anti-PD-1/PD-L1 Immunotherapy | 580 |
NCT05186974 | II | Sacituzumab Govitecan + Pembrolizumab with or without platinum-based chemotherapy | First-line Treatment of Patients with Metastatic NSCLC Without Actionable Genomic Alterations | 224 |
NCT04154956 | III | SAR408701 vs. Docetaxel | Previously Treated, CEACAM5 Positive Metastatic nonsquamous NSCLC | 450 |
NCT05245071 | II | SAR408701 | Nonsquamous NSCLC Participants with Negative or Moderate CEACAM5 Expression Tumors and High Circulating CEA | 38 |
NCT04524689 | II | SAR408701 + Pembrolizumab with or without platinum-based chemotherapy | CEACAM5 Positive Expression Advanced/Metastatic nonsquamous NSCLC not previously treated | 120 |
NCT04928846 | III | Telisotuzumab-Vedotin vs. Docetaxel | Previously Treated c-Met Overexpressing, EGFR Wildtype, Locally Advanced/Metastatic nonsquamous NSCLC | 698 |
NCT05513703 | II | Telisotuzumab-Vedotin | Previously Untreated MET Amplified Locally Advanced/Metastatic nonsquamous NSCLC | 70 |
NCT03976375 | III | Lenvatinib + Pembrolizumab vs. Docetaxel | Previously Treated Metastatic NSCLC and Progressive Disease after Platinum Doublet Chemotherapy and Immunotherapy | 405 |
NCT05633602 | III | Ramucirumab + Pembrolizumab vs. standard of care | Previously Treated with Immunotherapy for Stage IV or Recurrent NSCLC | 700 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siringo, M.; Baena, J.; Bote de Cabo, H.; Torres-Jiménez, J.; Zurera, M.; Zugazagoitia, J.; Paz-Ares, L. Future Perspectives in the Second Line Therapeutic Setting for Non-Oncogene Addicted Non-Small-Cell Lung Cancer. Cancers 2023, 15, 5505. https://doi.org/10.3390/cancers15235505
Siringo M, Baena J, Bote de Cabo H, Torres-Jiménez J, Zurera M, Zugazagoitia J, Paz-Ares L. Future Perspectives in the Second Line Therapeutic Setting for Non-Oncogene Addicted Non-Small-Cell Lung Cancer. Cancers. 2023; 15(23):5505. https://doi.org/10.3390/cancers15235505
Chicago/Turabian StyleSiringo, Marco, Javier Baena, Helena Bote de Cabo, Javier Torres-Jiménez, María Zurera, Jon Zugazagoitia, and Luis Paz-Ares. 2023. "Future Perspectives in the Second Line Therapeutic Setting for Non-Oncogene Addicted Non-Small-Cell Lung Cancer" Cancers 15, no. 23: 5505. https://doi.org/10.3390/cancers15235505
APA StyleSiringo, M., Baena, J., Bote de Cabo, H., Torres-Jiménez, J., Zurera, M., Zugazagoitia, J., & Paz-Ares, L. (2023). Future Perspectives in the Second Line Therapeutic Setting for Non-Oncogene Addicted Non-Small-Cell Lung Cancer. Cancers, 15(23), 5505. https://doi.org/10.3390/cancers15235505