Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Peritoneal Carcinomatosis
1.2. Current Treatments and Their Inadequacy
2. CAR T Cell Immunotherapy for Peritoneal Carcinomatosis of Gastric Origin
2.1. CAR T
2.2. Clinical Evaluations of CAR T Cell Targets for GC and GCPC
2.2.1. Claudin 18.2
2.2.2. HER2
2.2.3. Mesothelin
2.2.4. NKG2D
2.2.5. PD-L1
2.2.6. Carcinoembryonic Antigen
2.2.7. CD19
2.2.8. EpCAM
2.2.9. Other Targets
2.3. Challenges Facing CAR T Therapy
3. Oncolytic Virotherapy for Peritoneal Carcinomatosis of Gastric Origin
3.1. Oncolytic Virotherapy
3.2. Clinical Evaluations of Oncolytic Virotherapy for GC and GCPC
3.2.1. Herpes Simplex Virus
Author (Year) | Oncolytic Virus | In Vitro | In Vivo | Dosing | Results |
---|---|---|---|---|---|
Zhou et al. (2017) [116] | Ad/TRAIL-E1 | Human gastric cancer cell lines (MKN45, MKN28, HGC27, SGC7901), normal human fibroblast (NHFB), normal human gastric epithelial cell line (GES-1) | Xenograft peritoneal GCPC nude mice models (n = 15) 5 groups (n = 3 per group): PBS, Ad/GFP, Ad/GFP-E1, Ad/gTRAIL, ad/TRAIL-E1 at 4 d after tumor inoculation | In vitro: MOI 30–3000 In vivo: 3 × 1010 PFU IP every 4 days × 3 |
|
Haley et al. (2009) [117] | EV1 | Human gastric cancer cell lines (AGS, Hs746T, NCI-N87, MKN45), human ovarian cancer cell line (DOV13) | Xenograft peritoneal GCPC NSG mice models (n = 40) 5 groups (n = 8 per group): weight control (no injections), PBS, 3 different EV1 doses 5 d after tumor inoculation | In vitro: Varied MOIs In vivo: 1 × 103 TCID50, 1 × 105 TCID50, or 1 × 107 TCID50 IP |
|
Jun et al. (2014) [118] | GLV-1 h153 | Human gastric cancer cell lines (AGS, OCUM-2MD3, MKN74, TMK-1) | Xenograft subcutaneous GC nude mice model (n = 10) 2 groups (n = 5 per group): PBS vs. GLV-1 10 d after tumor inoculation | In vitro: MOI 0.01–1 In vivo: 2 × 106 PFU IT |
|
Bennett et al. (2000) [111] | G207 | Human gastric cancer cell lines (AGS, MKN1, MKN74, MKN45P, OCUM-2MD3) | Xenograft peritoneal GCPC nude mice model (n = 50) 5 groups (n = 10 per group): PBS, low dose G207 3 h or 3 d after tumor inoculation, high dose G207 3 h or 3 d after tumor inoculation | In vitro: Varied MOIs In vivo: 5 × 106 PFU or 5 × 107 PFU IT |
|
Nakano et al. (2005) [114] | G207 | N/A | Xenograft peritoneal GCPC NSG mice model (n = 25) 3 groups: control (n = 10), G207 (n = 9), G207 + 5FU (n = 6) at 10 d after tumor inoculation | In vivo: 1 × 107 PFU IP |
|
Sugawara et al. (2020) [119] | G47Δ | Human gastric cancer cell lines (MKN1, MKN45, MKN74, NUGC4, OCUM1, Kato III, HSC60, HSC39, 44As3) | Xenograft subcutaneous, orthotopic, and peritoneal GC and GCPC nude mice models Subcutaneous (n = 7 per group): mock, low dose, high dose G47Δ at day 0, 3 Intratumoral (n = 7 per group): mock, G47Δ at day 8, 11 GCPC: mock (n = 10), G47Δ at two doses (n = 10 per dose) on days 3, 5, and 7 | In vitro: MOI 0.01 to 1 In vivo: - Subcutaneous: low dose 2 × 105 or high dose 1 × 106 PFU IT - Orthotopic: 1 × 106 PFU IT - GCPC: 1 × 106 or 5 × 106 PFU IP |
|
Deguchi et al. (2012) [112] | Oncolytic Herpes Virus | Human pancreatic cancer (Capan1, MiaPaCa2), hepatic cancer (Hep3B, PLC/PRF/5), gastric cancer (AZ521, MKN45), colon cancer (WiDr), ovarian cancer (SKOV3) cell lines | Xenograft subcutaneous GC nude mice models (n = 24) 4 groups (n = 6 per group): PBS, hrR3, Bevacizumab, hrR3 + Bevacizumab twice weekly for two weeks | In vitro: MOI 0.01 to 10 In vivo: hrR3 1 × 107 PFU IT and Bevacizumab 100 mg/mouse intracisternally |
|
Zeng et al. (2011) [120] | Vesicular Stomatitis Virus | Human gastric cancer cell (MKN28) | N/A | In vitro: N/A—utilized viral protein only |
|
Sui et al. (2017) [121] | Newcastle Disease Virus | Human gastric cancer cell lines (BGC823, SGC7901, MKN28) | Xenograft subcutaneous GC nude mice models (n = 15) 3 groups (n = 5 per group): mock, pre-tumor inoculation GC cell NDV-D90 infection, post-tumor inoculation GC cell NDV-D90 infection | In vitro: MOI 0.001 to 10 In vivo: Viral dose not specified, IT |
|
Song et al. (2010) [122] | Newcastle Disease Virus | Human gastric cancer cell lines (AGS, MKN74) | Xenograft peritoneal GCPC NSG mice models Toxicity: 3 NDV(F3aa)-GFP dosage groups GCPC (n = 20): PBS (n = 5), single NDV(F3aa)-GFP dose at day 1 (n = 7), 3× NDV(F3aa)-GFP doses at days 1, 4, and 7 (n = 8) | In vitro: MOI 0.01 to 1 In vivo: Toxicity—2 × 106, or 5 × 106, or 1 × 107 PFU IP GCPC—5 × 106 PFU IP |
|
Bennett et al. (2002) [113] | Herpes Simplex Virus | Human gastric cancer cell lines (MKN45, OCUM-2MD3, MKN74) | Xenograft peritoneal GCPC nude mice models Regional treatment (n = 190): OCUM-2MD3 and MKN45-P cells, 5 groups: 4 different dosages of G207 or NV1020, PBS Systemic (n = 50): OCUM-2MD3 cells, 5 groups—single dose G207 or NV1020 (n = 9 per virus), 3× dose G207 or NV1020 every other day (n = 10 per virus), control (n = 10) Survival (n = 40): OCUM-2MD3 cells, 5 groups (n = 8 per group): control, G207 low, G207 medium, NV1020 low, NV1020 medium dose | In vitro: MOI 0.01 to 1 in vivo: 2.5 × 106, or 5 × 105, or 5 × 106, or 5 × 107 PFU IP |
|
Matsumura et al. (2021) [123] | Herpes Simplex Virus | Human gastric cancer cell lines (MKN1, MKN28, MKN73) | N/A | Ex vivo: MOI 0.01, 0.1 |
|
Stanziale et al. (2004) [115] | Herpes Simplex Virus | Human gastric cancer cell lines (OCUM-2MD3) | Xenograft peritoneal GCPC nude mice models (n = 40) 5 groups (n = 8 per group): single low dose at day; multiple low doses at day 1, 2, and 3; single high dose at day 1; multiple high doses at day 1, 2, and 3, untreated | In vitro: MOI 0.01 to 1 In vivo: 1.5 × 106, 1.5 × 107, multiple doses 1.5 × 106, multiple doses 1.5 × 107 PFU IP |
|
Tsuji et al. (2013) [124] | Herpes Simplex Virus | Human gastric cancer cell lines (AZ521, MKN1, MKN28, MKN45, MKN74, TMK-1) | Xenograft subcutaneous GC nude mice models (n = 24 3 groups (n = 8 per group): PBS, T-01, or T-TSP-1 at day 5–7 after tumor implantation | In vitro: MOI 0.01 and 0.1 In vivo: 1 × 107 PFU IT |
|
Yano et al. (2013) [125] | Adenovirus | Human gastric cancer cell lines (MKN45, MKN7) | Xenograft subcutaneous GC nude mice tumor models (n = 15) 3 groups (n = 5 per group, bilateral tumors): OBP-301, cisplatin, radiation, control every 3 days for 3–5 treatments | In vitro: varied MOIs In vivo: 1 × 108 PFU IT |
|
Ishikawa et al. (2020) [126] | Adenovirus | Human gastric cancer cell lines (GCIY, Kato III) | Xenograft peritoneal GCPC nude mice models (n = 12) 2 groups (n = 6 per group): OBP-401 at day 17 after tumor inoculation, PBS | In vitro: MOIs of 0, 1, 2, 10, 25, 50, or 100 In vivo: 1 × 105 PFU IP |
|
Xu et al. (2014) [127] | Adenovirus | Human gastric (NCI-N87, MGC80-3, AGS), liver (Huh-7, SMMC-7721), cervical (HeLa), colon (SW480, HCT116), and pancreatic (BxPC3) cancer cell lines, normal gastric epithelial cell line (GES-1) | Xenograft subcutaneous GC nude mice models (n = 30) 5 groups (n = 6 per group): saline, Ad.vector, Ad.AChE, ZD55, ZD55-AChE | In vitro: MOIs 1, 10, 25, 50, 100, 200 In vivo: 1 × 109 PFU IT per virus |
|
Lv et al. (2019) [36] | Measles Virus | Human gastric cancer cell lines (BGC-823, SGC7901) | Xenograft subcutaneous GC nude mouse model (n = 20) 2 groups (n = 10 per group): control mock injection, rMV-Hu191 treatment at days 7, 8, 9, 11, 13, and 15 | In vitro: MOI 0.1, 0.5, 1, 5, 10 in vivo: 1.4 × 107 TCID50 per treatment day |
|
Lv et al. (2021) [128] | Measles Virus | Human gastric cancer cell lines (BGC-823, SGC-7901, GCSR1) | Xenograft subcutaneous GC nude mice model (n = 40) 4 groups (n = 10 per group): mock, rMV-Hu191 (days 5, 6, 7, 9, 11, and 13 after tumor inoculation), DDP (days 7, 14, and 21), rMV-Hu191 + DDP | In vitro: MOI 0.1, 1 In vivo: 1.4 × 107 TCID50 rMV-Hu191; 10 mg/kg DDP per treatment |
|
Kawaguchi et al. (2010) [129] | Reovirus | Human gastric cancer cell lines (MKN45P, NUGC4, MKN7, Kato III), normal epithelial cell line (NIH3T3) | Xenograft intraperitoneal GCPC nude mice model (n = 20) 2 groups (n = 10 per group): PBS, reovirus | In vitro: MOI 10 In vivo: 1 × 108 PFU, IP |
|
Cho et al. (2010) [130] | Reovirus | Human gastric cancer cell lines (SNU216, SNU668), mouse fibroblast cells (L929) | N/A | In vitro: MOI 1, 10 |
|
3.2.2. Adenovirus
3.2.3. Newcastle Disease Virus
3.2.4. Vaccinia Virus
3.2.5. Measles Virus
3.2.6. Reovirus
3.2.7. Vesicular Stomatitis Virus
3.2.8. Echovirus
3.3. Challenges Facing Oncolytic Virotherapy
4. Combination of CAR T and Oncolytic Virus Therapy for Peritoneal Carcinomatosis of Gastric Origin
4.1. Rationale for Combination CAR T and Oncolytic Virus Therapy
4.2. Clinical Evaluations of Combination of CAR T Cells and Oncolytic Virus Therapy in Solid Tumors
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Paget, S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989, 8, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Kusamura, S.; Baratti, D.; Zaffaroni, N.; Villa, R.; Laterza, B.; Balestra, M.R.; Deraco, M. Pathophysiology and biology of peritoneal carcinomatosis. World J. Gastrointest. Oncol. 2010, 2, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Kanda, M.; Kodera, Y. Recent advances in the molecular diagnostics of gastric cancer. World J. Gastroenterol. 2015, 21, 9838–9852. [Google Scholar] [CrossRef] [PubMed]
- Braumuller, H.; Mauerer, B.; Berlin, C.; Plundrich, D.; Marbach, P.; Cauchy, P.; Laessle, C.; Biesel, E.; Holzner, P.A.; Kesselring, R. Senescent Tumor Cells in the Peritoneal Carcinomatosis Drive Immunosenescence in the Tumor Microenvironment. Front. Immunol. 2022, 13, 908449. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, P.; Sugarbaker, P.H. Peritoneal-plasma barrier. Cancer Treat. Res. 1996, 82, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Solass, W.; Horvath, P.; Struller, F.; Konigsrainer, I.; Beckert, S.; Konigsrainer, A.; Weinreich, F.J.; Schenk, M. Functional vascular anatomy of the peritoneum in health and disease. Pleura Peritoneum 2016, 1, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Isaza-Restrepo, A.; Martin-Saavedra, J.S.; Velez-Leal, J.L.; Vargas-Barato, F.; Riveros-Duenas, R. The Peritoneum: Beyond the Tissue—A Review. Front. Physiol. 2018, 9, 738. [Google Scholar] [CrossRef]
- Graeber, T.G.; Osmanian, C.; Jacks, T.; Housman, D.E.; Koch, C.J.; Lowe, S.W.; Giaccia, A.J. Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996, 379, 88–91. [Google Scholar] [CrossRef]
- Archid, R.; Solass, W.; Tempfer, C.; Konigsrainer, A.; Adolph, M.; Reymond, M.A.; Wilson, R.B. Cachexia Anorexia Syndrome and Associated Metabolic Dysfunction in Peritoneal Metastasis. Int. J. Mol. Sci. 2019, 20, 5444. [Google Scholar] [CrossRef]
- Shirao, K.; Boku, N.; Yamada, Y.; Yamaguchi, K.; Doi, T.; Goto, M.; Nasu, J.; Denda, T.; Hamamoto, Y.; Takashima, A.; et al. Randomized Phase III study of 5-fluorouracil continuous infusion vs. sequential methotrexate and 5-fluorouracil therapy in far advanced gastric cancer with peritoneal metastasis (JCOG0106). Jpn. J. Clin. Oncol. 2013, 43, 972–980. [Google Scholar] [CrossRef]
- Goodman, M.D.; McPartland, S.; Detelich, D.; Saif, M.W. Chemotherapy for intraperitoneal use: A review of hyperthermic intraperitoneal chemotherapy and early post-operative intraperitoneal chemotherapy. J. Gastrointest. Oncol. 2016, 7, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.D.; Cao, C.Q.; Munkholm-Larsen, S. A pharmacological review on intraperitoneal chemotherapy for peritoneal malignancy. World J. Gastrointest. Oncol. 2010, 2, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Catena, F.; Glehen, O.; Yonemura, Y.; Sugarbaker, P.H.; Piso, P.; Montori, G.; Ansaloni, L. Complete versus incomplete cytoreduction in peritoneal carcinosis from gastric cancer, with consideration to PCI cut-off. Systematic review and meta-analysis. Eur. J. Surg. Oncol. 2015, 41, 911–919. [Google Scholar] [CrossRef]
- Yonemura, Y.; Kawamura, T.; Bandou, E.; Takahashi, S.; Sawa, T.; Matsuki, N. Treatment of peritoneal dissemination from gastric cancer by peritonectomy and chemohyperthermic peritoneal perfusion. Br. J. Surg. 2005, 92, 370–375. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.S.; Al-Adra, D.P.; Nagendran, J.; Campbell, S.; Shi, X.; Haase, E.; Schiller, D. Treatment of gastric cancer with peritoneal carcinomatosis by cytoreductive surgery and HIPEC: A systematic review of survival, mortality, and morbidity. J. Surg. Oncol. 2011, 104, 692–698. [Google Scholar] [CrossRef] [PubMed]
- Desiderio, J.; Chao, J.; Melstrom, L.; Warner, S.; Tozzi, F.; Fong, Y.; Parisi, A.; Woo, Y. The 30-year experience-A meta-analysis of randomised and high-quality non-randomised studies of hyperthermic intraperitoneal chemotherapy in the treatment of gastric cancer. Eur. J. Cancer 2017, 79, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Blumenthaler, A.N.; Allen, C.J.; Ikoma, N.; Blum, M.; Das, P.; Minsky, B.D.; Mansfield, P.F.; Ajani, J.A.; Badgwell, B.D. Laparoscopic HIPEC for Low-Volume Peritoneal Metastasis in Gastric and Gastroesophageal Adenocarcinoma. Ann. Surg. Oncol. 2020, 27, 5047–5056. [Google Scholar] [CrossRef]
- Nair, R.; Westin, J. CAR T-Cells. Adv. Exp. Med. Biol. 2020, 1244, 215–233. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef]
- Garrido, F.; Aptsiauri, N.; Doorduijn, E.M.; Garcia Lora, A.M.; van Hall, T. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr. Opin. Immunol. 2016, 39, 44–51. [Google Scholar] [CrossRef]
- Weinkove, R.; George, P.; Dasyam, N.; McLellan, A.D. Selecting costimulatory domains for chimeric antigen receptors: Functional and clinical considerations. Clin. Transl. Immunol. 2019, 8, e1049. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, M.; Abken, H. TRUCKs: The fourth generation of CARs. Expert. Opin. Biol. Ther. 2015, 15, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Vignali, D.A.; Kuchroo, V.K. IL-12 family cytokines: Immunological playmakers. Nat. Immunol. 2012, 13, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.; Tariq, S.M.; Tariq, M. Chimeric Antigen Receptor-Natural Killer Cells: The Future of Cancer Immunotherapy. Ochsner J. 2019, 19, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Xie, G.; Dong, H.; Liang, Y.; Ham, J.D.; Rizwan, R.; Chen, J. CAR-NK cells: A promising cellular immunotherapy for cancer. EBioMedicine 2020, 59, 102975. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.; Waks, T.; Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA 1989, 86, 10024–10028. [Google Scholar] [CrossRef] [PubMed]
- Bourbon, E.; Ghesquieres, H.; Bachy, E. CAR-T cells, from principle to clinical applications. Bull. Cancer 2021, 108, S4–S17. [Google Scholar] [CrossRef]
- Kalos, M.; Levine, B.L.; Porter, D.L.; Katz, S.; Grupp, S.A.; Bagg, A.; June, C.H. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci. Transl. Med. 2011, 3, 95ra73. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. FDA Approval Brings First Gene Therapy to the United States. Available online: https://www.fda.gov/news-events/press-announcements/fda-approval-brings-first-gene-therapy-united-states (accessed on 1 March 2023).
- Qian, S.; Villarejo-Campos, P.; Garcia-Olmo, D. The Role of CAR-T Cells in Peritoneal Carcinomatosis from Gastric Cancer: Rationale, Experimental Work, and Clinical Applications. J. Clin. Med. 2021, 10, 5050. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, Z.; Wang, P.; Wang, C.; Yang, L.; Du, G.; Zhang, H.; Shi, B.; Jia, J.; Li, Q.; et al. Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. J. Natl. Cancer Inst. 2019, 111, 409–418. [Google Scholar] [CrossRef]
- Chi, X.; Yang, P.; Zhang, E.; Gu, J.; Xu, H.; Li, M.; Gao, X.; Li, X.; Zhang, Y.; Xu, H.; et al. Significantly increased anti-tumor activity of carcinoembryonic antigen-specific chimeric antigen receptor T cells in combination with recombinant human IL-12. Cancer Med. 2019, 8, 4753–4765. [Google Scholar] [CrossRef]
- Han, Y.; Liu, C.; Li, G.; Li, J.; Lv, X.; Shi, H.; Liu, J.; Liu, S.; Yan, P.; Wang, S.; et al. Antitumor effects and persistence of a novel HER2 CAR T cells directed to gastric cancer in preclinical models. Am. J. Cancer Res. 2018, 8, 106–119. [Google Scholar] [PubMed]
- Jung, M.; Yang, Y.; McCloskey, J.E.; Zaman, M.; Vedvyas, Y.; Zhang, X.; Stefanova, D.; Gray, K.D.; Min, I.M.; Zarnegar, R.; et al. Chimeric Antigen Receptor T Cell Therapy Targeting ICAM-1 in Gastric Cancer. Mol. Ther. Oncolytics 2020, 18, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Liu, M.; Huang, J.; Zhou, J.; Li, J.; Lian, H.; Huang, W.; Guo, Y.; Yang, S.; Lin, L.; et al. Development of mesothelin-specific CAR NK-92 cells for the treatment of gastric cancer. Int. J. Biol. Sci. 2021, 17, 3850–3861. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, D.; Hao, X.Q.; Zhu, M.Y.; Zhang, C.D.; Zhou, D.M.; Wang, J.H.; Liu, R.X.; Wang, Y.L.; Gu, W.Z.; et al. A recombinant measles virus vaccine strain rMV-Hu191 has oncolytic effect against human gastric cancer by inducing apoptotic cell death requiring integrity of lipid raft microdomains. Cancer Lett. 2019, 460, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Cui, Y.; Zheng, Y.; Li, S.; Lv, J.; Wu, Q.; Long, Y.; Wang, S.; Yao, Y.; Wei, W.; et al. Human Hyaluronidase PH20 Potentiates the Antitumor Activities of Mesothelin-Specific CAR-T Cells Against Gastric Cancer. Front. Immunol. 2021, 12, 660488. [Google Scholar] [CrossRef] [PubMed]
- Tao, K.; He, M.; Tao, F.; Xu, G.; Ye, M.; Zheng, Y.; Li, Y. Development of NKG2D-based chimeric antigen receptor-T cells for gastric cancer treatment. Cancer Chemother. Pharmacol. 2018, 82, 815–827. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Jia, L.; Zhang, M.; Huang, X.; Qian, P.; Tang, Q.; Zhu, J.; Feng, Z. The killing effect of novel bi-specific Trop2/PD-L1 CAR-T cell targeted gastric cancer. Am. J. Cancer Res. 2019, 9, 1846–1856. [Google Scholar]
- Zhan, X.; Wang, B.; Li, Z.; Li, J.; Wang, H.; Chen, L.; Jiang, H.; Wu, M.; Xiao, J.; Peng, X.; et al. Phase I trial of Claudin 18.2-specific chimeric antigen receptor T cells for advanced gastric and pancreatic adenocarcinoma. J. Clin. Oncol. 2019, 37, 2509. [Google Scholar] [CrossRef]
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
- Budi, H.S.; Ahmad, F.N.; Achmad, H.; Ansari, M.J.; Mikhailova, M.V.; Suksatan, W.; Chupradit, S.; Shomali, N.; Marofi, F. Human epidermal growth factor receptor 2 (HER2)-specific chimeric antigen receptor (CAR) for tumor immunotherapy; recent progress. Stem Cell Res. Ther. 2022, 13, 40. [Google Scholar] [CrossRef]
- Vu, T.; Claret, F.X. Trastuzumab: Updated mechanisms of action and resistance in breast cancer. Front. Oncol. 2012, 2, 62. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef] [PubMed]
- Nicolazzi, M.A.; Carnicelli, A.; Fuorlo, M.; Scaldaferri, A.; Masetti, R.; Landolfi, R.; Favuzzi, A.M.R. Anthracycline and trastuzumab-induced cardiotoxicity in breast cancer. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2175–2185. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Tong, C.; Wang, Y.; Gao, Y.; Dai, H.; Guo, Y.; Zhao, X.; Wang, Y.; Wang, Z.; Han, W.; et al. Effective and persistent antitumor activity of HER2-directed CAR-T cells against gastric cancer cells in vitro and xenotransplanted tumors in vivo. Protein Cell 2018, 9, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Priceman, S.J.; Tilakawardane, D.; Jeang, B.; Aguilar, B.; Murad, J.P.; Park, A.K.; Chang, W.C.; Ostberg, J.R.; Neman, J.; Jandial, R.; et al. Regional Delivery of Chimeric Antigen Receptor-Engineered T Cells Effectively Targets HER2(+) Breast Cancer Metastasis to the Brain. Clin. Cancer Res. 2018, 24, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Feng, K.; Liu, Y.; Guo, Y.; Qiu, J.; Wu, Z.; Dai, H.; Yang, Q.; Wang, Y.; Han, W. Phase I study of chimeric antigen receptor modified T cells in treating HER2-positive advanced biliary tract cancers and pancreatic cancers. Protein Cell 2018, 9, 838–847. [Google Scholar] [CrossRef]
- Hegde, M.; Joseph, S.K.; Pashankar, F.; DeRenzo, C.; Sanber, K.; Navai, S.; Byrd, T.T.; Hicks, J.; Xu, M.L.; Gerken, C.; et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 2020, 11, 3549. [Google Scholar] [CrossRef]
- Klampatsa, A.; Dimou, V.; Albelda, S.M. Mesothelin-targeted CAR-T cell therapy for solid tumors. Expert. Opin. Biol. Ther. 2021, 21, 473–486. [Google Scholar] [CrossRef]
- Haas, A.R.; Tanyi, J.L.; O’Hara, M.H.; Gladney, W.L.; Lacey, S.F.; Torigian, D.A.; Soulen, M.C.; Tian, L.; McGarvey, M.; Nelson, A.M.; et al. Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers. Mol. Ther. 2019, 27, 1919–1929. [Google Scholar] [CrossRef]
- Adusumilli, P.S.; Zauderer, M.G.; Riviere, I.; Solomon, S.B.; Rusch, V.W.; O’Cearbhaill, R.E.; Zhu, A.; Cheema, W.; Chintala, N.K.; Halton, E.; et al. A Phase I Trial of Regional Mesothelin-Targeted CAR T-cell Therapy in Patients with Malignant Pleural Disease, in Combination with the Anti-PD-1 Agent Pembrolizumab. Cancer Discov. 2021, 11, 2748–2763. [Google Scholar] [CrossRef]
- Ding, H.; Yang, X.; Wei, Y. Fusion Proteins of NKG2D/NKG2DL in Cancer Immunotherapy. Int. J. Mol. Sci. 2018, 19, 177. [Google Scholar] [CrossRef]
- Lanier, L.L. NKG2D Receptor and Its Ligands in Host Defense. Cancer Immunol. Res. 2015, 3, 575–582. [Google Scholar] [CrossRef]
- Weber, J.S.; D’Angelo, S.P.; Minor, D.; Hodi, F.S.; Gutzmer, R.; Neyns, B.; Hoeller, C.; Khushalani, N.I.; Miller, W.H., Jr.; Lao, C.D.; et al. Nivolumab versus chemotherapy in patients with advanced melanoma who progressed after anti-CTLA-4 treatment (CheckMate 037): A randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2015, 16, 375–384. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Li, W.; Yu, X.; Flores-Villanueva, P.; Xu-Monette, Z.Y.; Li, L.; Zhang, M.; Young, K.H.; Ma, X.; et al. Targeting PD-L1 in non-small cell lung cancer using CAR T cells. Oncogenesis 2020, 9, 72. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhao, R.; Chen, D.; Wei, X.; Wu, Q.; Long, Y.; Jiang, Z.; Li, Y.; Wu, H.; Zhang, X.; et al. Chimeric antigen receptor T cells targeting PD-L1 suppress tumor growth. Biomark. Res. 2020, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Fabian, K.P.; Padget, M.R.; Donahue, R.N.; Solocinski, K.; Robbins, Y.; Allen, C.T.; Lee, J.H.; Rabizadeh, S.; Soon-Shiong, P.; Schlom, J.; et al. PD-L1 targeting high-affinity NK (t-haNK) cells induce direct antitumor effects and target suppressive MDSC populations. J. Immunother. Cancer 2020, 8, e000450. [Google Scholar] [CrossRef]
- Bajor, M.; Graczyk-Jarzynka, A.; Marhelava, K.; Burdzinska, A.; Muchowicz, A.; Goral, A.; Zhylko, A.; Soroczynska, K.; Retecki, K.; Krawczyk, M.; et al. PD-L1 CAR effector cells induce self-amplifying cytotoxic effects against target cells. J. Immunother. Cancer 2022, 10, e002500. [Google Scholar] [CrossRef]
- Maher, J.; Davies, D.M. CAR Based Immunotherapy of Solid Tumours-A Clinically Based Review of Target Antigens. Biology 2023, 12, 287. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.; Barak, V.; van Dalen, A.; Duffy, M.J.; Einarsson, R.; Gion, M.; Goike, H.; Lamerz, R.; Nap, M.; Soletormos, G.; et al. Tumor markers in breast cancer- European Group on Tumor Markers recommendations. Tumour Biol. 2005, 26, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Cha, S.E.; Kujawski, M.J.; Yazaki, P.; Brown, C.; Shively, J.E. Tumor regression and immunity in combination therapy with anti-CEA chimeric antigen receptor T cells and anti-CEA-IL2 immunocytokine. Oncoimmunology 2021, 10, 1899469. [Google Scholar] [CrossRef] [PubMed]
- Ordonez, C.; Screaton, R.A.; Ilantzis, C.; Stanners, C.P. Human carcinoembryonic antigen functions as a general inhibitor of anoikis. Cancer Res. 2000, 60, 3419–3424. [Google Scholar] [PubMed]
- Wong, J.Y.; Williams, L.E.; Yamauchi, D.M.; Odom-Maryon, T.; Esteban, J.M.; Neumaier, M.; Wu, A.M.; Johnson, D.K.; Primus, F.J.; Shively, J.E.; et al. Initial experience evaluating 90yttrium-radiolabeled anti-carcinoembryonic antigen chimeric T84.66 in a phase I radioimmunotherapy trial. Cancer Res. 1995, 55, 5929s–5934s. [Google Scholar]
- Primus, F.J.; Newell, K.D.; Blue, A.; Goldenberg, D.M. Immunological heterogeneity of carcinoembryonic antigen: Antigenic determinants on carcinoembryonic antigen distinguished by monoclonal antibodies. Cancer Res. 1983, 43, 686–692. [Google Scholar]
- Lonberg, N.; Taylor, L.D.; Harding, F.A.; Trounstine, M.; Higgins, K.M.; Schramm, S.R.; Kuo, C.C.; Mashayekh, R.; Wymore, K.; McCabe, J.G.; et al. Antigen-specific human antibodies from mice comprising four distinct genetic modifications. Nature 1994, 368, 856–859. [Google Scholar] [CrossRef]
- Fesnak, A.D.; June, C.H.; Levine, B.L. Engineered T cells: The promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 2016, 16, 566–581. [Google Scholar] [CrossRef] [PubMed]
- Katz, S.C.; Burga, R.A.; McCormack, E.; Wang, L.J.; Mooring, W.; Point, G.R.; Khare, P.D.; Thorn, M.; Ma, Q.; Stainken, B.F.; et al. Phase I Hepatic Immunotherapy for Metastases Study of Intra-Arterial Chimeric Antigen Receptor-Modified T-cell Therapy for CEA+ Liver Metastases. Clin. Cancer Res. 2015, 21, 3149–3159. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Wang, H. Use of immunotherapy in the treatment of gastric cancer. Oncol. Lett. 2019, 18, 5681–5690. [Google Scholar] [CrossRef]
- Thistlethwaite, F.C.; Gilham, D.E.; Guest, R.D.; Rothwell, D.G.; Pillai, M.; Burt, D.J.; Byatte, A.J.; Kirillova, N.; Valle, J.W.; Sharma, S.K.; et al. The clinical efficacy of first-generation carcinoembryonic antigen (CEACAM5)-specific CAR T cells is limited by poor persistence and transient pre-conditioning-dependent respiratory toxicity. Cancer Immunol. Immunother. 2017, 66, 1425–1436. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Liu, Y.; Han, W. New development in CAR-T cell therapy. J. Hematol. Oncol. 2017, 10, 53. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, L.; Gordon, L.I.; Lunning, M.; Arnason, J.; Forero-Torres, A.; Albertson, T.M.; Exton, V.S.; Sutherland, C.; Xie, B.; et al. Transcend NHL 001: Immunotherapy with the CD19-Directed CAR T-Cell Product JCAR017 Results in High Complete Response Rates in Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma. Blood 2016, 128, 4192. [Google Scholar] [CrossRef]
- Park, A.K.; Fong, Y.; Kim, S.I.; Yang, J.; Murad, J.P.; Lu, J.; Jeang, B.; Chang, W.C.; Chen, N.G.; Thomas, S.H.; et al. Effective combination immunotherapy using oncolytic viruses to deliver CAR targets to solid tumors. Sci. Transl. Med. 2020, 12, eaaz1863. [Google Scholar] [CrossRef]
- Cordeiro, A.; Bezerra, E.D.; Hirayama, A.V.; Hill, J.A.; Wu, Q.V.; Voutsinas, J.; Sorror, M.L.; Turtle, C.J.; Maloney, D.G.; Bar, M. Late Events after Treatment with CD19-Targeted Chimeric Antigen Receptor Modified T Cells. Biol. Blood Marrow Transplant. 2020, 26, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, F.; Li, Z.; Gao, H.; Zhang, C.; Du, T.; Li, Z.; Song, Y.; Zhu, J.; Ying, Z. Successful treatment of a case with synchronous follicular lymphoma and gastric adenocarcinoma with CD19 CAR T cells and literature review. J. Clin. Pharm. Ther. 2022, 47, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Yuan, F.; Fu, C.; Shen, G.; Hu, S.; Shen, G. Relationship between epithelial cell adhesion molecule (EpCAM) overexpression and gastric cancer patients: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0175357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.L.; Li, D.; Gong, Y.L.; Huang, Y.; Qin, D.Y.; Jiang, L.; Liang, X.; Yang, X.; Gou, H.F.; Wang, Y.S.; et al. Preclinical Evaluation of Chimeric Antigen Receptor-Modified T Cells Specific to Epithelial Cell Adhesion Molecule for Treating Colorectal Cancer. Hum. Gene Ther. 2019, 30, 402–412. [Google Scholar] [CrossRef]
- Xu, T.; Karschnia, P.; Cadilha, B.L.; Dede, S.; Lorenz, M.; Seewaldt, N.; Nikolaishvili, E.; Muller, K.; Blobner, J.; Teske, N.; et al. In vivo dynamics and anti-tumor effects of EpCAM-directed CAR T-cells against brain metastases from lung cancer. Oncoimmunology 2023, 12, 2163781. [Google Scholar] [CrossRef]
- Yang, Y.; McCloskey, J.E.; Yang, H.; Puc, J.; Alcaina, Y.; Vedvyas, Y.; Gomez Gallegos, A.A.; Ortiz-Sanchez, E.; de Stanchina, E.; Min, I.M.; et al. Bispecific CAR T Cells against EpCAM and Inducible ICAM-1 Overcome Antigen Heterogeneity and Generate Superior Antitumor Responses. Cancer Immunol. Res. 2021, 9, 1158–1174. [Google Scholar] [CrossRef] [PubMed]
- Filella, X.; Fuster, J.; Molina, R.; Grau, J.J.; Garcia-Valdecasas, J.C.; Grande, L.; Estape, J.; Ballesta, A.M. TAG-72, CA 19.9 and CEA as tumor markers in gastric cancer. Acta Oncol. 1994, 33, 747–751. [Google Scholar] [CrossRef]
- Qin, D.; Li, D.; Zhang, B.; Chen, Y.; Liao, X.; Li, X.; Alexander, P.B.; Wang, Y.; Li, Q.J. Potential lung attack and lethality generated by EpCAM-specific CAR-T cells in immunocompetent mouse models. Oncoimmunology 2020, 9, 1806009. [Google Scholar] [CrossRef]
- Hattrup, C.L.; Gendler, S.J. MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Res. 2006, 8, R37. [Google Scholar] [CrossRef]
- Morioka, K.; Tanikawa, C.; Ochi, K.; Daigo, Y.; Katagiri, T.; Kawano, H.; Kawaguchi, H.; Myoui, A.; Yoshikawa, H.; Naka, N.; et al. Orphan receptor tyrosine kinase ROR2 as a potential therapeutic target for osteosarcoma. Cancer Sci. 2009, 100, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Murad, J.P.; Kozlowska, A.K.; Lee, H.J.; Ramamurthy, M.; Chang, W.C.; Yazaki, P.; Colcher, D.; Shively, J.; Cristea, M.; Forman, S.J.; et al. Effective Targeting of TAG72(+) Peritoneal Ovarian Tumors via Regional Delivery of CAR-Engineered T Cells. Front. Immunol. 2018, 9, 2268. [Google Scholar] [CrossRef] [PubMed]
- Newick, K.; O’Brien, S.; Moon, E.; Albelda, S.M. CAR T Cell Therapy for Solid Tumors. Annu. Rev. Med. 2017, 68, 139–152. [Google Scholar] [CrossRef]
- Marofi, F.; Motavalli, R.; Safonov, V.A.; Thangavelu, L.; Yumashev, A.V.; Alexander, M.; Shomali, N.; Chartrand, M.S.; Pathak, Y.; Jarahian, M.; et al. CAR T cells in solid tumors: Challenges and opportunities. Stem Cell Res. Ther. 2021, 12, 81. [Google Scholar] [CrossRef]
- Morgan, R.A.; Yang, J.C.; Kitano, M.; Dudley, M.E.; Laurencot, C.M.; Rosenberg, S.A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 2010, 18, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Richman, S.A.; Nunez-Cruz, S.; Moghimi, B.; Li, L.Z.; Gershenson, Z.T.; Mourelatos, Z.; Barrett, D.M.; Grupp, S.A.; Milone, M.C. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model. Cancer Immunol. Res. 2018, 6, 36–46. [Google Scholar] [CrossRef]
- Yang, J.; Yan, J.; Liu, B. Targeting VEGF/VEGFR to Modulate Antitumor Immunity. Front. Immunol. 2018, 9, 978. [Google Scholar] [CrossRef]
- Ager, A. High Endothelial Venules and Other Blood Vessels: Critical Regulators of Lymphoid Organ Development and Function. Front. Immunol. 2017, 8, 45. [Google Scholar] [CrossRef]
- Mortezaee, K. Immune escape: A critical hallmark in solid tumors. Life Sci. 2020, 258, 118110. [Google Scholar] [CrossRef]
- Martinez, M.; Moon, E.K. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front. Immunol. 2019, 10, 128. [Google Scholar] [CrossRef] [PubMed]
- Akbari, P.; Katsarou, A.; Daghighian, R.; van Mil, L.; Huijbers, E.J.M.; Griffioen, A.W.; van Beijnum, J.R. Directing CAR T cells towards the tumor vasculature for the treatment of solid tumors. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188701. [Google Scholar] [CrossRef] [PubMed]
- Oliver, A.J.; Lau, P.K.H.; Unsworth, A.S.; Loi, S.; Darcy, P.K.; Kershaw, M.H.; Slaney, C.Y. Tissue-Dependent Tumor Microenvironments and Their Impact on Immunotherapy Responses. Front. Immunol. 2018, 9, 70. [Google Scholar] [CrossRef]
- Renner, K.; Singer, K.; Koehl, G.E.; Geissler, E.K.; Peter, K.; Siska, P.J.; Kreutz, M. Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Front. Immunol. 2017, 8, 248. [Google Scholar] [CrossRef]
- Quail, D.F.; Joyce, J.A. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 2013, 19, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- Wherry, E.J.; Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 2015, 15, 486–499. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Kelly, E.; Russell, S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 2007, 15, 651–659. [Google Scholar] [CrossRef]
- Bang, F.B.; Gey, G.O. Viruses and cells—A study in tissue culture applications. Trans. N. Y. Acad. Sci. 1951, 13, 324–327. [Google Scholar] [CrossRef]
- Matumoto, M. Multiplication of measles virus in cell cultures. Bacteriol. Rev. 1966, 30, 152–176. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Gu, X.; Yu, J.; Ge, S.; Fan, X. Oncolytic Virotherapy: From Bench to Bedside. Front. Cell Dev. Biol. 2021, 9, 790150. [Google Scholar] [CrossRef] [PubMed]
- Harrington, K.; Freeman, D.J.; Kelly, B.; Harper, J.; Soria, J.C. Optimizing oncolytic virotherapy in cancer treatment. Nat. Rev. Drug Discov. 2019, 18, 689–706. [Google Scholar] [CrossRef] [PubMed]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Gholami, S.; Marano, A.; Chen, N.G.; Aguilar, R.J.; Frentzen, A.; Chen, C.H.; Lou, E.; Fujisawa, S.; Eveno, C.; Belin, L.; et al. A novel vaccinia virus with dual oncolytic and anti-angiogenic therapeutic effects against triple-negative breast cancer. Breast Cancer Res. Treat. 2014, 148, 489–499. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Yoo, J.K.; Kim, T.S.; Hufford, M.M.; Braciale, T.J. Viral infection of the lung: Host response and sequelae. J. Allergy Clin. Immunol. 2013, 132, 1263–1276, quiz 1277. [Google Scholar] [CrossRef]
- Kato, K.; Omura, H.; Ishitani, R.; Nureki, O. Cyclic GMP-AMP as an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA. Annu. Rev. Biochem. 2017, 86, 541–566. [Google Scholar] [CrossRef]
- Ma, W.; He, H.; Wang, H. Oncolytic herpes simplex virus and immunotherapy. BMC Immunol. 2018, 19, 40. [Google Scholar] [CrossRef]
- Bennett, J.J.; Kooby, D.A.; Delman, K.; McAuliffe, P.; Halterman, M.W.; Federoff, H.; Fong, Y. Antitumor efficacy of regional oncolytic viral therapy for peritoneally disseminated cancer. J. Mol. Med. 2000, 78, 166–174. [Google Scholar] [CrossRef]
- Deguchi, T.; Shikano, T.; Kasuya, H.; Nawa, A.; Fujiwara, S.; Takeda, S.; Gewen, T.; Sahin, T.T.; Yamada, S.; Kanzaki, A.; et al. Combination of the tumor angiogenesis inhibitor bevacizumab and intratumoral oncolytic herpes virus injections as a treatment strategy for human gastric cancers. Hepatogastroenterology 2012, 59, 1844–1850. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.J.; Delman, K.A.; Burt, B.M.; Mariotti, A.; Malhotra, S.; Zager, J.; Petrowsky, H.; Mastorides, S.; Federoff, H.; Fong, Y. Comparison of safety, delivery, and efficacy of two oncolytic herpes viruses (G207 and NV1020) for peritoneal cancer. Cancer Gene Ther. 2002, 9, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K.; Todo, T.; Zhao, G.; Yamaguchi, K.; Kuroki, S.; Cohen, J.B.; Glorioso, J.C.; Tanaka, M. Enhanced efficacy of conditionally replicating herpes simplex virus (G207) combined with 5-fluorouracil and surgical resection in peritoneal cancer dissemination models. J. Gene Med. 2005, 7, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Stanziale, S.F.; Stiles, B.M.; Bhargava, A.; Kerns, S.A.; Kalakonda, N.; Fong, Y. Oncolytic herpes simplex virus-1 mutant expressing green fluorescent protein can detect and treat peritoneal cancer. Hum. Gene Ther. 2004, 15, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Dai, S.; Zhu, H.; Song, Z.; Cai, Y.; Lee, J.B.; Li, Z.; Hu, X.; Fang, B.; He, C.; et al. Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer. Gene Ther. 2017, 24, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Haley, E.S.; Au, G.G.; Carlton, B.R.; Barry, R.D.; Shafren, D.R. Regional administration of oncolytic Echovirus 1 as a novel therapy for the peritoneal dissemination of gastric cancer. J. Mol. Med. 2009, 87, 385–399. [Google Scholar] [CrossRef] [PubMed]
- Jun, K.H.; Gholami, S.; Song, T.J.; Au, J.; Haddad, D.; Carson, J.; Chen, C.H.; Mojica, K.; Zanzonico, P.; Chen, N.G.; et al. A novel oncolytic viral therapy and imaging technique for gastric cancer using a genetically engineered vaccinia virus carrying the human sodium iodide symporter. J. Exp. Clin. Cancer Res. 2014, 33, 2. [Google Scholar] [CrossRef]
- Sugawara, K.; Iwai, M.; Yajima, S.; Tanaka, M.; Yanagihara, K.; Seto, Y.; Todo, T. Efficacy of a Third-Generation Oncolytic Herpes Virus G47Delta in Advanced Stage Models of Human Gastric Cancer. Mol. Ther. Oncolytics 2020, 17, 205–215. [Google Scholar] [CrossRef]
- Zeng, D.; Zhang, T.; Zhou, S.; Hu, H.; Li, J.; Huang, K.; Lei, Y.; Wang, K.; Zhao, Y.; Liu, R.; et al. Proteomic analyses of gastric cancer cells treated with vesicular stomatitis virus matrix protein. Protein J. 2011, 30, 308–317. [Google Scholar] [CrossRef]
- Sui, H.; Wang, K.; Xie, R.; Li, X.; Li, K.; Bai, Y.; Wang, X.; Bai, B.; Chen, D.; Li, J.; et al. NDV-D90 suppresses growth of gastric cancer and cancer-related vascularization. Oncotarget 2017, 8, 34516–34524. [Google Scholar] [CrossRef]
- Song, K.Y.; Wong, J.; Gonzalez, L.; Sheng, G.; Zamarin, D.; Fong, Y. Antitumor efficacy of viral therapy using genetically engineered Newcastle disease virus [NDV(F3aa)-GFP] for peritoneally disseminated gastric cancer. J. Mol. Med. 2010, 88, 589–596. [Google Scholar] [CrossRef]
- Matsumura, S.; Nakamori, M.; Tsuji, T.; Kato, T.; Nakamura, M.; Ojima, T.; Fukuhara, H.; Ino, Y.; Todo, T.; Yamaue, H. Oncolytic virotherapy with SOCS3 enhances viral replicative potency and oncolysis for gastric cancer. Oncotarget 2021, 12, 344–354. [Google Scholar] [CrossRef]
- Tsuji, T.; Nakamori, M.; Iwahashi, M.; Nakamura, M.; Ojima, T.; Iida, T.; Katsuda, M.; Hayata, K.; Ino, Y.; Todo, T.; et al. An armed oncolytic herpes simplex virus expressing thrombospondin-1 has an enhanced in vivo antitumor effect against human gastric cancer. Int. J. Cancer 2013, 132, 485–494. [Google Scholar] [CrossRef]
- Yano, S.; Tazawa, H.; Hashimoto, Y.; Shirakawa, Y.; Kuroda, S.; Nishizaki, M.; Kishimoto, H.; Uno, F.; Nagasaka, T.; Urata, Y.; et al. A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases. Clin. Cancer Res. 2013, 19, 6495–6505. [Google Scholar] [CrossRef]
- Ishikawa, W.; Kikuchi, S.; Ogawa, T.; Tabuchi, M.; Tazawa, H.; Kuroda, S.; Noma, K.; Nishizaki, M.; Kagawa, S.; Urata, Y.; et al. Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer. Mol. Ther. Oncolytics 2020, 18, 262–271. [Google Scholar] [CrossRef]
- Xu, H.; Shen, Z.; Xiao, J.; Yang, Y.; Huang, W.; Zhou, Z.; Shen, J.; Zhu, Y.; Liu, X.Y.; Chu, L. Acetylcholinesterase overexpression mediated by oncolytic adenovirus exhibited potent anti-tumor effect. BMC Cancer 2014, 14, 668. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhang, C.D.; Wang, Y.L.; Zhou, D.M.; Zhu, M.Y.; Hao, X.Q.; Wang, J.H.; Gu, W.Z.; Shen, H.Q.; Lou, J.G.; et al. Synergism of rMV-Hu191 with cisplatin to treat gastric cancer by acid sphingomyelinase-mediated apoptosis requiring integrity of lipid raft microdomains. Gastric Cancer 2021, 24, 1293–1306. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, K.; Etoh, T.; Suzuki, K.; Mitui, M.T.; Nishizono, A.; Shiraishi, N.; Kitano, S. Efficacy of oncolytic reovirus against human gastric cancer with peritoneal metastasis in experimental animal model. Int. J. Oncol. 2010, 37, 1433–1438. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.R.; Koh, S.S.; Min, H.J.; Park, E.H.; Srisuttee, R.; Jhun, B.H.; Kang, C.D.; Kim, M.; Johnston, R.N.; Chung, Y.H. Reovirus infection induces apoptosis of TRAIL-resistant gastric cancer cells by down-regulation of Akt activation. Int. J. Oncol. 2010, 36, 1023–1030. [Google Scholar]
- Gallardo, J.; Perez-Illana, M.; Martin-Gonzalez, N.; San Martin, C. Adenovirus Structure: What Is New? Int. J. Mol. Sci. 2021, 22, 5240. [Google Scholar] [CrossRef]
- Mantwill, K.; Klein, F.G.; Wang, D.; Hindupur, S.V.; Ehrenfeld, M.; Holm, P.S.; Nawroth, R. Concepts in Oncolytic Adenovirus Therapy. Int. J. Mol. Sci. 2021, 22, 522. [Google Scholar] [CrossRef]
- Alemany, R. Chapter four—Design of improved oncolytic adenoviruses. Adv. Cancer Res. 2012, 115, 93–114. [Google Scholar] [CrossRef] [PubMed]
- Garber, K. China approves world’s first oncolytic virus therapy for cancer treatment. J. Natl. Cancer Inst. 2006, 98, 298–300. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Z.; Li, L.; Wu, J.; Zhang, H.; Zhang, H.; Lei, T.; Xu, B. Oncolytic Adenovirus: Prospects for Cancer Immunotherapy. Front. Microbiol. 2021, 12, 707290. [Google Scholar] [CrossRef]
- Johnstone, R.W.; Frew, A.J.; Smyth, M.J. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 2008, 8, 782–798. [Google Scholar] [CrossRef] [PubMed]
- Ganar, K.; Das, M.; Sinha, S.; Kumar, S. Newcastle disease virus: Current status and our understanding. Virus Res. 2014, 184, 71–81. [Google Scholar] [CrossRef]
- Peeples, M.E. Newcastle Disease Virus Replication. In Newcastle Disease; Alexander, D.J., Ed.; Springer: Boston, MA, USA, 1988; pp. 45–78. [Google Scholar]
- Thorne, S.H. Immunotherapeutic potential of oncolytic vaccinia virus. Front. Oncol. 2014, 4, 155. [Google Scholar] [CrossRef] [PubMed]
- Lauer, U.M.; Schell, M.; Beil, J.; Berchtold, S.; Koppenhofer, U.; Glatzle, J.; Konigsrainer, A.; Mohle, R.; Nann, D.; Fend, F.; et al. Phase I Study of Oncolytic Vaccinia Virus GL-ONC1 in Patients with Peritoneal Carcinomatosis. Clin. Cancer Res. 2018, 24, 4388–4398. [Google Scholar] [CrossRef] [PubMed]
- O’Leary, M.P.; Warner, S.G.; Kim, S.I.; Chaurasiya, S.; Lu, J.; Choi, A.H.; Park, A.K.; Woo, Y.; Fong, Y.; Chen, N.G. A Novel Oncolytic Chimeric Orthopoxvirus Encoding Luciferase Enables Real-Time View of Colorectal Cancer Cell Infection. Mol. Ther. Oncolytics 2018, 9, 13–21. [Google Scholar] [CrossRef]
- Woo, Y.; Zhang, Z.; Yang, A.; Chaurasiya, S.; Park, A.K.; Lu, J.; Kim, S.I.; Warner, S.G.; Von Hoff, D.; Fong, Y. Novel Chimeric Immuno-Oncolytic Virus CF33-hNIS-antiPDL1 for the Treatment of Pancreatic Cancer. J. Am. Coll. Surg. 2020, 230, 709–717. [Google Scholar] [CrossRef]
- Chaurasiya, S.; Yang, A.; Kang, S.; Lu, J.; Kim, S.I.; Park, A.K.; Sivanandam, V.; Zhang, Z.; Woo, Y.; Warner, S.G.; et al. Oncolytic poxvirus CF33-hNIS-DeltaF14.5 favorably modulates tumor immune microenvironment and works synergistically with anti-PD-L1 antibody in a triple-negative breast cancer model. Oncoimmunology 2020, 9, 1729300. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, A.; Chaurasiya, S.; Park, A.K.; Lu, J.; Kim, S.I.; Warner, S.G.; Yuan, Y.C.; Liu, Z.; Han, H.; et al. CF33-hNIS-antiPDL1 virus primes pancreatic ductal adenocarcinoma for enhanced anti-PD-L1 therapy. Cancer Gene Ther. 2022, 29, 722–733. [Google Scholar] [CrossRef]
- Yang, A.; Zhang, Z.; Chaurasiya, S.; Park, A.K.; Jung, A.; Lu, J.; Kim, S.I.; Priceman, S.; Fong, Y.; Woo, Y. Development of the oncolytic virus, CF33, and its derivatives for peritoneal-directed treatment of gastric cancer peritoneal metastases. J. Immunother. Cancer 2023, 11, e006280. [Google Scholar] [CrossRef]
- Engeland, C.E.; Ungerechts, G. Measles Virus as an Oncolytic Immunotherapy. Cancers 2021, 13, 544. [Google Scholar] [CrossRef]
- Bach, P.; Abel, T.; Hoffmann, C.; Gal, Z.; Braun, G.; Voelker, I.; Ball, C.R.; Johnston, I.C.; Lauer, U.M.; Herold-Mende, C.; et al. Specific elimination of CD133+ tumor cells with targeted oncolytic measles virus. Cancer Res. 2013, 73, 865–874. [Google Scholar] [CrossRef] [PubMed]
- Dermody, T.; Parker, J.; Sherry, B. Orthoreoviruses. In Fields Virology, 6th ed.; Knipe, D.M., Howley, P.M., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 2, pp. 1304–1346. [Google Scholar]
- Maitra, R.; Ghalib, M.H.; Goel, S. Reovirus: A targeted therapeutic—Progress and potential. Mol. Cancer Res. 2012, 10, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Gujar, S.A.; Marcato, P.; Pan, D.; Lee, P.W. Reovirus virotherapy overrides tumor antigen presentation evasion and promotes protective antitumor immunity. Mol. Cancer Ther. 2010, 9, 2924–2933. [Google Scholar] [CrossRef]
- Hamano, S.; Mori, Y.; Aoyama, M.; Kataoka, H.; Tanaka, M.; Ebi, M.; Kubota, E.; Mizoshita, T.; Tanida, S.; Johnston, R.N.; et al. Oncolytic reovirus combined with trastuzumab enhances antitumor efficacy through TRAIL signaling in human HER2-positive gastric cancer cells. Cancer Lett. 2015, 356, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Muller, L.; Berkeley, R.; Barr, T.; Ilett, E.; Errington-Mais, F. Past, Present and Future of Oncolytic Reovirus. Cancers 2020, 12, 3219. [Google Scholar] [CrossRef] [PubMed]
- Melzer, M.K.; Lopez-Martinez, A.; Altomonte, J. Oncolytic Vesicular Stomatitis Virus as a Viro-Immunotherapy: Defeating Cancer with a “Hammer” and “Anvil”. Biomedicines 2017, 5, 8. [Google Scholar] [CrossRef]
- Connor, J.H.; Naczki, C.; Koumenis, C.; Lyles, D.S. Replication and cytopathic effect of oncolytic vesicular stomatitis virus in hypoxic tumor cells in vitro and in vivo. J. Virol. 2004, 78, 8960–8970. [Google Scholar] [CrossRef]
- Zhou, Y.; Wen, F.; Zhang, P.; Tang, R.; Li, Q. Vesicular stomatitis virus is a potent agent for the treatment of malignant ascites. Oncol. Rep. 2016, 35, 1573–1581. [Google Scholar] [CrossRef]
- Martin, N.T.; Bell, J.C. Oncolytic Virus Combination Therapy: Killing One Bird with Two Stones. Mol. Ther. 2018, 26, 1414–1422. [Google Scholar] [CrossRef]
- Mondal, M.; Guo, J.; He, P.; Zhou, D. Recent advances of oncolytic virus in cancer therapy. Hum. Vaccines Immunother. 2020, 16, 2389–2402. [Google Scholar] [CrossRef]
- Pikor, L.A.; Bell, J.C.; Diallo, J.S. Oncolytic Viruses: Exploiting Cancer’s Deal with the Devil. Trends Cancer 2015, 1, 266–277. [Google Scholar] [CrossRef] [PubMed]
- DeRenzo, C.; Gottschalk, S. Genetic Modification Strategies to Enhance CAR T Cell Persistence for Patients With Solid Tumors. Front. Immunol. 2019, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Labarta-Bajo, L.; Nilsen, S.P.; Humphrey, G.; Schwartz, T.; Sanders, K.; Swafford, A.; Knight, R.; Turner, J.R.; Zuniga, E.I. Type I IFNs and CD8 T cells increase intestinal barrier permeability after chronic viral infection. J. Exp. Med. 2020, 217, e20192276. [Google Scholar] [CrossRef] [PubMed]
- Cerullo, V.; Koski, A.; Vaha-Koskela, M.; Hemminki, A. Chapter eight—Oncolytic adenoviruses for cancer immunotherapy: Data from mice, hamsters, and humans. Adv. Cancer Res. 2012, 115, 265–318. [Google Scholar] [CrossRef] [PubMed]
- Jahan, N.; Lee, J.M.; Shah, K.; Wakimoto, H. Therapeutic targeting of chemoresistant and recurrent glioblastoma stem cells with a proapoptotic variant of oncolytic herpes simplex virus. Int. J. Cancer 2017, 141, 1671–1681. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.D.; Galluzzi, L.; Apetoh, L.; Baert, T.; Birge, R.B.; Bravo-San Pedro, J.M.; Breckpot, K.; Brough, D.; Chaurio, R.; Cirone, M.; et al. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Front. Immunol. 2015, 6, 588. [Google Scholar] [CrossRef]
- Ahmed, A.; Tait, S.W.G. Targeting immunogenic cell death in cancer. Mol. Oncol. 2020, 14, 2994–3006. [Google Scholar] [CrossRef]
- Rezaei, R.; Esmaeili Gouvarchin Ghaleh, H.; Farzanehpour, M.; Dorostkar, R.; Ranjbar, R.; Bolandian, M.; Mirzaei Nodooshan, M.; Ghorbani Alvanegh, A. Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy. Cancer Gene Ther. 2022, 29, 647–660. [Google Scholar] [CrossRef]
- Fujiwara, T.; Urata, Y.; Tanaka, N. Telomerase-specific oncolytic virotherapy for human cancer with the hTERT promoter. Curr. Cancer Drug Targets 2007, 7, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, M.; Ren, F.; Meng, X.; Yu, J. The landscape of bispecific T cell engager in cancer treatment. Biomark. Res. 2021, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Einsele, H.; Borghaei, H.; Orlowski, R.Z.; Subklewe, M.; Roboz, G.J.; Zugmaier, G.; Kufer, P.; Iskander, K.; Kantarjian, H.M. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020, 126, 3192–3201. [Google Scholar] [CrossRef] [PubMed]
- Scott, E.M.; Duffy, M.R.; Freedman, J.D.; Fisher, K.D.; Seymour, L.W. Solid Tumor Immunotherapy with T Cell Engager-Armed Oncolytic Viruses. Macromol. Biosci. 2018, 18, 1700187. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gottschalk, S.; Song, X.-T. Synergistic Antitumor Effects of Chimeric Antigen Receptor-Modified T Cells and Oncolytic Virotherapy. Blood 2014, 124, 5808. [Google Scholar] [CrossRef]
- Porter, C.E.; Rosewell Shaw, A.; Jung, Y.; Yip, T.; Castro, P.D.; Sandulache, V.C.; Sikora, A.; Gottschalk, S.; Ittman, M.M.; Brenner, M.K.; et al. Oncolytic Adenovirus Armed with BiTE, Cytokine, and Checkpoint Inhibitor Enables CAR T Cells to Control the Growth of Heterogeneous Tumors. Mol. Ther. 2020, 28, 1251–1262. [Google Scholar] [CrossRef]
- Tang, X.; Li, Y.; Ma, J.; Wang, X.; Zhao, W.; Hossain, M.A.; Yang, Y. Adenovirus-mediated specific tumor tagging facilitates CAR-T therapy against antigen-mismatched solid tumors. Cancer Lett. 2020, 487, 1–9. [Google Scholar] [CrossRef]
- VanSeggelen, H.; Tantalo, D.G.; Afsahi, A.; Hammill, J.A.; Bramson, J.L. Chimeric antigen receptor-engineered T cells as oncolytic virus carriers. Mol. Ther. Oncolytics 2015, 2, 15014. [Google Scholar] [CrossRef]
- Watanabe, K.; Luo, Y.; Da, T.; Guedan, S.; Ruella, M.; Scholler, J.; Keith, B.; Young, R.M.; Engels, B.; Sorsa, S.; et al. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018, 3, e99573. [Google Scholar] [CrossRef]
- Nishio, N.; Diaconu, I.; Liu, H.; Cerullo, V.; Caruana, I.; Hoyos, V.; Bouchier-Hayes, L.; Savoldo, B.; Dotti, G. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res. 2014, 74, 5195–5205. [Google Scholar] [CrossRef] [PubMed]
- Rosewell Shaw, A.; Porter, C.E.; Watanabe, N.; Tanoue, K.; Sikora, A.; Gottschalk, S.; Brenner, M.K.; Suzuki, M. Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Mol. Ther. 2017, 25, 2440–2451. [Google Scholar] [CrossRef] [PubMed]
- Tanoue, K.; Rosewell Shaw, A.; Watanabe, N.; Porter, C.; Rana, B.; Gottschalk, S.; Brenner, M.; Suzuki, M. Armed Oncolytic Adenovirus-Expressing PD-L1 Mini-Body Enhances Antitumor Effects of Chimeric Antigen Receptor T Cells in Solid Tumors. Cancer Res. 2017, 77, 2040–2051. [Google Scholar] [CrossRef]
- Evgin, L.; Huff, A.L.; Wongthida, P.; Thompson, J.; Kottke, T.; Tonne, J.; Schuelke, M.; Ayasoufi, K.; Driscoll, C.B.; Shim, K.G.; et al. Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nat. Commun. 2020, 11, 3187. [Google Scholar] [CrossRef] [PubMed]
- Guedan, S.; Alemany, R. CAR-T Cells and Oncolytic Viruses: Joining Forces to Overcome the Solid Tumor Challenge. Front. Immunol. 2018, 9, 2460. [Google Scholar] [CrossRef]
- Rosewell Shaw, A.; Suzuki, M. Oncolytic Viruses Partner With T-Cell Therapy for Solid Tumor Treatment. Front. Immunol. 2018, 9, 2103. [Google Scholar] [CrossRef]
Author (Year) | Target | In Vitro | In Vivo | Dosing | Results |
---|---|---|---|---|---|
Chi et al. (2019) [32] | CEA | Human gastric (MGC803), pancreatic (AsPC1, BxPC3, PANC1), and colorectal (HT29) cancer cell lines | Xenograft subcutaneous gastric, pancreatic, and colorectal cancer nude mice models (n = 16 per cancer type, 4 cancers) 4 groups within cancer type: Control, control + rhIL-12 at days 7, 9, 12, 15, 19, and 25, CEA-CAR-T at day 7, CEA-CAR-T + rhIL-12 | In vitro: 2 × 104 CAR-T cells alone (2:1 effector:target ratio) 1 × 105 CAR-T cells in combination with rhIL-12 In vivo: 5 × 106 CAR-T cells IV day 0, 1 × 107 CAR-T cells IV 1500 U/mouse rhIL-12 |
|
Jiang et al. (2019) [31] | CLDN18.2 | Normal gastric (n = 24 types) and primary GC (n = 75 types) cell panels Patient-derived GC cells (GA0006, GA0060) | Xenograft and patient-derived xenograft (PDX) subcutaneous GC mice (n = 12 per model) 3 groups in cancer cell xenograft model (n = 6 per group): untransduced T cells, hu8E5-28Z CAR-T, hu8E5-2I-28Z CAR-T at tumor size 100 mm3 2 groups in PDX model (n = 6–7 per PDX model group): untransduced T cells, hu8E5-2I-28Z CAR-T cells at tumor size 100 mm3 | In vitro: 3:1, 1:1, and 1:3 effector:target ratio In vivo: 1 × 107 CAR-T cells IV |
|
Han et al. (2018) [33] | HER2 | Human GC cell lines (NCI-N87, HGC27, MKN45, BGC-823, MKN28), ovarian cancer cell line (SKOV3) | Xenograft subcutaneous GC and intraperitoneal GCPC NSG mice models (n = 12 per model) 2 groups per model (n = 6 per group): chA21-4-1BBz CAR-T, untransduced T cells | In vitro: 1:1, 3:1, 10:1, 30:1 effector:target ratio In vivo: Subcutaneous GC—1 × 107 CAR-T cells at days 40 and 45 after tumor inoculation GCPC—3 × 106 CAR-T on day 0 and 1 × 107 CAR-T cells IP on day 7 and day 10 |
|
Jung et al. (2020) [34] | ICAM | Human GC cell lines (SNU719, NCC24, SNU638, SNU1, SNU5, SNU601, MKN28, Hs746t) | Xenograft systemic and GCPC NSG mice models Systemic (n = 4–6 per group): No T, NT, ICAM-1 CAR-T at day 8 after tumor inoculation CAR-T administration route GCPC model (n = 3 per group, 7 groups): No T cells, non-transduced T cells, or CAR-T cells at low or high doses either IV or IP at day 5 after tumor inoculation Combination therapy GCPC model (n = 5 per group, 6 groups): No T cells, non-transduced T cells alone, CAR-T alone, paclitaxel alone, non-transduced T cells + paclitaxel, CAR-T + paclitaxel | In vitro: 2.5:1 effector:target ratio In vivo: Systemic—10 × 106 CAR-T cells IV GCPC only: Low dose 1 × 106 CAR-T cells, high dose 10 × 106 CAR-T cells IV or IP Combined paclitaxel dosage—1 × 106 CAR-T cells IP IL12 group dosage—15 × 106 cells IP |
|
Cao et al. (2021) [35] | Mesothelin (MSLN) | Human GC (N87, MKN28, AGS), liver cancer (Huh-7) cell lines | Xenograft and patient-derived subcutaneous GC and GCPC NSG mice models 3 groups in subcutaneous GC (n = 5): PBS, MSLN-CAR NK, CD19-CAR NK at 50 mm3 tumor volume with treatment weekly, 3× treatment 3 groups in GCPC model (n = 5 per group): PBS, MSLN-CAR NK, CD19-CAR NK at days 10, 15, 20, and 25 | In vitro: 16:1, 8:1, 4:1, 2:1 effector:target ratio In vivo: 5 × 106 IV for subcutaneous GC model or IP for GCPC model |
|
Lv et al. (2019) [36] | Mesothelin | Human GC cell lines (AGS, BGC-823, Kato III, MKN28) | Xenograft subcutaneous GC and GCPC NSG mice models 5 groups in subcutaneous model (group size not specified): No T cells, GFP-T IV, GFP-T peri-tumorally, M28z10-T IV, M28z10-T peri-tumorally when tumors are palpable 3 groups in GCPC model (n = 5 per group): No T cells, GFP-T, M28z10-T | In vitro: 2:1, 1:1, 1:2, 1:4 effector:target ratio In vivo: Subcutaneous model—5 × 106 CAR-T cells IV or peri-tumorally GCPC model—5 × 106 CAR-T cells IV |
|
Zhao et al. (2021) [37] | Mesothelin | Human GC cell lines (BGC-823, MKN28, Kato III, MKN45) | Xenograft subcutaneous GC NSG mice models (2 cell line models) 3 groups per cell line model: Mock T cell injection (n = 4), anti-MSLN-T cells (n = 6), anti-MSLN-sP (n = 5, co-expression of sPH20-IgG2 with anti-MSLN CAR) when tumors palpable | In vitro: 1:1, 1:2, 1:4 effector:target ratio In vivo: 5 × 106 CAR-T cells IV |
|
Tao et al. (2018) [38] | NKG2DL | Human gastric cancer cell lines (MKN28, SNU1, SGC7901, MKN45), normal cells (HMEC1, GES1, THLE3) | Xenograft subcutaneous GC NSG mice models (n = 18) 3 groups (n = 6 per group): NKG2D CAR-T, mock-transduced T cells, PBS | In vitro: 2.5:1, 5:1, 10:1 effector:target ratio In vivo: 5 × 106 CAR-T cells IV |
|
Zhao et al. (2019) [39] | PD-L1 | Human gastric cancer cell lines (BGC823, MGC803) | Xenograft subcutaneous GC NSG mice models (n = 20) 4 groups (n = 5 per group): untreated, CD19 CAR-T, Trop2 CAR-T, Trop2/PD-L1 CAR-T cells at day 14, 18, 22, and 26 after tumor inoculation | In vitro: 2:1, 5:1, 10:1, 20:1 effector:target ratio In vivo: 1 × 107 T cells IT |
|
Trial # (Year) | Phase of Trial | Inclusion Criteria | Target | Dosing | Route of Treatment | Status |
---|---|---|---|---|---|---|
NCT05396300 (2022) | 1 | Patients with CEA-positive advanced malignant solid tumors (colorectal, esophageal, stomach, pancreatic, metastatic, recurrent) | CEA | 3–10 × 106 CAR-T cells/kg | IV or IP | Recruiting |
NCT05415475 (2022) | 1 | Patients with CEA-positive advanced malignant tumors (colorectal, esophageal, stomach, pancreatic, metastatic, recurrent) | CEA | 1–10 × 107 CAR-T cells/kg | IV or IP | Recruiting |
NCT04348643 (2020) | 1, 2 | Patients with relapsed/refractory CEA-positive cancer (lung, colorectal, liver, gastric, pancreatic, breast) | CEA | Not specified | IV | Recruiting |
NCT02349724 (2015) | 1 | Patients with relapsed or refractory CEA-positive malignant solid tumors (lung, gastric, breast, pancreatic, colorectal) | CEA | Not specified | Not specified | Recruiting |
NCT05275062 (2022) | 1 | Patients with CLDN18.2-positive advanced gastric/esophagogastric cancer that failed at least second-line therapy or advanced pancreatic cancer that failed at least first-line therapy | IM92 | 2.5 × 108 CAR-T cells | Not specified | Recruiting |
NCT04864821 (2021) | 1 | Patients with CD276-positive solid tumors (osteosarcoma, neuroblastoma, gastric cancer, lung cancer) | CD276 | Not specified | IV or IT | Not yet recruiting |
NCT04427449 (2020) | 1, 2 | Patients with CD44v6-positive cancers | CD44 | 1 × 106 CAR-T cells/kg | IV | Recruiting |
NCT03874897 (2019) | 1 | Patients with CLDN18.2-positive solid tumors that failed standard systemic treatment | CLDN18.2 | 2.5 × 108, 3.75 × 108 or 5.0 × 108 | IV | Recruiting |
NCT05277987 (2022) | 1 | Patients with CLDN18.2-positive advanced gastric/esophagogastric junction and pancreatic adenocarcinoma | CLDN18.2 | Doses: 1st—0.5 × 106 CAR-T cells/kg 2nd—0.5 × 106.5 CAR-T cells/kg 3rd—0.5 × 107 CAR-T cells/kg | Not specified | Recruiting |
NCT03159819 (2017) | 1 | Patients with CLDN18.2-positive advanced gastric adenocarcinoma that failed first-line treatment and pancreatic adenocarcinoma refractory to surgical intervention or first-line systemic treatment | CLDN18.2 | Not specified | IV | Recruiting |
NCT03890198 (2019) | 1 | Patients with CLDN18.2-positive unresectable gastric adenocarcinoma or advanced pancreatic ductal carcinoma | CLDN18.2 | Not specified | IV | Terminated |
NCT02862028 (2016) | 1, 2 | Patients with EGFR-family-positive advanced solid tumors (lung, gastric, liver) | EGFR+ | 1–5 × 107 CAR-T cells/kg | IV | Recruiting |
NCT03563326 (2018) | 1 | Patients with EpCAM-positive advanced gastric cancer with peritoneal metastasis | EpCAM | Not specified | IP | Recruiting |
NCT05028933 (2021) | 1 | Patients with malignant tumors of the digestive system (gastric, colorectal, liver, pancreatic) | EpCAM | Doses: 1st—3 × 105 CAR-T cells/kg 2nd—1 × 106 CAR-T cells/kg 3rd—3 × 106 CAR-T cells/kg | IV | Recruiting |
NCT04151186 (2019) | N/A | Patients with refractory/recurrent advanced pancreatic, colorectal, gastric, or lung cancer | EpCAM | Doses: 1st—2–2.5 × 105 CAR-T cells/kg 2nd—4–5 × 106 CAR-T cells/kg 3rd—8–10 × 106 CAR-T cells/kg | IV | Not yet recruiting |
NCT02725125 (2016) | 2 | Patients with recurrent/refractory stomach cancer | EpCAM | 100 mL/time, 5 times | Not specified | Recruiting |
NCT04650451 (2020) | 1, 2 | Patients with HER2+ solid tumors (gastric, breast, etc.) | HER2 | Not specified | IV | Recruiting |
NCT04660929 (2020) | 1 | Patients with HER2 overexpressing solid tumors | HER2 | Group 1: Dose escalation Day 1—≤5 × 108 cells Day 3—≤1.5 × 109 cells Day 5—≤3 × 109 cells Group 2: Full dose day 1 ≤ 5 × 109 cells | IV, IP | Recruiting |
NCT04511871 (2020) | 1 | Patients with recurrent/refractory HER2+ solid tumors | HER2 | Dose cohorts: Dose 1—3 × 105 CCT303-406 CAR-T cells/kg Dose 2—1 × 106 CCT303-406 CAR-T cells/kg Dose 3—3 × 106 CCT303-406 CAR-T cells/kg Dose 4—1 × 107 CCT303-406 CAR-T cells/kg | IV | Recruiting |
NCT03740256 (2018) | 1 | Patients with HER2-positive solid tumors | HER2 | Dose cohorts: Level 1—CAdVEC: 5 × 109 PFU, HER2 CAR-T cells: 0 Level 2—CAdVEC: 1 × 1010 PFU, HER2 CAR-T cells: 0 Level 3—CAdVEC: 1 × 1010 PFU, HER2 CAR-T cells: 1 × 106 Level 4—CAdVEC: 1 × 1011 PFU, HER2 CAR-T cells: 1 × 106 Level 5—CAdVEC: 1 × 1011 PFU, HER2 CAR-T cells: 1 × 107 Level 6—CAdVEC: 1 × 1012 PFU, HER2 CAR-T cells: 1 × 107 Level 7—CAdVEC: 1 × 1012 PFU, HER2 CAR-T cells: 1 × 108 | IT | Recruiting |
NCT02617134 (2015) | 1, 2 | Patients with MUC1+ malignant glioma of the brain, colorectal carcinoma, and gastric carcinoma | MUC1 | Not specified | Not specified | Recruiting |
NCT02839954 (2016) | 1, 2 | Patients with MUC1-positive recurrent/refractory solid tumors | MUC1 | Not specified | Not specified | Unknown |
NCT05239143 (2022) | 1 | Patients with advanced or metastatic epithelial-derived solid tumors | MUC1 | 3 + 3 design of dose-escalating cohorts of single and multiple doses, dosages not specified | IV | Recruiting |
NCT05166070 (2021) | 1 | Patients with recurrent/refractory MSLN-positive solid tumors | Mesothelin | Doses: Group 1—1.0 × 106 CAR-T cells/kg Group 2—3.0 × 106 CAR-T cells/kg Group 1—6.0 × 106 CAR-T cells/kg | IV | Recruiting |
NCT05141253 (2021) | 1 | Patients with recurrent/refractory MSLN-positive solid tumors | Mesothelin | Doses: Group 1—1.0 × 106 CAR-T cells/kg Group 2—3.0 × 106 CAR-T cells/kg Group 1—6.0 × 106 CAR-T cells/kg | IV | Recruiting |
NCT03054298 (2017) | 1 | Patients with mesothelin expressing cancers | Mesothelin | Dose cohorts: Group 1—1–3 × 107 CAR-T cells/m2 Group 2—1–3 × 107 CAR-T cells/m2 plus 1 g/mm2 cyclophosphamide Group 3—1–3 × 108 CAR-T cells/m2 Group 4—1–3 × 108 CAR-T cells/m2 plus 1 g/mm2 cyclophosphamide Group 5—1–3 × 107 CAR-T cells/m2 intrapleural Group 6—1–3 × 107 CAR-T cells/m2 plus 1 g/mm2 cyclophosphamide, then up to 2× additional CAR-T infusions Group 7—1–3 × 107 CAR-T cells/m2 IP plus lymphodepleting chemotherapy plus up to 2× additional CAR-T infusions | IV, IP, and intrapleural infusion | Recruiting |
NCT03615313 (2018) | 1, 2 | Patients with MSLN-positive advanced recurrent/refractory malignant solid tumors | Mesothelin | Not specified, PD-1 antibody-expressing CAR-Ts | IV | Recruiting |
NCT03182803 (2017) | 1, 2 | Patients with MSLN-positive advanced recurrent/refractory malignant solid tumors | Mesothelin | 2–5 × 107 CTLA-4 and PD-1 antibody-expressing CAR-T cells/kg | IV | Recruiting |
NCT04981691 (2021) | 1 | Patients with MSLN-positive advanced solid tumors that have failed at least first-line or second-line therapy | Mesothelin | Dose cohorts: 3 + 3 dose escalation Group 1—1 × 109 CAR-T cells/infusion Group 2—3 × 109 CAR-T cells/infusion | IV | Recruiting |
NCT04107142 (2019) | 1 | Patients with recurrent/refractory solid tumors (colorectal, triple-negative breast, sarcoma, nasopharyngeal, prostate, gastric) | NKG2DL | Dose cohorts: 3 + 3 dose escalation Group 1—3 × 108 CAR-T cells/infusion Group 2—1 × 109 CAR-T cells/infusion Group 3—3 × 109 CAR-T cells/infusion | IV | Not yet recruiting |
NCT04847466 (2021) | 2 | Patients with advanced gastric/gastroesophageal junction cancers or head and neck cancers who failed standard treatment | PD-L1 | 2 × 109 CAR-T cells/infusion | IV | Recruiting |
NCT03960060 (2019) | 1 | Patients with recurrent/refractory stage IV metastatic solid tumors (soft tissue sarcoma, gastric, pancreatic, bladder cancer) | ROR2 | Dose cohorts: 3 + 3 dose escalation Group 1—1 × 106 CAR-T cells/kg/infusion Group 2—3 × 106 CAR-T cells/kg/infusion Group 3—1 × 107 CAR-T cells/kg/infusion | IV | Active, not recruiting |
Trial # (Year) | Phase of Trial | Inclusion Criteria | Treatment | Dosing | Route of Treatment | Status |
---|---|---|---|---|---|---|
NCT01443260 (2011) | 1, 2 | Patients with advanced peritoneal carcinomatosis or peritoneal mesothelioma | GL-ONC1 | Every 4 weeks up to 4 cycles via infusion at 3 doses: 1 × 107, 1 × 108, 1 × 109 PFU | IP | Completed (n = 9, 24 doses given) |
NCT00794131 (2008) | 1 | Patients with advanced solid tumors | GL-ONC1 | 28 day cycle and 3 + 3 dose escalation 1 × 105, 1 × 106, 1 × 107, 1 × 108, 1 × 109, 3 × 109 PFU on day 1, 1.667 × 107, 1.667 × 108, 1.667 × 109 pfu on days 1–3 | IV | Completed (n = 43) |
NCT03866525 (2019) | 1, 2 | Patients with malignant solid tumors (gastrointestinal cancers, head and neck cancers, soft tissue sarcomas) | OH2 (HSV OV) with or without irinotecan or HX008 (anti-PD-1 antibody) | Phase 1 dose escalation: three doses (1 × 106, 1 × 107, 1 × 108 CCID50/mL) Phase 2 dose expansion: OH2 single agent vs. OH2 + irinotecan vs. OH2 + HX008 | IT | Recruiting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Jung, A.; Yang, A.; Monroy, I.; Zhang, Z.; Chaurasiya, S.; Deshpande, S.; Priceman, S.; Fong, Y.; Park, A.K.; et al. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers 2023, 15, 5661. https://doi.org/10.3390/cancers15235661
Chen C, Jung A, Yang A, Monroy I, Zhang Z, Chaurasiya S, Deshpande S, Priceman S, Fong Y, Park AK, et al. Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers. 2023; 15(23):5661. https://doi.org/10.3390/cancers15235661
Chicago/Turabian StyleChen, Courtney, Audrey Jung, Annie Yang, Isabel Monroy, Zhifang Zhang, Shyambabu Chaurasiya, Supriya Deshpande, Saul Priceman, Yuman Fong, Anthony K. Park, and et al. 2023. "Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies" Cancers 15, no. 23: 5661. https://doi.org/10.3390/cancers15235661
APA StyleChen, C., Jung, A., Yang, A., Monroy, I., Zhang, Z., Chaurasiya, S., Deshpande, S., Priceman, S., Fong, Y., Park, A. K., & Woo, Y. (2023). Chimeric Antigen Receptor-T Cell and Oncolytic Viral Therapies for Gastric Cancer and Peritoneal Carcinomatosis of Gastric Origin: Path to Improving Combination Strategies. Cancers, 15(23), 5661. https://doi.org/10.3390/cancers15235661