Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside
Abstract
:Simple Summary
Abstract
1. Why Study Non-Coding RNAs in Peritoneal Carcinomatosis?
2. How Did We Select the Information?
3. What Did We Learn about Non-Coding RNAs in Peritoneal Carcinomatosis?
4. Can We Leverage Ascites as a Source of Non-Coding RNAs?
5. Research Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desai, J.P.; Moustarah, F. Peritoneal Metastasis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Sampson, J.A. Implantation Peritoneal Carcinomatosis of Ovarian Origin. Am. J. Pathol. 1931, 7, 423–444.39. [Google Scholar]
- McMullen, J.R.W.; Selleck, M.; Wall, N.R.; Senthil, M. Peritoneal Carcinomatosis: Limits of Diagnosis and the Case for Liquid Biopsy. Oncotarget 2017, 8, 43481–43490. [Google Scholar] [CrossRef]
- Harada, K.; Yamashita, K.; Iwatsuki, M.; Baba, H.; Ajani, J.A. Intraperitoneal Therapy for Gastric Cancer Peritoneal Carcinomatosis. Expert Rev. Clin. Pharmacol. 2022, 15, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Bleicher, J.; Lambert, L.A. A Palliative Approach to Management of Peritoneal Carcinomatosis and Malignant Ascites. Surg. Oncol. Clin. N. Am. 2021, 30, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Guiral, D.; Hübner, M.; Alyami, M.; Bhatt, A.; Ceelen, W.; Glehen, O.; Lordick, F.; Ramsay, R.; Sgarbura, O.; Van Der Speeten, K.; et al. Primary and Metastatic Peritoneal Surface Malignancies. Nat. Rev. Dis. Primers 2021, 7, 91. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Gheza, F.; Lotti, M.; Virzì, S.; Iusco, D.; Ghermandi, C.; Melotti, R.; Baiocchi, G.; Giulini, S.M.; Ansaloni, L.; et al. Peritoneal Carcinomatosis. World J. Gastroenterol. 2013, 19, 6979–6994. [Google Scholar] [CrossRef] [PubMed]
- Definition of Carcinomatosis—NCI Dictionary of Cancer Terms—NCI. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/carcinomatosis (accessed on 23 February 2024).
- Patel, C.M.; Sahdev, A.; Reznek, R.H. CT, MRI and PET Imaging in Peritoneal Malignancy. Cancer Imaging 2011, 11, 123–139. [Google Scholar] [CrossRef]
- Klos, D.; Riško, J.; Loveček, M.; Skalický, P.; Svobodová, I.; Krejčí, D.; Melichar, B.; Mohelníková-Duchoňová, B.; Lemstrová, R. Trends in Peritoneal Surface Malignancies: Evidence from a Czech Nationwide Population-Based Study. World J. Surg. Oncol. 2019, 17, 182. [Google Scholar] [CrossRef]
- Madani, A.; Thomassen, I.; van Gestel, Y.R.B.M.; van der Bilt, J.D.W.; Haak, H.R.; de Hingh, I.H.J.T.; Lemmens, V.E.P.P. Peritoneal Metastases from Gastroenteropancreatic Neuroendocrine Tumors: Incidence, Risk Factors and Prognosis. Ann. Surg. Oncol. 2017, 24, 2199–2205. [Google Scholar] [CrossRef]
- Klaver, Y.L.B.; Lemmens, V.E.P.P.; Nienhuijs, S.W.; Luyer, M.D.P.; de Hingh, I.H.J.T. Peritoneal Carcinomatosis of Colorectal Origin: Incidence, Prognosis and Treatment Options. World J. Gastroenterol. 2012, 18, 5489–5494. [Google Scholar] [CrossRef]
- Quere, P.; Facy, O.; Manfredi, S.; Jooste, V.; Faivre, J.; Lepage, C.; Bouvier, A.-M. Epidemiology, Management, and Survival of Peritoneal Carcinomatosis from Colorectal Cancer: A Population-Based Study. Dis. Colon. Rectum 2015, 58, 743–752. [Google Scholar] [CrossRef] [PubMed]
- Cancer Today. Available online: https://gco.iarc.who.int/today/ (accessed on 15 February 2024).
- Manzanedo, I.; Pereira, F.; Pérez-Viejo, E.; Serrano, Á. Gastric Cancer with Peritoneal Metastases: Current Status and Prospects for Treatment. Cancers 2023, 15, 1777. [Google Scholar] [CrossRef]
- Rijken, A.; Lurvink, R.J.; Luyer, M.D.P.; Nieuwenhuijzen, G.A.P.; van Erning, F.N.; van Sandick, J.W.; de Hingh, I.H.J.T. The Burden of Peritoneal Metastases from Gastric Cancer: A Systematic Review on the Incidence, Risk Factors and Survival. J. Clin. Med. 2021, 10, 4882. [Google Scholar] [CrossRef]
- Green, B.L.; Davis, J.L. Gastric Adenocarcinoma Peritoneal Carcinomatosis: A Narrative Review. Dig. Med. Res. 2022, 5, 37. [Google Scholar] [CrossRef]
- Hoskovec, D.; Krška, Z.; Dytrych, P.; Vočka, M. Peritoneal Carcinomatosis of Gastric Origin—Treatment Possibilities. Klin. Onkol. 2019, 32, 345–348. [Google Scholar] [CrossRef]
- Miguez González, J.; Calaf Forn, F.; Pelegrí Martínez, L.; Lozano Arranz, P.; Oliveira Caiafa, R.; Català Forteza, J.; Palacio Arteaga, L.M.; Losa Gaspà, F.; Ramos Bernadó, I.; Barrios Sánchez, P.; et al. Primary and Secondary Tumors of the Peritoneum: Key Imaging Features and Differential Diagnosis with Surgical and Pathological Correlation. Insights Imaging 2023, 14, 115. [Google Scholar] [CrossRef]
- Yap, D.R.Y.; Wong, J.S.M.; Tan, Q.X.; Tan, J.W.-S.; Chia, C.S.; Ong, C.-A.J. Effect of HIPEC on Peritoneal Recurrence in Peritoneal Metastasis Treated with Cytoreductive Surgery: A Systematic Review. Front. Oncol. 2021, 11, 795390. [Google Scholar] [CrossRef] [PubMed]
- Szadkowska, M.A.; Pałucki, J.; Cieszanowski, A. Diagnosis and Treatment of Peritoneal Carcinomatosis—A Comprehensive Overview. Pol. J. Radiol. 2023, 88, e89–e97. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.A.; Hendrix, R.J. Palliative Management of Advanced Peritoneal Carcinomatosis. Surg. Oncol. Clin. N. Am. 2018, 27, 585–602. [Google Scholar] [CrossRef]
- Nemeth, K.; Bayraktar, R.; Ferracin, M.; Calin, G.A. Non-Coding RNAs in Disease: From Mechanisms to Therapeutics. Nat. Rev. Genet. 2024, 25, 211–232. [Google Scholar] [CrossRef]
- Slack, F.J.; Chinnaiyan, A.M. The Role of Non-Coding RNAs in Oncology. Cell 2019, 179, 1033–1055. [Google Scholar] [CrossRef] [PubMed]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-Coding RNA Networks in Cancer. Nat. Rev. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef] [PubMed]
- Okugawa, Y.; Toiyama, Y.; Hur, K.; Toden, S.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Kusunoki, M.; Boland, C.R.; et al. Metastasis-Associated Long Non-Coding RNA Drives Gastric Cancer Development and Promotes Peritoneal Metastasis. Carcinogenesis 2014, 35, 2731–2739. [Google Scholar] [CrossRef]
- Schindler, P.; Kupcinskas, J.; Juzenas, S.; Skieceviciene, J.; Salteniene, V.; Schulz, C.; Weigt, J.; Malfertheiner, P.; Link, A. Expression of microRNAs in the Ascites of Patients with Peritoneal Carcinomatosis and Peritonitis. Cancer Cytopathol. 2018, 126, 353–363. [Google Scholar] [CrossRef]
- Heublein, S.; Albertsmeier, M.; Pfeifer, D.; Loehrs, L.; Bazhin, A.V.; Kirchner, T.; Werner, J.; Neumann, J.; Angele, M.K. Association of Differential miRNA Expression with Hepatic vs. Peritoneal Metastatic Spread in Colorectal Cancer. BMC Cancer 2018, 18, 201. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Han, S.-B.; Kim, H.J.; Go, S.-I.; Lee, W.S.; Bae, W.K.; Cho, S.-H.; Song, E.-K.; Lee, O.-J.; Kim, H.K.; et al. Exosomal miR-181b-5p Downregulation in Ascites Serves as a Potential Diagnostic Biomarker for Gastric Cancer-Associated Malignant Ascites. J. Gastric Cancer 2019, 19, 301–314. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Qi, C.; Liu, X.; Zhang, C.; Gao, J.; Wu, Y.; Yang, J.; Zhao, Q.; Li, J.; Wang, X.; et al. Malignant Ascites-Derived Exosomes Promote Peritoneal Tumor Cell Dissemination and Reveal a Distinct miRNA Signature in Advanced Gastric Cancer. Cancer Lett. 2019, 457, 142–150. [Google Scholar] [CrossRef]
- Lobos-González, L.; Bustos, R.; Campos, A.; Silva, V.; Silva, V.; Jeldes, E.; Salomon, C.; Varas-Godoy, M.; Cáceres-Verschae, A.; Duran, E.; et al. Exosomes Released upon Mitochondrial ASncmtRNA Knockdown Reduce Tumorigenic Properties of Malignant Breast Cancer Cells. Sci. Rep. 2020, 10, 343. [Google Scholar] [CrossRef]
- Li, Y.; Liao, W.; Huang, W.; Liu, F.; Ma, L.; Qian, X. Mechanism of Gambogic Acid Repressing Invasion and Metastasis of Colorectal Cancer by Regulating Macrophage Polarization via Tumor Cell-Derived Extracellular Vesicle-Shuttled miR-21. Drug Dev. Res. 2024, 85, e22141. [Google Scholar] [CrossRef]
- Di Agostino, S.; Canu, V.; Donzelli, S.; Pulito, C.; Sacconi, A.; Ganci, F.; Valenti, F.; Goeman, F.; Scalera, S.; Rollo, F.; et al. HSF-1/miR-145-5p Transcriptional Axis Enhances Hyperthermic Intraperitoneal Chemotherapy Efficacy on Peritoneal Ovarian Carcinosis. Cell Death Dis. 2023, 14, 535. [Google Scholar] [CrossRef]
- Aziret, M.; Güney Eskiler, G.; Çakar, G.Ç.; Özkan, A.D.; Ercan, M.; Bilir, C.; Polat, E.; Koçer, H.B.; Yıldırım, E.K.; Duman, M. Effect of the MiR-99b and MiR-135b on Peritoneal Carcinomatosis and Liver Metastasis in Colorectal Cancer. Clinics 2023, 78, 100271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tedja, R.; Millman, M.; Wong, T.; Fox, A.; Chehade, H.; Gershater, M.; Adzibolosu, N.; Gogoi, R.; Anderson, M.; et al. Adipose-Derived Exosomal miR-421 Targets CBX7 and Promotes Metastatic Potential in Ovarian Cancer Cells. J. Ovarian Res. 2023, 16, 233. [Google Scholar] [CrossRef]
- Thapa, R.; Afzal, O.; Afzal, M.; Gupta, G.; Bhat, A.A.; Hassan Almalki, W.; Kazmi, I.; Alzarea, S.I.; Saleem, S.; Arora, P.; et al. From LncRNA to Metastasis: The MALAT1-EMT Axis in Cancer Progression. Pathol. Res. Pract. 2024, 253, 154959. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qian, X.; Wang, Z.; Zhou, X. The HOTAIR lncRNA: A Remarkable Oncogenic Promoter in Human Cancer Metastasis. Oncol. Lett. 2021, 21, 302. [Google Scholar] [CrossRef] [PubMed]
- Hodge, C.; Badgwell, B.D. Palliation of Malignant Ascites. J. Surg. Oncol. 2019, 120, 67–73. [Google Scholar] [CrossRef]
- Yamamoto, C.M.; Oakes, M.L.; Murakami, T.; Muto, M.G.; Berkowitz, R.S.; Ng, S.-W. Comparison of Benign Peritoneal Fluid- and Ovarian Cancer Ascites-Derived Extracellular Vesicle RNA Biomarkers. J. Ovarian Res. 2018, 11, 20. [Google Scholar] [CrossRef] [PubMed]
- Aziret, M.; Subasi, O.; Bilir, C.; Tozlu, M.; Altıntoprak, F.; Karaman, K.; Ercan, M.; Celebi, F. Morbidity and Long-Term Results in Patients with Wild and Mutant Type Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) Mutations Undergoing Colorectal Cancer Surgery. Ann. Ital. Chir. 2022, 92, 65–77. [Google Scholar]
- Elias, D.; Blot, F.; El Otmany, A.; Antoun, S.; Lasser, P.; Boige, V.; Rougier, P.; Ducreux, M. Curative Treatment of Peritoneal Carcinomatosis Arising from Colorectal Cancer by Complete Resection and Intraperitoneal Chemotherapy. Cancer 2001, 92, 71–76. [Google Scholar] [CrossRef]
- Li, J.; Liang, H.; Bai, M.; Ning, T.; Wang, C.; Fan, Q.; Wang, Y.; Fu, Z.; Wang, N.; Liu, R.; et al. miR-135b Promotes Cancer Progression by Targeting Transforming Growth Factor Beta Receptor II (TGFBR2) in Colorectal Cancer. PLoS ONE 2015, 10, e0130194. [Google Scholar] [CrossRef]
- Qin, Y.; Li, L.; Wang, F.; Zhou, X.; Liu, Y.; Yin, Y.; Qi, X. Knockdown of Mir-135b Sensitizes Colorectal Cancer Cells to Oxaliplatin-Induced Apoptosis Through Increase of FOXO1. Cell Physiol. Biochem. 2018, 48, 1628–1637. [Google Scholar] [CrossRef]
- Wang, H.; Wang, X.; Zhang, H.; Deng, T.; Liu, R.; Liu, Y.; Li, H.; Bai, M.; Ning, T.; Wang, J.; et al. The HSF1/miR-135b-5p Axis Induces Protective Autophagy to Promote Oxaliplatin Resistance through the MUL1/ULK1 Pathway in Colorectal Cancer. Oncogene 2021, 40, 4695–4708. [Google Scholar] [CrossRef]
- Li, W.; Chang, J.; Wang, S.; Liu, X.; Peng, J.; Huang, D.; Sun, M.; Chen, Z.; Zhang, W.; Guo, W.; et al. miRNA-99b-5p Suppresses Liver Metastasis of Colorectal Cancer by down-Regulating mTOR. Oncotarget 2015, 6, 24448–24462. [Google Scholar] [CrossRef]
- Eniafe, J.; Jiang, S. MicroRNA-99 Family in Cancer and Immunity. Wiley Interdiscip. Rev. RNA 2021, 12, e1635. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hua, Y.; Deng, F.; Wang, D.; Wu, Y.; Zhang, W.; Tang, J. MiR-145 in Cancer Therapy Resistance and Sensitivity: A Comprehensive Review. Cancer Sci. 2020, 111, 3122–3131. [Google Scholar] [CrossRef] [PubMed]
- Zeinali, T.; Mansoori, B.; Mohammadi, A.; Baradaran, B. Regulatory Mechanisms of miR-145 Expression and the Importance of Its Function in Cancer Metastasis. Biomed. Pharmacother. 2019, 109, 195–207. [Google Scholar] [CrossRef]
- Becker, A.; Thakur, B.K.; Weiss, J.M.; Kim, H.S.; Peinado, H.; Lyden, D. Extracellular Vesicles in Cancer: Cell-to-Cell Mediators of Metastasis. Cancer Cell 2016, 30, 836–848. [Google Scholar] [CrossRef]
- Cao, M.; Isaac, R.; Yan, W.; Ruan, X.; Jiang, L.; Wan, Y.; Wang, J.; Wang, E.; Caron, C.; Neben, S.; et al. Cancer-Cell-Secreted Extracellular Vesicles Suppress Insulin Secretion through miR-122 to Impair Systemic Glucose Homeostasis and Contribute to Tumour Growth. Nat. Cell Biol. 2022, 24, 954–967. [Google Scholar] [CrossRef]
- Pascual-Antón, L.; Cardeñes, B.; Sainz de la Cuesta, R.; González-Cortijo, L.; López-Cabrera, M.; Cabañas, C.; Sandoval, P. Mesothelial-to-Mesenchymal Transition and Exosomes in Peritoneal Metastasis of Ovarian Cancer. Int. J. Mol. Sci. 2021, 22, 11496. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Alvero, A.B.; Nuti, S.; Tedja, R.; Roberts, C.M.; Pitruzzello, M.; Li, Y.; Xiao, Q.; Zhang, S.; Gan, Y.; et al. CBX7 Binds the E-Box to Inhibit TWIST-1 Function and Inhibit Tumorigenicity and Metastatic Potential. Oncogene 2020, 39, 3965–3979. [Google Scholar] [CrossRef]
- Borgna, V.; Villegas, J.; Burzio, V.A.; Belmar, S.; Araya, M.; Jeldes, E.; Lobos-González, L.; Silva, V.; Villota, C.; Oliveira-Cruz, L.; et al. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as Potent Targets to Inhibit Tumor Growth and Metastasis in the RenCa Murine Renal Adenocarcinoma Model. Oncotarget 2017, 8, 43692–43708. [Google Scholar] [CrossRef]
- Villegas, J.; Burzio, V.; Villota, C.; Landerer, E.; Martinez, R.; Santander, M.; Martinez, R.; Pinto, R.; Vera, M.I.; Boccardo, E.; et al. Expression of a Novel Non-Coding Mitochondrial RNA in Human Proliferating Cells. Nucleic Acids Res. 2007, 35, 7336–7347. [Google Scholar] [CrossRef] [PubMed]
- Varas-Godoy, M.; Lladser, A.; Farfan, N.; Villota, C.; Villegas, J.; Tapia, J.C.; Burzio, L.O.; Burzio, V.A.; Valenzuela, P.D.T. In Vivo Knockdown of Antisense Non-Coding Mitochondrial RNAs by a Lentiviral-Encoded shRNA Inhibits Melanoma Tumor Growth and Lung Colonization. Pigment. Cell Melanoma Res. 2018, 31, 64–72. [Google Scholar] [CrossRef]
- Fitzpatrick, C.; Bendek, M.F.; Briones, M.; Farfán, N.; Silva, V.A.; Nardocci, G.; Montecino, M.; Boland, A.; Deleuze, J.-F.; Villegas, J.; et al. Mitochondrial ncRNA Targeting Induces Cell Cycle Arrest and Tumor Growth Inhibition of MDA-MB-231 Breast Cancer Cells through Reduction of Key Cell Cycle Progression Factors. Cell Death Dis. 2019, 10, 423. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Bian, Y.; Qian, H.; Yang, M.; Hu, J.; Li, L.; Yu, L.; Liu, B.; Qian, X. Gambogic Acid Regulates the Migration and Invasion of Colorectal Cancer via microRNA-21-Mediated Activation of Phosphatase and Tensin Homolog. Exp. Ther. Med. 2018, 16, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.-Z.; Pang, M.-J.; Li, J.-Y.; Chen, H.-Y.; Sun, J.-X.; Song, Y.-X.; Ni, H.-J.; Ye, S.-Y.; Bai, S.; Li, T.-H.; et al. Single-Cell Sequencing of Ascites Fluid Illustrates Heterogeneity and Therapy-Induced Evolution during Gastric Cancer Peritoneal Metastasis. Nat. Commun. 2023, 14, 822. [Google Scholar] [CrossRef]
- Roman-Canal, B.; Tarragona, J.; Moiola, C.P.; Gatius, S.; Bonnin, S.; Ruiz-Miró, M.; Sierra, J.E.; Rufas, M.; González, E.; Porcel, J.M.; et al. EV-Associated miRNAs from Peritoneal Lavage as Potential Diagnostic Biomarkers in Colorectal Cancer. J. Transl. Med. 2019, 17, 208. [Google Scholar] [CrossRef]
- Ford, C.E.; Werner, B.; Hacker, N.F.; Warton, K. The Untapped Potential of Ascites in Ovarian Cancer Research and Treatment. Br. J. Cancer 2020, 123, 9–16. [Google Scholar] [CrossRef]
- Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; et al. MicroRNA Expression Profiles Classify Human Cancers. Nature 2005, 435, 834–838. [Google Scholar] [CrossRef]
- Lu, W.; Liu, H.; Zhang, X.; Guo, Y.; Liu, L.; Guo, T.; Qu, L.; Yang, S.; Li, Z. A ceRNA Network Composed of Survival-Related lncRNAs, miRNAs, and mRNAs in Clear Cell Renal Carcinoma. Comput. Math. Methods Med. 2022, 2022, 8504441. [Google Scholar] [CrossRef] [PubMed]
Disease [Reference] | Significant ncRNAs | No. of Samples/No. of Patients, Material | Methodology | Findings |
---|---|---|---|---|
GC [26] | MALAT1, HOTAIR | 300/150, paired tumor and non-tumor tissue, GC cell lines, mice | qPCR, functional in vitro functional tests, in vivo tests | Both lncRNAs↑ in GC patients with peritoneal metastasis; HOTAIR↑—poor outcome, promotes metastases, tumorigenicity, invasiveness. |
PC vs. SBP vs. PH [27] | miR-21, miR-223, miR-186, miR-26b | 45/45 ascites, PC (n = 15), SBP (n = 15), PH (n = 15) | TLDA, qPCR validation | ↑miR-21, miR-186, miR-222, miR-482-5p, ↓miR-26b; miR-21 and miR-186↑ overall in PC vs. PH. |
CRC LM vs. PCa vs. M0 [28] | miR-31-5p | 10/10 CRC LM, 10/10 CRC PCa, 3/3 CRC M0, FFPE | TLDA, qPCR validation, IHC, WB | miR-31-5p↑ in PC-directed CRC, repressing c-MET, role in invasivity, predicts metastatic spread site. |
GC [29] |
miR-574-3p, miR-181b-5p, miR-4481, miR-181d | 165/165 ascites samples (LCi-ascites n = 73, GC-ascites n = 92) | Microarray, qPCR, immunoassay | Combination of CEA and exo-miR-181b-5ppotential diagnostic biomarker of non-malignant vs. GC-ascites. |
GC [30] | miRNA panel | 16/8 GC ascites, 3/3 Lci ascites, AGS cell line | TEM, WB, RNAseq, invasion assay, in vivo model | Ascites-derived exosomes promote GC invasion by inducing EMT signaling, panel dysregulated in GC pre- vs. GC post-treatment, GC vs. LCi. |
BC [31] | ASncmtRNA | BC cell lines (MDA-MB-231, ZR-75, MCF-7) | TEM, nanoparticle tracking analysis, WB, qPCR | Exosomes released upon ASncmtRNA knockdown reduce tumorigenic properties of BC cells. |
CRC [32] | miR-21 | CRC cell lines HT-29, SW480, HCT116; normal (HCO), mice | qRT-PCR, H&E, in vitro and in vivo tests, ELISA | GA interferes with M2 polarization of macrophages by suppressing tumor EV-miR-21, thus weakening metastasis and invasion. |
OC [33] | miR-145 | 20/10 FFPE (T + NT), time-point sampling of the metastatic nodule, OVCAR-3 and ES2 | IHC, qPCR, pyroseq, in vitro tests, WB, ChIP | miR-145-5p and its targets (c-MYC, EGFR, MUC1, and OCT4) impaired in peritoneal metastases, HIPEC restored the TS activity of miR-145-5p, HSF-1 is the upstream regulator. |
CRC [34] | miR-99b, miR-135b | 137/74, FFPE, PC CRC (n = 46), LM CRC (n = 28) | Mutation status detection, IHC, RT-PCR | miR-99b↓, miR-135b↑ in PC and LVM vs. primary tumor, Akt, KRAS and miR-99b mutations are potential risk factors for poor OS. |
OC [35] | miR-421 | 6/6, omentum, OVCA432, OVCAR3 | EV characterization, ExoView profiling, in vitro tests, WB, qPCR | miR-421/CBX7 leads to↓CBX7, a major part of the histone-modifying PRC1. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bohosova, J.; Ashraf, N.S.; Slaby, O.; Calin, G.A. Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside. Cancers 2024, 16, 2961. https://doi.org/10.3390/cancers16172961
Bohosova J, Ashraf NS, Slaby O, Calin GA. Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside. Cancers. 2024; 16(17):2961. https://doi.org/10.3390/cancers16172961
Chicago/Turabian StyleBohosova, Julia, Nida Sarosh Ashraf, Ondrej Slaby, and George A. Calin. 2024. "Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside" Cancers 16, no. 17: 2961. https://doi.org/10.3390/cancers16172961
APA StyleBohosova, J., Ashraf, N. S., Slaby, O., & Calin, G. A. (2024). Non-Coding RNAs in Peritoneal Carcinomatosis: From Bench to Bedside. Cancers, 16(17), 2961. https://doi.org/10.3390/cancers16172961