Clinical Significance of the Lymph Node Ratio of the Second Operation to Predict Re-Recurrence in Thyroid Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Follow-Up Assessment
2.3. Confirmation of Recurrence
2.4. Statistical Analysis
3. Results
3.1. Comparison of Clinicopathological Characteristics According to Re-Recurrence
3.2. Logistic Regression Analysis of Risk Factors for Re-Recurrence Based on First Operation Outcomes
3.3. Cox-Regression Analysis of Risk Factors for DSM in Patients with Recurrent Thyroid Cancer
3.4. Surgical Outcomes of Re-Operation at the First Recurrence
3.5. Optimal Cutoff Values
3.6. Logistic Regression Analysis of Risk Factors for Re-Recurrence Based on Re-Operation Outcomes after the First Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hahn, L.D.; Kunder, C.A.; Chen, M.M.; Orloff, L.A.; Desser, T.S. Indolent thyroid cancer: Knowns and unknowns. Cancers Head Neck 2017, 2, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jossart, G.H.; Clark, O.H. Well-differentiated thyroid cancer. Curr. Probl. Surg. 1994, 31, 944–1012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, M.; Muenz, D.G.; Chang, J.T.; Papaleontiou, M.; Haymart, M.R. Tree-based model for thyroid cancer prognostication. J. Clin. Endocrinol. Metab. 2014, 99, 3737–3745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Cancer Society. Key Statistics for Thyroid Cancer; American Cancer Society: Atlanta, GA, USA, 2020. [Google Scholar]
- Cancer Research UK. Thyroid Cancer Statstics; Cancer Research UK: London, UK, 2020. [Google Scholar]
- Li, M.; Brito, J.P.; Vaccarella, S. Long-term declines of thyroid cancer mortality: An international age–period–cohort analysis. Thyroid 2020, 30, 838–846. [Google Scholar] [CrossRef] [PubMed]
- La Vecchia, C.; Malvezzi, M.; Bosetti, C.; Garavello, W.; Bertuccio, P.; Levi, F.; Negri, E. Thyroid cancer mortality and incidence: A global overview. Int. J. Cancer 2015, 136, 2187–2195. [Google Scholar] [CrossRef]
- Kloos, R.T.; Mazzaferri, E.L. A single recombinant human thyrotropin-stimulated serum thyroglobulin measurement prsedicts differentiated thyroid carcinoma metastases three to five years later. J. Clin. Endocrinol. Metab. 2005, 90, 5047–5057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sipos, J.; Mazzaferri, E.L. Thyroid cancer epidemiology and prognostic variables. Clin. Oncol. 2010, 22, 395–404. [Google Scholar] [CrossRef]
- Mazzaferri, E.L.; Jhiang, S.M. Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 1994, 97, 418–428. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: The American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Li, Q.; Wang, Z.; Huang, H.; Wang, X.; Liu, S.; Liu, J. Evaluating the risk of re-recurrence in patients with persistent/recurrent thyroid carcinoma after initial reoperation. Surgery 2021, 169, 837–843. [Google Scholar] [CrossRef]
- Ito, Y.; Higashiyama, T.; Takamura, Y.; Kobayashi, K.; Miya, A.; Miyauchi, A. Prognosis of patients with papillary thyroid carcinoma showing postoperative recurrence to the central neck. World J. Surg. 2011, 35, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Roh, J.-L.; Gong, G.; Cho, K.-J.; Choi, S.-H.; Nam, S.Y.; Kim, S.Y. Risk factors for re-recurrence after first reoperative surgery for locoregional recurrent/persistent papillary thyroid carcinoma. World J. Surg. 2015, 39, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.H.; Kim, W.B.; Kim, E.Y.; Kim, W.G.; Kim, T.Y.; Ryu, J.-S.; Gong, G.; Hong, S.J.; Shong, Y.K. The outcomes of first reoperation for locoregionally recurrent/persistent papillary thyroid carcinoma in patients who initially underwent total thyroidectomy and remnant ablation. J. Clin. Endocrinol. Metab. 2011, 96, 2049–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saif, O.; Farrar, W.B.; Bloomston, M.; Porter, K.; Ringel, M.D.; Kloos, R.T. Long-term efficacy of lymph node reoperation for persistent papillary thyroid cancer. J. Clin. Endocrinol. Metab. 2010, 95, 2187–2194. [Google Scholar] [CrossRef] [PubMed]
- Onuma, A.E.; Beal, E.W.; Nabhan, F.; Hughes, T.; Farrar, W.B.; Phay, J.; Ringel, M.D.; Kloos, R.T.; Shirley, L.A. Long-term efficacy of lymph node reoperation for persistent papillary thyroid cancer: 13-year follow-up. Ann. Surg. Oncol. 2019, 26, 1737–1743. [Google Scholar] [CrossRef]
- Suh, C.H.; Baek, J.H.; Choi, Y.J.; Lee, J.H. Efficacy and safety of radiofrequency and ethanol ablation for treating locally recurrent thyroid cancer: A systematic review and meta-analysis. Thyroid 2016, 26, 420–428. [Google Scholar] [CrossRef]
- Kim, J.-h.; Yoo, W.S.; Park, Y.J.; Park, D.J.; Yun, T.J.; Choi, S.H.; Sohn, C.-H.; Lee, K.E.; Sung, M.-W.; Youn, Y.-K. Efficacy and safety of radiofrequency ablation for treatment of locally recurrent thyroid cancers smaller than 2 cm. Radiology 2015, 276, 909–918. [Google Scholar] [CrossRef]
- Lamartina, L.; Borget, I.; Mirghani, H.; Al Ghuzlan, A.; Berdelou, A.; Bidault, F.; Deandreis, D.; Baudin, E.; Travagli, J.-P.; Schlumberger, M. Surgery for neck recurrence of differentiated thyroid cancer: Outcomes and risk factors. J. Clin. Endocrinol. Metab. 2017, 102, 1020–1031. [Google Scholar]
- Scollo, C.; Baudin, E.; Travagli, J.-P.; Caillou, B.; Bellon, N.; Leboulleux, S.; Schlumberger, M. Rationale for central and bilateral lymph node dissection in sporadic and hereditary medullary thyroid cancer. J. Clin. Endocrinol. Metab. 2003, 88, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- Mansour, J.; Sagiv, D.; Alon, E.; Talmi, Y. Prognostic value of lymph node ratio in metastatic papillary thyroid carcinoma. J. Laryngol. Otol. 2018, 132, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Vas Nunes, J.H.; Clark, J.R.; Gao, K.; Chua, E.; Campbell, P.; Niles, N.; Gargya, A.; Elliott, M.S. Prognostic implications of lymph node yield and lymph node ratio in papillary thyroid carcinoma. Thyroid 2013, 23, 811–816. [Google Scholar] [CrossRef]
- Schneider, D.F.; Mazeh, H.; Chen, H.; Sippel, R.S. Lymph node ratio predicts recurrence in papillary thyroid cancer. Oncol. 2013, 18, 157–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzu, K.; Sugino, K.; Masudo, K.; Nagahama, M.; Kitagawa, W.; Shibuya, H.; Ohkuwa, K.; Uruno, T.; Suzuki, A.; Magoshi, S. Thyroid lobectomy for papillary thyroid cancer: Long-term follow-up study of 1,088 cases. World J. Surg. 2014, 38, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, F.; Shaha, A.; Fish, S.; Michael Tuttle, R. Initial therapy with either thyroid lobectomy or total thyroidectomy without radioactive iodine remnant ablation is associated with very low rates of structural disease recurrence in properly selected patients with differentiated thyroid cancer. Clin. Endocrinol. 2011, 75, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.B.; Lee, S.G.; Kim, M.J.; Kim, T.H.; Ban, E.J.; Lee, C.R.; Lee, J.; Kang, S.W.; Jeong, J.J.; Nam, K.H. Oncologic outcomes in patients with 1-cm to 4-cm differentiated thyroid carcinoma according to extent of thyroidectomy. Head Neck 2019, 41, 56–63. [Google Scholar] [CrossRef] [Green Version]
- Chan, S.; Karamali, K.; Kolodziejczyk, A.; Oikonomou, G.; Watkinson, J.; Paleri, V.; Nixon, I.; Kim, D. Systematic review of recurrence rate after hemithyroidectomy for low-risk well-differentiated thyroid cancer. Eur. Thyroid. J. 2020, 9, 73–84. [Google Scholar] [CrossRef]
- Kobayashi, K.; Takenouchi, S.; Mitani, H.; Yoshida, T. Recurrence pattern after conservative surgery for papillary thyroid carcinoma. Auris Nasus Larynx 2014, 41, 548–551. [Google Scholar] [CrossRef]
- Palme, C.E.; Waseem, Z.; Raza, S.N.; Eski, S.; Walfish, P.; Freeman, J.L. Management and outcome of recurrent well-differentiated thyroid carcinoma. Arch. Otolaryngol. Head Neck Surg. 2004, 130, 819–824. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.M.; Jonklaas, J.; Burman, K.D. Management of recurrent cervical papillary thyroid cancer. Endocrinol. Metab. Clin. 2014, 43, 565–572. [Google Scholar] [CrossRef]
- Monchik, J.M.; Donatini, G.; Iannuccilli, J.; Dupuy, D.E. Radiofrequency ablation and percutaneous ethanol injection treatment for recurrent local and distant well-differentiated thyroid carcinoma. Ann. Surg. 2006, 244, 296. [Google Scholar] [CrossRef]
- Baek, J.H.; Kim, Y.S.; Sung, J.Y.; Choi, H.; Lee, J.H. Locoregional control of metastatic well-differentiated thyroid cancer by ultrasound-guided radiofrequency ablation. Am. J. Roentgenol. 2011, 197, W331–W336. [Google Scholar] [CrossRef] [PubMed]
- Yim, J.H.; Kim, W.B.; Kim, E.Y.; Kim, W.G.; Kim, T.Y.; Ryu, J.-S.; Moon, D.H.; Sung, T.-Y.; Yoon, J.H.; Kim, S.C. Adjuvant radioactive therapy after reoperation for locoregionally recurrent papillary thyroid cancer in patients who initially underwent total thyroidectomy and high-dose remnant ablation. J. Clin. Endocrinol. Metab. 2011, 96, 3695–3700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saito, Y.; Matsuzu, K.; Sugino, K.; Takami, H.; Kitagawa, W.; Nagahama, M.; Ito, K. The impact of completion thyroidectomy followed by radioactive iodine ablation for patients with lymph node recurrence of papillary thyroid carcinoma. Surgery 2019, 166, 342–348. [Google Scholar] [CrossRef]
- Gaertner, E.M.; Davidson, M.; Wenig, B.M. The columnar cell variant of thyroid papillary carcinoma. Case report and discussion of an unusually aggressive thyroid papillary carcinoma. Am. J. Surg. Pathol. 1995, 19, 940–947. [Google Scholar] [CrossRef]
- Vuong, H.G.; Odate, T.; Duong, U.N.; Mochizuki, K.; Nakazawa, T.; Katoh, R.; Kondo, T. Prognostic importance of solid variant papillary thyroid carcinoma: A systematic review and meta-analysis. Head Neck 2018, 40, 1588–1597. [Google Scholar] [CrossRef] [PubMed]
- Lam, A.K.-Y.; Lo, C.-Y.; Lam, K.S.-L. Papillary carcinoma of thyroid: A 30-yr clinicopathological review of the histological variants. Endocr. Pathol. 2005, 16, 323–330. [Google Scholar] [CrossRef]
- Nath, M.C.; Erickson, L.A. Aggressive variants of papillary thyroid carcinoma: Hobnail, tall cell, columnar, and solid. Adv. Anat. Pathol. 2018, 25, 172–179. [Google Scholar] [CrossRef]
- Wang, J.; Hassett, J.M.; Dayton, M.T.; Kulaylat, M.N. Lymph node ratio: Role in the staging of node-positive colon cancer. Ann. Surg. Oncol. 2008, 15, 1600–1608. [Google Scholar] [CrossRef]
- Vinh-Hung, V.; Verkooijen, H.M.; Fioretta, G.; Neyroud-Caspar, I.; Rapiti, E.; Vlastos, G.; Deglise, C.; Usel, M.; Lutz, J.-M.; Bouchardy, C. Lymph node ratio as an alternative to pN staging in node-positive breast cancer. J. Clin. Oncol. 2009, 27, 1062–1068. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, K.; Hosoda, K.; Ema, A.; Watanabe, M. Lymph node ratio as a novel and simple prognostic factor in advanced gastric cancer. Eur. J. Surg. Oncol. (EJSO) 2016, 42, 1253–1260. [Google Scholar] [CrossRef]
- Wei, C.; Deng, W.-y.; Li, N.; Shen, W.; Zhang, C.; Liu, J.-y.; Luo, S.-x. Lymph node ratio as an alternative to the number of metastatic lymph nodes for the prediction of esophageal carcinoma patient survival. Dig. Dis. Sci. 2015, 60, 2771–2776. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.R.; Kim, H.O.; Son, B.H.; Shin, J.H.; Yoo, C.H. Prognostic significance of the metastatic lymph node ratio in patients with gastric cancer. World J. Surg. 2012, 36, 1096–1101. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.D.; Nelson, R.A.; Schwarz, R.E. A comparison of five competing lymph node staging schemes in a cohort of resectable gastric cancer patients. Ann. Surg. Oncol. 2014, 21, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Amit, M.; Yen, T.; Liao, C.; Chaturvedi, P.; Agarwal, J.; Kowalski, L.; Ebrahimi, A.; Clark, J.; Cernea, C. Lymph node density in oral cavity cancer: Results of the International Consortium for Outcomes Research. Br. J. Cancer 2013, 109, 2087–2095. [Google Scholar] [CrossRef]
- Yu, S.-T.; Ge, J.-N.; Sun, B.-H.; Wei, Z.-G.; Xiao, Z.-Z.; Zhang, Z.-C.; Chen, W.-S.; Li, T.-T.; Lei, S.-T. Lymph node yield in the initial central neck dissection (CND) associated with the risk of recurrence in papillary thyroid cancer: A reoperative CND cohort study. Oral Oncol. 2021, 123, 105567. [Google Scholar] [CrossRef]
Recurrence (n = 246) | Single-Recurrence (n = 202) (A) | Re-Recurrence (n = 44) (B) | p-Value (A vs. B) | |
---|---|---|---|---|
Age (years) | 43.9 ± 14.3 (range, 11–74) | 42.9 ± 13.6 (range, 11–74) | 48.4 ± 16.5 (range, 12–72) | 0.044 |
Age (≥55) | 58 (23.6%) | 41 (20.3%) | 17 (38.6%) | 0.009 |
Female | 169 (68.7%) | 145 (71.8%) | 24 (54.5%) | 0.025 |
Obesity (BMI ≥ 25 kg/m2) | 91 (37.0%) | 74 (36.6%) | 17 (38.6%) | 0.803 |
Surgical extent | <0.001 | |||
Less than total | 56 (22.8%) | 53 (26.2%) | 3 (6.8%) | |
Total thyroidectomy | 125 (50.8%) | 105 (52.0%) | 20 (45.5%) | |
Lateral neck dissection | 65 (26.4%) | 44 (21.8%) | 21 (47.7%) | |
Cancer type | ||||
PTC/FTC | 235 (95.5%) | 197 (97.5%) | 38 (86.4%) | 0.003 |
MTC | 5 (2.0%) | 3 (1.5%) | 2 (4.5%) | |
PDTC/ATC | 6 (2.4%) | 2 (1.0%) | 4 (9.1%) | |
PTC variant | 0.479 | |||
Non-aggressive | 208/225 (92.4%) | 176/192 (91.7%) | 32/33 (97.0%) | |
Aggressive | 17/225 (7.6%) | 16/192 (8.3%) | 1/33 (3.0%) | |
Tumor size (cm) | 1.7 ± 1.3 (range, 0.2–8.0) | 1.5 ± 1.2 (range, 0.2–6.5) | 2.5 ± 1.7 (range, 0.2–8.0) | 0.001 |
gETE | 37 (15.0%) | 23 (11.4%) | 14 (31.8%) | 0.001 |
Multifocality | 120 (48.8%) | 100 (49.5%) | 20 (45.5%) | 0.626 |
Bilaterality | 78 (31.7%) | 62 (30.7%) | 16 (36.4%) | 0.464 |
Vascular invasion | 18/231 (7.8%) | 9 (4.7%) | 9 (22.0%) | 0.001 |
Lymphatic invasion | 140/236 (59.3%) | 114/195 (58.5%) | 26/41 (63.4%) | 0.557 |
Perineural invasion | 14/232 (6.0%) | 11/191 (5.8%) | 3/41 (7.3%) | 0.718 |
BRAF positive | 175/212 (82.5%) | 150/180 (83.3%) | 25/32 (78.1%) | 0.474 |
LNR | 0.37 ± 0.30 (range, 0.0–1.0) | 0.37 ± 0.30 (range, 0.0–1.0) | 0.41 ± 0.31 (range, 0.0–1.0) | 0.500 |
Positive LNs | 7.5 ± 9.6 (range, 0–74) | 6.6 ± 7.8 (range, 0–45) | 12.4 ± 15.5 (range, 0–74) | 0.031 |
Harvested LNs | 22.9 ± 27.7 (range, 1–185) | 20.4 ± 25.6 (range, 1–185) | 35.8 ± 34.5 (range, 1–132) | 0.013 |
T category | <0.001 | |||
T1 | 164 (66.7%) | 146 (72.3%) | 18 (40.9%) | |
T2 | 35 (14.2%) | 26 (12.9%) | 9 (20.5%) | |
T3a | 46 (18.7%) | 7 (3.5%) | 4 (9.1%) | |
T3b | 23 (11.4%) | 12 (27.3%) | ||
T4a | 1 (0.4%) | 0 (0.0%) | 1 (2.3%) | |
N category | <0.001 | |||
Nx | 17 (6.9%) | 10 (5.0%) | 7 (15.9%) | |
N0 | 39 (15.9%) | 36 (17.8%) | 3 (6.8%) | |
N1a | 125 (50.8%) | 111 (55.0%) | 14 (31.8%) | |
N1b | 65 (26.4%) | 45 (22.3%) | 20 (45.5%) | |
TNM stage | 0.003 | |||
Stage I | 201 (81.7%) | 172 (85.1%) | 29 (65.9%) | |
Stage II | 45 (18.3%) | 30 (14.9%) | 15 (34.1%) | |
RAI ablation | 185 (75.2%) | 147 (72.8%) | 38 (86.4%) | 0.059 |
RAI dose | 151.5 ± 85.5 (range, 0–700) | 146.9 ± 84.1 (range, 0–700) | 168.5 ± 89.6 (range, 0–450) | 0.157 |
1st recur site | 0.010 | |||
Contralateral lobe | 20 (8.1%) | 20 (9.9%) | 0 (0.0%) | |
Central compartment | 43 (17.5%) | 35 (17.3%) | 8 (18.2%) | |
Lateral compartment | 173 (70.3%) | 142 (70.3%) | 31 (70.5%) | |
Systemic metastasis | 10 (4.1%) | 5 (2.5%) | 5 (11.4%) | |
1st recur management | 0.036 | |||
Surgery ± RAI | 224 (91.1%) | 188 (93.1%) | 36 (81.8%) | |
RFA ± RAI | 16 (6.5%) | 11 (5.4%) | 5 (11.4%) | |
Systemic therapy only (RAI or TKI) | 6 (2.4%) | 3 (1.5%) | 3 (6.8%) | |
Variant change | 10/239 (4.2%) | 7/197 (3.6%) | 3/37 (8.1%) | 0.198 |
Mortality (Overall) | 8 (3.3%) | 3 (1.5%) | 5 (11.4%) | 0.005 |
Disease-specific Mortality | 4 (1.6%) | 1 (0.5%) | 3 (6.8%) | 0.019 |
Univariate | Multivariate | |||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
Age (≥55) | 2.472 (1.231–4.964) | 0.011 | ||
Male | 2.120 (1.087–4.134) | 0.027 | ||
Cancer type | ||||
PTC/FTC | Ref. | 0.014 | ||
MTC | 3.456 (0.559–21.386) | 0.182 | ||
PDTC/ATC | 10.368 (1.834–58.633) | 0.008 | ||
Aggressive variant | 0.344 (0.044–2.684) | 0.308 | ||
Tumor size (cm) | 1.562 (1.250–1.952) | <0.001 | ||
gETE | 3.632 (1.684–7.834) | 0.001 | ||
Vascular invasion | 5.656 (2.086–15.336) | 0.001 | 4.348 (1.247–15.166) | 0.021 |
Positive LNs | 1.051 (1.017–1.086) | 0.003 | ||
T category | ||||
T1 | Ref. | 0.002 | Ref. | 0.089 |
T2 | 2.808 (1.139–6.922) | 0.025 | 1.604 (0.501–5.136) | 0.426 |
T3 | 4.326 (1.984–9.434) | <0.001 | 2.938 (1.124-7.680) | 0.028 |
T4 | 1.31 × 1010 (0.000–1010) | 1.000 | ||
N category | ||||
N0 | Ref. | <0.001 | ||
N1a | 1.514 (0.412–5.567) | 0.533 | ||
N1b | 5.333 (1.468–19.379) | 0.011 | ||
Nx | 8.400 (1.831–38.530) | 0.006 | ||
TNM stage | ||||
Stage I | Ref. | |||
Stage II | 2.966 (1.423–6.179) | 0.004 | ||
1st recurrence management | ||||
Surgery ± RAI | Ref. | 0.054 | Ref. | 0.080 |
RFA ± RAI | 2.374 (0.778–7.244) | 0.129 | 4.249 (1.095–16.495) | 0.037 |
Systemic therapy only (RAI or TKI) | 5.222 (1.013–26.909) | 0.048 | 2.804 (0.382–20.578) | 0.311 |
Univariate | Multivariate | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (≥55) | 9.940 (1.033–95.627) | 0.047 | ||
Male | 2.349 (0.330–16.704) | 0.393 | ||
Cancer type | ||||
PTC/FTC | Ref. | 0.059 | Ref. | 0.993 |
MTC | 0.000 (0.000–10∞) | 0.992 | 0.000 (0.000–9.404 × 1093) | 0.945 |
PDTC/ATC | 15.910 (1.625–155.757) | 0.017 | 0.867 (0.047–15.998) | 0.924 |
Tumor size (cm) | 1.982 (1.313–2.990) | 0.001 | 2.005 (0.969–4.147) | 0.061 |
Vascular invasion | 5.438 (0.493–60.032) | 0.167 | ||
Positive LNs | 0.870 (0.667–1.136) | 0.306 | ||
TNM stage | ||||
Stage I | Ref. | |||
Stage II | 14.148 (1.469–136.295) | 0.022 | ||
1st recurrence management | ||||
Surgery ± RAI | Ref. | 0.079 | Ref. | 0.043 |
RFA ± RAI | 6.694 (0.607–73.861) | 0.121 | 4.465 (0.315–63.333) | 0.269 |
Systemic therapy only (RAI or TKI) | 20.654 (1.870–228.080) | 0.013 | 38.656 (1.810–825.392) | 0.019 |
Recurrence (224) | Single-Recurrence (n = 188) (C) | Re-Recurrence (n = 36) (D) | p-Value (C vs. D) | |
---|---|---|---|---|
1st recur site | 0.003 | |||
Contralateral lobe | 20 (8.9%) | 20 (10.6%) | 0 (0.0%) | |
Central compartment | 36 (16.1%) | 30 (16.0%) | 6 (16.7%) | |
Lateral compartment | 164 (73.2%) | 137 (72.9%) | 27 (75.0%) | |
Systemic metastasis | 4 (1.8%) | 1 (0.5%) | 3 (8.3%) | |
Cancer type | 0.018 | |||
PTC/FTC | 216 (96.4%) | 184 (97.9%) | 32 (88.9%) | |
MTC | 3 (1.3%) | 2 (1.1%) | 1 (2.8%) | |
PDTC/ATC | 5 (2.2%) | 2 (1.1%) | 3 (8.3%) | |
PTC variant at re-op | 0.753 | |||
Non-aggressive | 184 (88.5%) | 159 (88.8%) | 25 (86.2%) | |
Aggressive | 24 (4.2%) | 20 (11.2%) | 4 (13.8%) | |
Change of PTC variant (to aggressive variant) | 10/215 (4.7%) | 7/184 (3.8%) | 3/31 (9.7%) | 0.161 |
Positive LNs at re-op | 3.9 ± 4.6 (range: 0–45) | 3.7 ± 3.7 (range: 0–20) | 4.6 ± 7.9 (range: 0–45) | 0.516 |
Harvested LNs at re-op | 26.4 ± 21.1 (range: 1–124) | 27.4 ± 20.1 (range: 1–73) | 21.2 ± 25.1 (range: 1–124) | 0.109 |
LNR at 2nd op | 0.25 ± 0.30 (range: 0–1) | 0.22 ± 0.27 (range: 0–1) | 0.42 ± 0.38 (range: 0–1) | 0.005 |
Positive LNs > 5 | 47 (21.0%) | 40 (21.3%) | 7 (19.4%) | 0.805 |
RAI after re-op | 102 (45.5%) | 83 (44.1%) | 19 (52.8%) | 0.341 |
Mortality (Overall) | 6 (2.7%) | 2 (1.1%) | 4 (11.1%) | 0.007 |
Disease-specific Mortality | 2 (0.9%) | 0 (0.0%) | 2 (5.6%) | 0.025 |
Univariate | Multivariate | |||
---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | |
Age (≥55) | 2.915 (1.372–6.195) | 0.005 | 3.147 (1.433–6.914) | 0.004 |
Male | 2.404 (1.159–4.983) | 0.018 | 2.141 (1.004–4.566) | 0.049 |
Cancer type | ||||
PTC/FTC | Ref. | 0.051 | Ref. | 0.387 |
MTC | 2.875 (0.253–32.645) | 0.394 | 0.923 (0.072–11.743) | 0.950 |
PDTC/ATC | 8.625 (1.386–53.668) | 0.021 | 3.976 (0.552–28.660) | 0.171 |
Aggressive variant at re-op | 1.272 (0.401–4.031) | 0.683 | ||
Change of PTC variant (to aggressive variant) | 2.709 (0.661–11.097) | 0.166 | ||
Positive LNs | 1.035 (0.969–1.106) | 0.310 | ||
Harvested LNs | 0.985 (0.967–1.003) | 0.110 | ||
LNR 0.15 | 2.476 (1.191–5.144) | 0.015 | 2.536 (1.181−5.446) | 0.017 |
Positive LNs >5 | 0.893 (0.364–2.188) | 0.805 | ||
RAI after re-op | 1.414 (0.692–2.890) | 0.342 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kang, I.K.; Bae, J.S.; Kim, J.S.; Kim, K. Clinical Significance of the Lymph Node Ratio of the Second Operation to Predict Re-Recurrence in Thyroid Carcinoma. Cancers 2023, 15, 624. https://doi.org/10.3390/cancers15030624
Park J, Kang IK, Bae JS, Kim JS, Kim K. Clinical Significance of the Lymph Node Ratio of the Second Operation to Predict Re-Recurrence in Thyroid Carcinoma. Cancers. 2023; 15(3):624. https://doi.org/10.3390/cancers15030624
Chicago/Turabian StylePark, Joonseon, Il Ku Kang, Ja Seong Bae, Jeong Soo Kim, and Kwangsoon Kim. 2023. "Clinical Significance of the Lymph Node Ratio of the Second Operation to Predict Re-Recurrence in Thyroid Carcinoma" Cancers 15, no. 3: 624. https://doi.org/10.3390/cancers15030624
APA StylePark, J., Kang, I. K., Bae, J. S., Kim, J. S., & Kim, K. (2023). Clinical Significance of the Lymph Node Ratio of the Second Operation to Predict Re-Recurrence in Thyroid Carcinoma. Cancers, 15(3), 624. https://doi.org/10.3390/cancers15030624