Integrating Immunotherapy into Multimodal Treatment of Head and Neck Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Immune Microenvironment in HNSCC
3. Immunotherapy in Combination with Surgery for Locally Advanced HNSCC
4. Neoadjuvant Immune Checkpoint Inhibitor (ICI) Trials
5. Immunochemoradiotherapy in Locally Advanced HNSCC
6. Immunotherapy in the Multimodal Treatment of Recurrent and Metastatic Disease
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lacas, B.; Carmel, A.; Landais, C.; Wong, S.J.; Licitra, L.; Tobias, J.S.; Burtness, B.; Ghi, M.G.; Cohen, E.E.W.; Grau, C.; et al. Meta-Analysis of Chemotherapy in Head and Neck Cancer (MACH-NC): An Update on 107 Randomized Trials and 19,805 Patients, on Behalf of MACH-NC Group. Radiother. Oncol. 2021, 156, 281–293. [Google Scholar] [CrossRef] [PubMed]
- Ferris, R.L.; Blumenschein, G.; Fayette, J.; Guigay, J.; Colevas, A.D.; Licitra, L.; Harrington, K.; Kasper, S.; Vokes, E.E.; Even, C.; et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2016, 375, 1856–1867. [Google Scholar] [CrossRef] [Green Version]
- Burtness, B.; Harrington, K.J.; Greil, R.; Soulières, D.; Tahara, M.; de Castro, G.; Psyrri, A.; Basté, N.; Neupane, P.; Bratland, Å.; et al. Pembrolizumab Alone or with Chemotherapy versus Cetuximab with Chemotherapy for Recurrent or Metastatic Squamous Cell Carcinoma of the Head and Neck (KEYNOTE-048): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 394, 1915–1928. [Google Scholar] [CrossRef]
- Cohen, E.E.W.; Soulières, D.; Le Tourneau, C.; Dinis, J.; Licitra, L.; Ahn, M.-J.; Soria, A.; Machiels, J.-P.; Mach, N.; Mehra, R.; et al. Pembrolizumab versus Methotrexate, Docetaxel, or Cetuximab for Recurrent or Metastatic Head-and-Neck Squamous Cell Carcinoma (KEYNOTE-040): A Randomised, Open-Label, Phase 3 Study. Lancet 2019, 393, 156–167. [Google Scholar] [CrossRef]
- Curry, J.M.; Sprandio, J.; Cognetti, D.; Luginbuhl, A.; Bar-ad, V.; Pribitkin, E.; Tuluc, M. Tumor Microenvironment in Head and Neck Squamous Cell Carcinoma. Semin. Oncol. 2014, 41, 217–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elmusrati, A.; Wang, J.; Wang, C.-Y. Tumor Microenvironment and Immune Evasion in Head and Neck Squamous Cell Carcinoma. Int. J. Oral Sci. 2021, 13, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Duray, A.; Demoulin, S.; Hubert, P.; Delvenne, P.; Saussez, S. Immune Suppression in Head and Neck Cancers: A Review. J. Immunol. Res. 2011, 2010, e701657. [Google Scholar] [CrossRef]
- Ferris, R.L.; Whiteside, T.L.; Ferrone, S. Immune Escape Associated with Functional Defects in Antigen-Processing Machinery in Head and Neck Cancer. Clin. Cancer Res. 2006, 12, 3890–3895. [Google Scholar] [CrossRef] [Green Version]
- Bauman, J.E.; Harris, J.; Uppaluri, R.; Yao, M.; Ferris, R.L.; Chen, J.; Jordan, R.C.; Joshi, N.P.; Jujjuvaparu, S.; Blakaj, D.M.; et al. NRG-HN003: Phase I and Expansion Cohort Study of Adjuvant Pembrolizumab, Cisplatin and Radiation Therapy in Pathologically High-Risk Head and Neck Cancer. Cancers 2021, 13, 2882. [Google Scholar] [CrossRef]
- Bakos, O.; Lawson, C.; Rouleau, S.; Tai, L.-H. Combining Surgery and Immunotherapy: Turning an Immunosuppressive Effect into a Therapeutic Opportunity. J. Immunother. Cancer 2018, 6, 86. [Google Scholar] [CrossRef]
- Wilkins, R.C.; Wilkinson, D.; Maharaj, H.P.; Bellier, P.V.; Cybulski, M.B.; McLean, J.R.N. Differential Apoptotic Response to Ionizing Radiation in Subpopulations of Human White Blood Cells. Mutat. Res. 2002, 513, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.J.; Gang, M.; Rao, Y.J.; Campian, J.; Daly, M.; Gay, H.; Oppelt, P.; Jackson, R.S.; Rich, J.; Paniello, R.; et al. Association of Posttreatment Lymphopenia and Elevated Neutrophil-to-Lymphocyte Ratio with Poor Clinical Outcomes in Patients With Human Papillomavirus-Negative Oropharyngeal Cancers. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Topalian, S.L.; Taube, J.M.; Pardoll, D.M. Neoadjuvant Checkpoint Blockade for Cancer Immunotherapy. Science 2020, 367, eaax0182. [Google Scholar] [CrossRef] [PubMed]
- Luoma, A.M.; Suo, S.; Wang, Y.; Gunasti, L.; Porter, C.B.M.; Nabilsi, N.; Tadros, J.; Ferretti, A.P.; Liao, S.; Gurer, C.; et al. Tissue-Resident Memory and Circulating T Cells Are Early Responders to Pre-Surgical Cancer Immunotherapy. Cell 2022, 185, 2918–2935.e29. [Google Scholar] [CrossRef] [PubMed]
- Buchwald, Z.S.; Nasti, T.H.; Lee, J.; Eberhardt, C.S.; Wieland, A.; Im, S.J.; Lawson, D.; Curran, W.; Ahmed, R.; Khan, M.K. Tumor-Draining Lymph Node Is Important for a Robust Abscopal Effect Stimulated by Radiotherapy. J. Immunother. Cancer 2020, 8, e000867. [Google Scholar] [CrossRef] [PubMed]
- Jessy, T. Immunity over Inability: The Spontaneous Regression of Cancer. J. Nat. Sci. Biol. Med. 2011, 2, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Fehleisen, F. Die Aetiologie Des Erysipels. Dtsch. Med. Wochenschr. 1883, 9, 237–238. [Google Scholar]
- Coley, W.B. The Treatment of Inoperable Sarcoma by Bacterial Toxins (the Mixed Toxins of the Streptococcus Erysipelas and the Bacillus Prodigiosus). Proc. R. Soc. Med. 1910, 3, 1–48. [Google Scholar] [CrossRef] [Green Version]
- Kirkwood, J.M.; Strawderman, M.H.; Ernstoff, M.S.; Smith, T.J.; Borden, E.C.; Blum, R.H. Interferon Alfa-2b Adjuvant Therapy of High-Risk Resected Cutaneous Melanoma: The Eastern Cooperative Oncology Group Trial EST 1684. J Clin. Oncol 1996, 14, 7–17. [Google Scholar] [CrossRef]
- Allen, C.T.; Judd, N.P.; Bui, J.D.; Uppaluri, R. The Clinical Implications of Antitumor Immunity in Head and Neck Cancer. Laryngoscope 2012, 122, 144–157. [Google Scholar] [CrossRef]
- Shibata, H.; Saito, S.; Uppaluri, R. Immunotherapy for Head and Neck Cancer: A Paradigm Shift from Induction Chemotherapy to Neoadjuvant Immunotherapy. Front. Oncol. 2021, 11, 727433. [Google Scholar] [CrossRef] [PubMed]
- Bryan, R.B.; Gough, M.J.; Seung, S.K.; Jutric, Z.; Weinberg, A.D.; Fox, B.A.; Crittenden, M.R.; Leidner, R.S.; Curti, B. Cytoreductive Surgery for Head and Neck Squamous Cell Carcinoma in the New Age of Immunotherapy. Oral Oncol. 2016, 61, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Coutu, B.; Ryan, E.; Christensen, D.; Lawrence, E.; Bell, E.B.; Zhen, W.; Sayed, Z. Positive Margins Matter Regardless of Subsequent Resection Findings. Oral Oncol. 2022, 128, 105850. [Google Scholar] [CrossRef] [PubMed]
- Amin, N.; Maroun, C.A.; El Asmar, M.; Alkhatib, H.H.; Guller, M.; Herberg, M.E.; Zhu, G.; Seiwert, T.Y.; Pardoll, D.; Eisele, D.W.; et al. Neoadjuvant Immunotherapy Prior to Surgery for Mucosal Head and Neck Squamous Cell Carcinoma: Systematic Review. Head Neck 2022, 44, 562–571. [Google Scholar] [CrossRef]
- Ferris, R.L.; Spanos, W.C.; Leidner, R.; Gonçalves, A.; Martens, U.M.; Kyi, C.; Sharfman, W.; Chung, C.H.; Devriese, L.A.; Gauthier, H.; et al. Neoadjuvant Nivolumab for Patients with Resectable HPV-Positive and HPV-Negative Squamous Cell Carcinomas of the Head and Neck in the CheckMate 358 Trial. J. Immunother. Cancer 2021, 9, e002568. [Google Scholar] [CrossRef]
- Uppaluri, R.; Campbell, K.M.; Egloff, A.M.; Zolkind, P.; Skidmore, Z.L.; Nussenbaum, B.; Paniello, R.C.; Rich, J.T.; Jackson, R.; Pipkorn, P.; et al. Neoadjuvant and Adjuvant Pembrolizumab in Resectable Locally Advanced, Human Papillomavirus-Unrelated Head and Neck Cancer: A Multicenter, Phase II Trial. Clin. Cancer Res. 2020, 26, 5140–5152. [Google Scholar] [CrossRef]
- Wise-Draper, T.M.; Gulati, S.; Palackdharry, S.; Hinrichs, B.H.; Worden, F.P.; Old, M.O.; Dunlap, N.E.; Kaczmar, J.M.; Patil, Y.; Riaz, M.K.; et al. Phase II Clinical Trial of Neoadjuvant and Adjuvant Pembrolizumab in Resectable Local-Regionally Advanced Head and Neck Squamous Cell Carcinoma. Clin. Cancer Res. 2022, 28, 1345–1352. [Google Scholar] [CrossRef]
- Vos, J.L.; Elbers, J.B.W.; Krijgsman, O.; Traets, J.J.H.; Qiao, X.; van der Leun, A.M.; Lubeck, Y.; Seignette, I.M.; Smit, L.A.; Willems, S.M.; et al. Neoadjuvant Immunotherapy with Nivolumab and Ipilimumab Induces Major Pathological Responses in Patients with Head and Neck Squamous Cell Carcinoma. Nat. Commun. 2021, 12, 7348. [Google Scholar] [CrossRef]
- Schoenfeld, J.D.; Hanna, G.J.; Jo, V.Y.; Rawal, B.; Chen, Y.-H.; Catalano, P.S.; Lako, A.; Ciantra, Z.; Weirather, J.L.; Criscitiello, S.; et al. Neoadjuvant Nivolumab or Nivolumab Plus Ipilimumab in Untreated Oral Cavity Squamous Cell Carcinoma: A Phase 2 Open-Label Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1563–1570. [Google Scholar] [CrossRef]
- Ferrarotto, R.; Bell, D.; Rubin, M.L.; Hutcheson, K.A.; Johnson, J.M.; Goepfert, R.P.; Phan, J.; Elamin, Y.Y.; Torman, D.K.; Warneke, C.L.; et al. Impact of Neoadjuvant Durvalumab with or without Tremelimumab on CD8+ Tumor Lymphocyte Density, Safety, and Efficacy in Patients with Oropharynx Cancer: CIAO Trial Results. Clin. Cancer Res. 2020, 26, 3211–3219. [Google Scholar] [CrossRef] [Green Version]
- Leidner, R.; Crittenden, M.; Young, K.; Xiao, H.; Wu, Y.; Couey, M.A.; Patel, A.A.; Cheng, A.C.; Watters, A.L.; Bifulco, C.; et al. Neoadjuvant Immunoradiotherapy Results in High Rate of Complete Pathological Response and Clinical to Pathological Downstaging in Locally Advanced Head and Neck Squamous Cell Carcinoma. J. Immunother. Cancer 2021, 9, e002485. [Google Scholar] [CrossRef] [PubMed]
- Zinner, R.; Johnson, J.M.; Tuluc, M.; Curry, J.M.; Luginbuhl, A.; Fundakowski, C.C.; Yampolsky, A.; Goldman, R.A.; Solomides, C.C.; Mardekian, S.; et al. Neoadjuvant Nivolumab (N) plus Weekly Carboplatin (C) and Paclitaxel (P) in Resectable Locally Advanced Head and Neck Cancer. J. Clin. Oncol. 2020, 38, 6583. Available online: https://ascopubs.org/doi/10.1200/JCO.2020.38.15_suppl.6583 (accessed on 7 October 2022). [CrossRef]
- Sadeghi, N.; Khalife, S.; Mascarella, M.A.; Ramanakumar, A.V.; Richardson, K.; Joshi, A.S.; Bouganim, N.; Taheri, R.; Fuson, A.; Siegel, R. Pathologic Response to Neoadjuvant Chemotherapy in HPV-Associated Oropharynx Cancer. Head Neck 2020, 42, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.J.; O’Neill, A.; Shin, K.-Y.; Wong, K.; Jo, V.Y.; Quinn, C.T.; Cutler, J.M.; Flynn, M.; Lizotte, P.H.; Annino, D.J.; et al. Neoadjuvant and Adjuvant Nivolumab and Lirilumab in Patients with Recurrent, Resectable Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2022, 28, 468–478. [Google Scholar] [CrossRef] [PubMed]
- Miles, B.; Safran, H.P.; Monk, B.J. Therapeutic Options for Treatment of Human Papillomavirus-Associated Cancers—Novel Immunologic Vaccines: ADXS11-001. Gynecol. Oncol. Res. Pract 2017, 4, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Julian, R.; Savani, M.; Bauman, J.E. Immunotherapy Approaches in HPV-Associated Head and Neck Cancer. Cancers 2021, 13, 5889. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Halmos, B.; Porosnicu, M.; Saba, N.F.; Sukari, A.; Grethlein, S.J.; Mehra, R.; Adkins, D.; Fidler, M.J.; Kumar, R.; et al. A Phase 1b/2a, Multi-Center, Open-Label Study to Evaluate the Safety and Efficacy of Combination Treatment with MEDI0457 (INO-3112) and Durvalumab (MEDI4736) in Patients with Recurrent/Metastatic Human Papilloma Virus–Associated Head and Neck Squamous Cell Cancer. JCO 2018, 36, TPS6093. [Google Scholar] [CrossRef]
- Nguyen-Tan, P.F.; Zhang, Q.; Ang, K.K.; Weber, R.S.; Rosenthal, D.I.; Soulieres, D.; Kim, H.; Silverman, C.; Raben, A.; Galloway, T.J.; et al. Randomized Phase III Trial to Test Accelerated versus Standard Fractionation in Combination with Concurrent Cisplatin for Head and Neck Carcinomas in the Radiation Therapy Oncology Group 0129 Trial: Long-Term Report of Efficacy and Toxicity. J. Clin. Oncol. 2014, 32, 3858–3866. [Google Scholar] [CrossRef]
- Ang, K.K.; Zhang, Q.; Rosenthal, D.I.; Nguyen-Tan, P.F.; Sherman, E.J.; Weber, R.S.; Galvin, J.M.; Bonner, J.A.; Harris, J.; El-Naggar, A.K.; et al. Randomized Phase III Trial of Concurrent Accelerated Radiation plus Cisplatin with or without Cetuximab for Stage III to IV Head and Neck Carcinoma: RTOG 0522. J. Clin. Oncol. 2014, 32, 2940–2950. [Google Scholar] [CrossRef]
- Qian, J.M.; Schoenfeld, J.D. Radiotherapy and Immunotherapy for Head and Neck Cancer: Current Evidence and Challenges. Front. Oncol. 2020, 10, 608772. [Google Scholar] [CrossRef]
- Lee, N.Y.; Ferris, R.L.; Psyrri, A.; Haddad, R.I.; Tahara, M.; Bourhis, J.; Harrington, K.; Chang, P.M.-H.; Lin, J.-C.; Razaq, M.A.; et al. Avelumab plus Standard-of-Care Chemoradiotherapy versus Chemoradiotherapy Alone in Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck: A Randomised, Double-Blind, Placebo-Controlled, Multicentre, Phase 3 Trial. Lancet Oncol. 2021, 22, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Machiels, J.-P. LBA5—Primary Results of the Phase III KEYNOTE-412 Study: Pembrolizumab (Pembro) with Chemoradiation Therapy (CRT) vs Placebo plus CRT for Locally Advanced (LA) Head and Neck Squamous Cell Carcinoma (HNSCC). Ann. Oncol. 2022, 33 (Suppl. S7), S808–S869. [Google Scholar] [CrossRef]
- Tao, Y.; Aupérin, A.; Sun, X.; Sire, C.; Martin, L.; Coutte, A.; Lafond, C.; Miroir, J.; Liem, X.; Rolland, F.; et al. Avelumab-Cetuximab-Radiotherapy versus Standards of Care in Patients with Locally Advanced Squamous Cell Carcinoma of Head and Neck (LA-SCCHN): Randomized Phase III GORTEC-REACH Trial. Eur. J. Cancer 2020, 141, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.A.; Harari, P.M.; Giralt, J.; Azarnia, N.; Shin, D.M.; Cohen, R.B.; Jones, C.U.; Sur, R.; Raben, D.; Jassem, J.; et al. Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2006, 354, 567–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mell, L.K.; Torres-Saavedra, P.A.; Wong, S.J.; Chang, S.S.; Kish, J.A.; Minn, A.; Jordan, R.C.; Liu, T.; Truong, M.T.; Winquist, E.W.; et al. Radiotherapy with Durvalumab vs. Cetuximab in Patients with Locoregionally Advanced Head and Neck Cancer and a Contraindication to Cisplatin: Phase II Results of NRG-HN004. Int. J. Radiat. Oncol. Biol. Phys. 2022, 113, 1058. [Google Scholar] [CrossRef]
- Antonia, S.J.; Villegas, A.; Daniel, D.; Vicente, D.; Murakami, S.; Hui, R.; Yokoi, T.; Chiappori, A.; Lee, K.H.; de Wit, M.; et al. Durvalumab after Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 377, 1919–1929. [Google Scholar] [CrossRef] [Green Version]
- Spigel, D.R.; Faivre-Finn, C.; Gray, J.E.; Vicente, D.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Garassino, M.C.; Hui, R.; Quantin, X.; et al. Five-Year Survival Outcomes from the PACIFIC Trial: Durvalumab After Chemoradiotherapy in Stage III Non-Small-Cell Lung Cancer. J. Clin. Oncol. 2022, 40, 1301–1311. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lièvre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Lin, A.J.; Rao, Y.J.; Chin, R.-I.; Campian, J.; Mullen, D.; Thotala, D.; Daly, M.; Gay, H.; Oppelt, P.; Hallahan, D.; et al. Post-Operative Radiation Effects on Lymphopenia, Neutrophil to Lymphocyte Ratio, and Clinical Outcomes in Palatine Tonsil Cancers. Oral Oncol. 2018, 86, 1–7. [Google Scholar] [CrossRef]
- Update on CALLA Phase III Trial of Concurrent Use of Imfinzi and Chemoradiotherapy in Locally Advanced Cervical Cancer. Available online: https://www.astrazeneca.com/media-centre/press-releases/2022/update-on-calla-phase-iii-trial-for-imfinzi.html (accessed on 7 November 2022).
- van Hagen, P.; Hulshof, M.C.C.M.; van Lanschot, J.J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.a.P.; Bonenkamp, J.J.; et al. Preoperative Chemoradiotherapy for Esophageal or Junctional Cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, H.; Takenaka, R.; Omori, M.; Imae, T.; Okuma, K.; Ohtomo, K.; Nakagawa, K. Involved-Field Radiotherapy (IFRT) versus Elective Nodal Irradiation (ENI) in Combination with Concurrent Chemotherapy for 239 Esophageal Cancers: A Single Institutional Retrospective Study. Radiat. Oncol. 2015, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.T.; Shen, J.; Finlay, J.; Mitra, N.; Evans, T.; Stevenson, J.; Langer, C.; Lin, L.; Hahn, S.; Glatstein, E.; et al. Elective Nodal Irradiation (ENI) vs. Involved Field Radiotherapy (IFRT) for Locally Advanced Non-Small Cell Lung Cancer (NSCLC): A Comparative Analysis of Toxicities and Clinical Outcomes. Radiother. Oncol. 2010, 95, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Spencer, C.R.; Gay, H.A.; Haughey, B.H.; Nussenbaum, B.; Adkins, D.R.; Wildes, T.M.; DeWees, T.A.; Lewis, J.S.; Thorstad, W.L. Eliminating Radiotherapy to the Contralateral Retropharyngeal and High Level II Lymph Nodes in Head and Neck Squamous Cell Carcinoma Is Safe and Improves Quality of Life. Cancer 2014, 120, 3994–4002. [Google Scholar] [CrossRef] [Green Version]
- Chin, R.-I.; Rao, Y.J.; Hwang, M.Y.; Spencer, C.R.; Pierro, M.; DeWees, T.; Patel, P.; Sinha, P.; Gay, H.A.; Daly, M.; et al. Comparison of Unilateral versus Bilateral Intensity-Modulated Radiotherapy for Surgically Treated Squamous Cell Carcinoma of the Palatine Tonsil. Cancer 2017, 123, 4594–4607. [Google Scholar] [CrossRef] [PubMed]
- Contreras, J.A.; Spencer, C.; DeWees, T.; Haughey, B.; Henke, L.E.; Chin, R.-I.; Paniello, R.; Rich, J.; Jackson, R.; Oppelt, P.; et al. Eliminating Postoperative Radiation to the Pathologically Node-Negative Neck: Long-Term Results of a Prospective Phase II Study. J. Clin. Oncol. 2019, 37, 2548–2555. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, A.J.; Agrawal, N.; Pearson, A.; Gooi, Z.; Blair, E.; Cursio, J.; Juloori, A.; Ginat, D.; Howard, A.; Chin, J.; et al. Risk and Response Adapted De-Intensified Treatment for HPV-Associated Oropharyngeal Cancer: Optima Paradigm Expanded Experience. Oral Oncol. 2021, 122, 105566. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.-L.; Huang, C.-L.; Zhang, N.; Jiang, W.; Wu, Y.-S.; Huang, S.H.; Mao, Y.-P.; Liu, Q.; Li, J.-B.; Liang, S.-Q.; et al. Elective Upper-Neck versus Whole-Neck Irradiation of the Uninvolved Neck in Patients with Nasopharyngeal Carcinoma: An Open-Label, Non-Inferiority, Multicentre, Randomised Phase 3 Trial. Lancet Oncol. 2022, 23, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.J.; McBride, S.M.; Riaz, N.; Lee, N.Y. Reducing the Radiation Therapy Dose Prescription for Elective Treatment Areas in Human Papillomavirus-Associated Oropharyngeal Carcinoma Being Treated with Primary Chemoradiotherapy at Memorial Sloan Kettering Cancer Center. Pract. Radiat. Oncol. 2019, 9, 98–101. [Google Scholar] [CrossRef]
- Clump, D.A.; Zandberg, D.P.; Skinner, H.D.; Ohr, J.; Fenton, M.J.; Normolle, D.P.; Beitler, J.J.; Bauman, J.E.; Ferris, R.L. A Randomized Phase II Study Evaluating Concurrent or Sequential Fixed-Dose Immune Therapy in Combination with Cisplatin and Intensity-Modulated Radiotherapy in Intermediate- or High-Risk, Previously Untreated, Locally Advanced Head and Neck Cancer (LA SCCHN). J. Clin. Oncol. 2022, 40, 6007. Available online: https://ascopubs.org/doi/abs/10.1200/JCO.2022.40.16_suppl.6007 (accessed on 6 October 2022).
- Pignon, J.-P.; le Maître, A.; Maillard, E.; Bourhis, J. MACH-NC Collaborative Group Meta-Analysis of Chemotherapy in Head and Neck Cancer (MACH-NC): An Update on 93 Randomised Trials and 17,346 Patients. Radiother. Oncol. 2009, 92, 4–14. [Google Scholar] [CrossRef]
- Muzaffar, J.; Bari, S.; Kirtane, K.; Chung, C.H. Recent Advances and Future Directions in Clinical Management of Head and Neck Squamous Cell Carcinoma. Cancers 2021, 13, 338. [Google Scholar] [CrossRef] [PubMed]
- Ragin, C.C.R.; Modugno, F.; Gollin, S.M. The Epidemiology and Risk Factors of Head and Neck Cancer: A Focus on Human Papillomavirus. J. Dent. Res. 2007, 86, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Rivera, F.; García-Castaño, A.; Vega, N.; Vega-Villegas, M.E.; Gutiérrez-Sanz, L. Cetuximab in Metastatic or Recurrent Head and Neck Cancer: The EXTREME Trial. Expert Rev. Anticancer Ther. 2009, 9, 1421–1428. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, W.; Irabor, O.C.; Schoenfeld, J.D.; Hesser, J.; Demaria, S.; Formenti, S.C. Using Immunotherapy to Boost the Abscopal Effect. Nat. Rev. Cancer 2018, 18, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Dewan, M.Z.; Galloway, A.E.; Kawashima, N.; Dewyngaert, J.K.; Babb, J.S.; Formenti, S.C.; Demaria, S. Fractionated but Not Single-Dose Radiotherapy Induces an Immune-Mediated Abscopal Effect When Combined with Anti-CTLA-4 Antibody. Clin. Cancer Res. 2009, 15, 5379–5388. [Google Scholar] [CrossRef] [Green Version]
- Bahig, H.; Aubin, F.; Nguyen-Tan, P.F.; Souliere, D.; Palma, D.A.; Charpentier, D.; Debenham, B.J.; Jamal, R.; Sultanem, K.; Ballivy, O.; et al. Initial Analyses of a Phase I/II Trial of Durvalumab (D) plus Tremelimumab (T) and Stereotactic Body Radiotherapy (SBRT) for Oligometastatic Head and Neck Carcinoma. JCO 2020, 38, 6531. [Google Scholar] [CrossRef]
- McBride, S.; Sherman, E.; Tsai, C.J.; Baxi, S.; Aghalar, J.; Eng, J.; Zhi, W.I.; McFarland, D.; Michel, L.S.; Young, R.; et al. Randomized Phase II Trial of Nivolumab with Stereotactic Body Radiotherapy Versus Nivolumab Alone in Metastatic Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2021, 39, 30–37. [Google Scholar] [CrossRef]
- Thames, H.D.; Peters, L.J.; Withers, H.R.; Fletcher, G.H. Accelerated Fractionation vs Hyperfractionation: Rationales for Several Treatments per Day. Int. J. Radiat. Oncol. Biol. Phys. 1983, 9, 127–138. [Google Scholar] [CrossRef]
- Patel, R.B.; Baniel, C.C.; Sriramaneni, R.N.; Bradley, K.; Markovina, S.; Morris, Z.S. Combining Brachytherapy and Immunotherapy to Achieve in Situ Tumor Vaccination: A Review of Cooperative Mechanisms and Clinical Opportunities. Brachytherapy 2018, 17, 995–1003. [Google Scholar] [CrossRef]
NCT Number | Study Name | Eligible Disease | Description | Outcome |
---|---|---|---|---|
Monotherapy Neoadjuvant +/− Adjuvant after Surgery | ||||
NCT02488759 | CheckMate-358 | Stage III–IV resectable HNSCC (HPV-agnostic) | N = 52 Nivolumab (240 mg IV) on Days 1 and 15, surgery planned day 29; no surgical delay > 4 weeks. | Nivolumab safe; pathologic regression of 3.5% of tumors for HPV+ and 5.9% for HPV− [25] |
NCT02296684 | Uppaluri et al., 2020 (WashU and Harvard) | Stage III–IV resectable HNSCC (not HPV or sinonasal) | N = 36 Pembrolizumab (200 mg IV), one dose followed by surgery 2–3 weeks later; high-risk pathology also received pembrolizumab after adjuvant CRT; no surgical delay due to AE | Pembrolizumab safe; pathologic regression of tumor by 44% overall (>50% seen in 22%); one-year relapse, 16.7% [26] |
NCT02641093 | Wise-Draper et al., 2022 (Cincinnati) | Stage III–IV resectable HNSCC; T3/T4 or >2 LN/ENE. (not HPV+ oropharynx or nasopharynx) | N = 75 Pembrolizumab (200 mg IV), one dose followed by surgery 2–3 weeks later; high-risk pathology also received pembrolizumab along with adjuvant CRT; no surgical delay due to AE | Difference seen in low-risk (96%) vs. high-risk (69%) groups DFS at one year. The pathologic response was predictive of DFS. The timing of ICI may lead to lower DFS than prior studies [27] |
Combinated Anti-PD-L1/Anti-CTLA-4 Neoadjuvant | ||||
NCT03003637 | IMCISION | Stage II–IV resectable HNSCC, some recurrent | N = 32 (26 combination) Nivolumab (240 mg IV), ×2 in Weeks 1 and 3, plus ipilimumab (1 mg/kg in Week 1 only; no surgical delays | Combination tx induced a 35% major pathological response at the primary tumor site; SAE, 38%; Grade 3/4 [28] |
NCT02919683 | Schoenfeld et al., 2020 (Harvard) | Stage T2-4b/N+ oral cavity SCC | N = 29 Nivolumab neoadjuvant +/− ipilimumab (15 patients); no surgical delays. Nivolumab given in Weeks 1 and 3; ipilimumab was given in Week 1 only (1 mg/kg) | For the monotherapy or combined arms: 53% downstaging vs. 69%; pathological response of 53% vs. 73%; mPR/CR in 1 vs. 3 patients [29] |
NCT03144778 | CIAO | Stage II–IVA OPSCC, new or recurrent, surgically resectable | N = 28 Neoadjuvant durvalumab +/− tremelimumab; endpoint to measure CD8+ TIL density | Combined therapy did not show increased TIL; the safety profile was confirmed; 29% mPR (<10% of the viable tumor left) [30] |
Immunotherapy with Surgery and Chemoradiation | ||||
NCT03247712 | Neoadjuvant Immuno-Radiotherapy Trial (Oregon) | Stage I–III p16+ or Stage III–IVA p16− HNSCC; no prior treatment | N = 21 Neoadjuvant SBRT +/− nivolumab; no delays to surgery; safety profile met. Adjuvant nivolumab planned ×3 months postoperatively | PORT eliminated a patient in 20/21 due to a favorable pathologic response; 86% mPR; 90% downstaging (mostly p16+) [31] |
NCT03342911 | Zinner et al., 2020 (Thomas Jefferson University) | Stage II–IV HNSCC, resectable with post-operative XRT planned | N = 27 Neoadjuvant carboplatin (C), paclitaxel (P), and nivolumab (N); surgery in Week 8; safety profile met | Pending final results; the initial results showed pCR 11/26 (42%) with 69% mPR vs. 65% in HPV+ vs. HPV− tumors [32] |
NCT05459129 | Morpheus | LAHNSCC, resectable | Planning to enroll 180 patients to 4 arms: atezolizumab +/− tiragolumab and neoajuvant SBRT vs. carboplatin/paclitaxel arms | Pending, currently enrolling |
NCT Number | Study Name | Eligible Disease | Description | Outcome |
---|---|---|---|---|
Concurrent Immunotherapy with Definitive Chemoradiation | ||||
NCT02952586 | JAVELIN HN 100 | LAHNSCC |
| Primary endpoint of improved PFS not reached [41] |
NCT03040999 | KEYNOTE-412 | LAHNSCC |
| Primary endpoint of improved EFS not reached [42] |
NCT03952585 | NRG-HN005 | Early-stage p16-positive oropharyngeal cancer |
| Pending |
Sequential Immunotherapy after Definitive Chemoradiation | ||||
NCT0811015 | EA3161 | Intermediate-risk p16-positive oropharyngeal cancer |
| Pending |
Immunotherapy with Surgery and Chemoradiation | ||||
NCT01810913 | RTOG 1216 | Resected p16-negative LAHNSCC |
| Pending |
NCT03576417 | NIVOPOSTOP | Resected LAHNSCC |
| Pending |
NCT03452137 | IMvoke010 | Definitively treated LAHNSCC (CRT or surgery as the definitive local therapy) | Definitive local therapy followed by:
| Pending |
Immunotherapy as a Neoadjuvant Therapy Prior to Surgery and also with Adjuvant CRT | ||||
NCT03765918 | MK-3475-689 | Resectable LAHNSCC |
| Pending |
NCT03700905 | IMSTAR-HN | Resectable LAHNSCC |
| Pending |
Immunotherapy for Patients Ineligible for Cisplatin | ||||
NCT03258554 | NRG-HN004 | LAHNSCC, cisplatin ineligible |
| Primary endpoint of improved PFS not reached [45] |
NCT02999087 | REACH | LAHNSCC, cisplatin eligible and -ineligible |
| Primary endpoint of improved PFS not reached for cisplatin-eligible and -ineligible patients [43] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, Y.J.; Goodman, J.F.; Haroun, F.; Bauman, J.E. Integrating Immunotherapy into Multimodal Treatment of Head and Neck Cancer. Cancers 2023, 15, 672. https://doi.org/10.3390/cancers15030672
Rao YJ, Goodman JF, Haroun F, Bauman JE. Integrating Immunotherapy into Multimodal Treatment of Head and Neck Cancer. Cancers. 2023; 15(3):672. https://doi.org/10.3390/cancers15030672
Chicago/Turabian StyleRao, Yuan James, Joseph F. Goodman, Faysal Haroun, and Julie E. Bauman. 2023. "Integrating Immunotherapy into Multimodal Treatment of Head and Neck Cancer" Cancers 15, no. 3: 672. https://doi.org/10.3390/cancers15030672
APA StyleRao, Y. J., Goodman, J. F., Haroun, F., & Bauman, J. E. (2023). Integrating Immunotherapy into Multimodal Treatment of Head and Neck Cancer. Cancers, 15(3), 672. https://doi.org/10.3390/cancers15030672