Lithium in Cancer Therapy: Friend or Foe?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Direct Protein Targets of Lithium
3. Anti-Cancer Effects and Underlying Mechanisms of Lithium
3.1. Lithium Regulates the Process of Programmed Cell Death (PCD)
3.1.1. Apoptosis
3.1.2. Autophagy
3.1.3. Necroptosis
3.2. Lithium Affects Cell Proliferation
3.2.1. Lithium Arrests Cells in the S and G2/M Phases
3.2.2. Lithium Inhibits DNA Replication and Reparation
3.3. Lithium Prevents Tumor Metastasis
3.3.1. Lithium Reverses Epithelial–Mesenchymal Transition (EMT)
3.3.2. Lithium Inhibits Blood Vessel Development and Lymphangiogenesis
3.4. Lithium Modulates Intracellular Redox Balance
3.5. Lithium Remolds Energy Metabolism
3.6. Lithium Down-Regulated Intracellular Calcium
3.7. Lithium Nourishes the Muscle
4. Applications of Lithium to Cancer Therapy
4.1. Effects of Lithium on Tumor Development and Incidence
4.2. Adjuvant Effect of Lithium with Other Anti-Cancer Drugs
5. Clinical Applications of Lithium Nowadays
5.1. Anti-Leukopenia in Chemotherapy
5.2. Adjuvant of 131I for Ablation Therapy
6. Clinical Challenges Associated with Lithium
6.1. Lithium Has Biphasic Effects on Tumor Cell Proliferation and Apoptosis
6.2. The Narrow Therapeutic Window and High Dosage Requirement of Lithium
6.3. The Immune Inhibitory Effects of Lithium
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kashyap, D.; Tuli, H.S.; Yerer, M.B.; Sharma, A.; Sak, K.; Srivastava, S.; Pandey, A.; Garg, V.K.; Sethi, G.; Bishayee, A. Natural product-based nanoformulations for cancer therapy: Opportunities and challenges. Semin. Cancer Biol. 2021, 69, 5–23. [Google Scholar] [CrossRef] [PubMed]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev. 2020, 86, 102019. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Song, S.; Zhang, H. Cancer therapeutic strategies based on metal ions. Chem. Sci. 2021, 12, 12234–12247. [Google Scholar] [CrossRef] [PubMed]
- Chi, Y.; Sun, P.; Gao, Y.; Zhang, J.; Wang, L. Ion Interference Therapy of Tumors Based on Inorganic Nanoparticles. Biosensors 2022, 12, 100. [Google Scholar] [CrossRef]
- Pacholko, A.G.; Bekar, L.K. Lithium orotate: A superior option for lithium therapy? Brain Behav. 2021, 11, e2262. [Google Scholar] [CrossRef]
- Gitlin, M. Lithium side effects and toxicity: Prevalence and management strategies. Int. J. Bipolar Disord. 2016, 4, 27. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, C.; Gao, X.; Yao, Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022, 12, 2115–2132. [Google Scholar] [CrossRef]
- Hu, H.; Xu, Q.; Mo, Z.; Hu, X.; He, Q.; Zhang, Z.; Xu, Z. New anti-cancer explorations based on metal ions. J. Nanobiotechnol. 2022, 20, 457. [Google Scholar] [CrossRef]
- Ochoa, E.L.M. Lithium as a Neuroprotective Agent for Bipolar Disorder: An Overview. Cell. Mol. Neurobiol. 2022, 42, 85–97. [Google Scholar] [CrossRef]
- Dubovsky, S.L. Mania. Contin. Lifelong Learn. Neurol. 2015, 21, 737–755. [Google Scholar] [CrossRef]
- Berridge, M.J.; Downes, C.P.; Hanley, M.R. Neural and developmental actions of lithium: A unifying hypothesis. Cell 1989, 59, 411–419. [Google Scholar] [CrossRef]
- Sarkar, S.; Rubinsztein, D.C. Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations. Autophagy 2006, 2, 132–134. [Google Scholar] [CrossRef]
- Berridge, M.J. The Inositol Trisphosphate/Calcium Signaling Pathway in Health and Disease. Physiol. Rev. 2016, 96, 1261–1296. [Google Scholar] [CrossRef]
- Lepore, E.; Lauretta, R.; Bianchini, M.; Mormando, M.; Di Lorenzo, C.; Unfer, V. Inositols Depletion and Resistance: Principal Mechanisms and Therapeutic Strategies. Int. J. Mol. Sci. 2021, 22, 6796. [Google Scholar] [CrossRef]
- Campbell, I.H.; Campbell, H.; Smith, D.J. Insulin signaling as a therapeutic mechanism of lithium in bipolar disorder. Transl. Psychiatry 2022, 12, 350. [Google Scholar] [CrossRef]
- McIntyre, R.S.; Berk, M.; Brietzke, E.; Goldstein, B.I.; Lopez-Jaramillo, C.; Kessing, L.V.; Malhi, G.S.; Nierenberg, A.A.; Rosenblat, J.D.; Majeed, A.; et al. Bipolar disorders. Lancet 2020, 396, 1841–1856. [Google Scholar] [CrossRef]
- Duda, P.; Akula, S.M.; Abrams, S.L.; Steelman, L.S.; Martelli, A.M.; Cocco, L.; Ratti, S.; Candido, S.; Libra, M.; Montalto, G.; et al. Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells 2020, 9, 1110. [Google Scholar] [CrossRef]
- Lyman, G.H.; Williams, C.C.; Preston, D. The use of lithium carbonate to reduce infection and leukopenia during systemic chemotherapy. N. Engl. J. Med. 1980, 302, 257–260. [Google Scholar] [CrossRef]
- Yamazaki, C.A.; Padovani, R.P.; Biscolla, R.P.; Ikejiri, E.S.; Marchetti, R.R.; Castiglioni, M.L.; Matsumura, L.K.; Maciel, R.M.; Furlanetto, R.P. Lithium as an adjuvant in the postoperative ablation of remnant tissue in low-risk thyroid carcinoma. Thyroid 2012, 22, 1002–1006. [Google Scholar] [CrossRef]
- Steinherz, P.G.; Rosen, G.; Ghavimi, F.; Wang, Y.; Miller, D.R. The effect of lithium carbonate on leukopenia after chemotherapy. J. Pediatr. 1980, 96, 923–927. [Google Scholar] [CrossRef]
- Chouinard, G.; Boisvert, D. Lithium and regression of oat-cell carcinoma. Can. Med. Assoc. J. 1981, 124, 1555. [Google Scholar] [PubMed]
- Cohen, Y.; Chetrit, A.; Cohen, Y.; Sirota, P.; Modan, B. Cancer morbidity in psychiatric patients: Influence of lithium carbonate treatment. Med. Oncol. 1998, 15, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Asgari, M.M.; Chien, A.J.; Tsai, A.L.; Fireman, B.; Quesenberry, C.P., Jr. Association between Lithium Use and Melanoma Risk and Mortality: A Population-Based Study. J. Investig. Dermatol. 2017, 137, 2087–2091. [Google Scholar] [CrossRef] [PubMed]
- Schrauzer, G.N. Lithium: Occurrence, dietary intakes, nutritional essentiality. J. Am. Coll. Nutr. 2002, 21, 14–21. [Google Scholar] [CrossRef]
- Snitow, M.E.; Bhansali, R.S.; Klein, P.S. Lithium and Therapeutic Targeting of GSK-3. Cells 2021, 10, 255. [Google Scholar] [CrossRef]
- Gill, R.; Mohammed, F.; Badyal, R.; Coates, L.; Erskine, P.; Thompson, D.; Cooper, J.; Gore, M.; Wood, S. High-resolution structure of myo-inositol monophosphatase, the putative target of lithium therapy. Acta Crystallogr. D Biol. Crystallogr. 2005, 61, 545–555. [Google Scholar] [CrossRef]
- Ryves, W.J.; Harwood, A.J. Lithium inhibits glycogen synthase kinase-3 by competition for magnesium. Biochem. Biophys. Res. Commun. 2001, 280, 720–725. [Google Scholar] [CrossRef]
- Rouhani, M.; Hadi-Alijanvand, H. Effect of Lithium Drug on Binding Affinities of Glycogen Synthase Kinase-3 beta to Its Network Partners: A New Computational Approach. J. Chem. Inf. Model. 2021, 61, 5280–5292. [Google Scholar] [CrossRef]
- Li, B.; Wang, W.; Huang, Y.; Han, L.; Li, J.; Zheng, N.; Wu, Z.; Zhang, X.; Li, X.; Deng, L.; et al. Lithium treatment promotes the activation of primordial follicles through PI3K/Akt signalingdagger. Biol. Reprod. 2022, 107, 1059–1071. [Google Scholar] [CrossRef]
- Hermida, M.A.; Dinesh Kumar, J.; Leslie, N.R. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv. Biol. Regul. 2017, 65, 5–15. [Google Scholar] [CrossRef]
- Wadhwa, P.; Jain, P.; Jadhav, H.R. Glycogen Synthase Kinase 3 (GSK3): Its Role and Inhibitors. Curr. Top. Med. Chem. 2020, 20, 1522–1534. [Google Scholar] [CrossRef]
- Hallcher, L.M.; Sherman, W.R. The effects of lithium ion and other agents on the activity of myo-inositol-1-phosphatase from bovine brain. J. Biol. Chem. 1980, 255, 10896–10901. [Google Scholar] [CrossRef]
- York, J.D.; Ponder, J.W.; Majerus, P.W. Definition of a metal-dependent/Li(+)-inhibited phosphomonoesterase protein family based upon a conserved three-dimensional core structure. Proc. Natl. Acad. Sci. USA 1995, 92, 5149–5153. [Google Scholar] [CrossRef]
- Stieglitz, K.A.; Johnson, K.A.; Yang, H.; Roberts, M.F.; Seaton, B.A.; Head, J.F.; Stec, B. Crystal structure of a dual activity IMPase/FBPase (AF2372) from Archaeoglobus fulgidus. The story of a mobile loop. J. Biol. Chem. 2002, 277, 22863–22874. [Google Scholar] [CrossRef]
- El-Mallakh, R.S. Ion homeostasis and the mechanism of action of lithium. Clin. Neurosci. Res. 2004, 4, 227–231. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Pang, T.; Iwamoto, T.; Wakabayashi, S.; Shigekawa, M. Lithium activates mammalian Na+/H+ exchangers: Isoform specificity and inhibition by genistein. Pflugers Arch. 2000, 439, 455–462. [Google Scholar] [CrossRef]
- Ng, L.L.; Quinn, P.A.; Baker, F.; Carr, S.J. Red cell Na+/Li+ countertransport and Na+/H+ exchanger isoforms in human proximal tubules. Kidney Int. 2000, 58, 229–235. [Google Scholar] [CrossRef]
- Lauf, P.K.; Chimote, A.A.; Adragna, N.C. Lithium fluxes indicate presence of Na-Cl cotransport (NCC) in human lens epithelial cells. Cell. Physiol. Biochem. 2008, 21, 335–346. [Google Scholar] [CrossRef]
- Benbow, J.H.; Mann, T.; Keeler, C.; Fan, C.; Hodsdon, M.E.; Lolis, E.; DeGray, B.; Ehrlich, B.E. Inhibition of paclitaxel-induced decreases in calcium signaling. J. Biol. Chem. 2012, 287, 37907–37916. [Google Scholar] [CrossRef]
- Li, H.; Huang, K.; Liu, X.; Liu, J.; Lu, X.; Tao, K.; Wang, G.; Wang, J. Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3beta/NF-kappaB signaling pathway. Oxid. Med. Cell. Longev. 2014, 2014, 241864. [Google Scholar] [CrossRef] [Green Version]
- Taskaeva, I.; Gogaeva, I.; Shatruk, A.; Bgatova, N. Lithium Enhances Autophagy and Cell Death in Skin Melanoma: An Ultrastructural and Immunohistochemical Study. Microsc. Microanal. 2022, 28, 1703–1711. [Google Scholar] [CrossRef] [PubMed]
- Peng, Z.; Ji, Z.; Mei, F.; Lu, M.; Ou, Y.; Cheng, X. Lithium inhibits tumorigenic potential of PDA cells through targeting hedgehog-GLI signaling pathway. PLoS ONE 2013, 8, e61457. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.P.; Latini, F.R.; Oler, G.; Hojaij, F.C.; Maciel, R.M.; Riggins, G.J.; Cerutti, J.M. Down-regulation of NR4A1 in follicular thyroid carcinomas is restored following lithium treatment. Clin. Endocrinol. 2009, 70, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Song, H.; Zhong, L.; Yang, R.; Yang, X.Q.; Jiang, K.L.; Liu, B.Z. Lithium Chloride Promotes Apoptosis in Human Leukemia NB4 Cells by Inhibiting Glycogen Synthase Kinase-3 Beta. Int. J. Med. Sci. 2015, 12, 805–810. [Google Scholar] [CrossRef]
- Akhtar, M.J.; Alhadlaq, H.A.; Kumar, S.; Alrokayan, S.A.; Ahamed, M. Selective cancer-killing ability of metal-based nanoparticles: Implications for cancer therapy. Arch. Toxicol. 2015, 89, 1895–1907. [Google Scholar] [CrossRef]
- Lan, Y.; Liu, X.; Zhang, R.; Wang, K.; Wang, Y.; Hua, Z.C. Lithium enhances TRAIL-induced apoptosis in human lung carcinoma A549 cells. Biometals 2013, 26, 241–254. [Google Scholar] [CrossRef]
- Sabanciota, P.A.; Erguven, M.; Yaziotahan, N.; Aktas, E.; Aras, Y.; Civelek, E.; Aydoseli, A.; Imer, M.; Gurtekin, M.; Bilir, A. Sorafenib and lithium chloride combination treatment shows promising synergistic effects in human glioblastoma multiforme cells in vitro but midkine is not implicated. Neurol. Res. 2014, 36, 189–197. [Google Scholar] [CrossRef]
- Lin, B.; Kolluri, S.K.; Lin, F.; Liu, W.; Han, Y.H.; Cao, X.; Dawson, M.I.; Reed, J.C.; Zhang, X.K. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell 2004, 116, 527–540. [Google Scholar] [CrossRef]
- Razmi, M.; Rabbani-Chadegani, A.; Hashemi-Niasari, F.; Ghadam, P. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling. J. Trace Elem. Med. Biol. 2018, 48, 87–96. [Google Scholar] [CrossRef]
- Adler, J.T.; Hottinger, D.G.; Kunnimalaiyaan, M.; Chen, H. Combination Therapy with Histone Deacetylase Inhibitors and Lithium Chloride: A Novel Treatment for Carcinoid Tumors. Ann. Surg. Oncol. 2008, 16, 481–486. [Google Scholar] [CrossRef] [Green Version]
- Schleicher, S.B.; Zaborski, J.J.; Riester, R.; Zenkner, N.; Handgretinger, R.; Kluba, T.; Traub, F.; Boehme, K.A. Combined application of arsenic trioxide and lithium chloride augments viability reduction and apoptosis induction in human rhabdomyosarcoma cell lines. PLoS ONE 2017, 12, e0178857. [Google Scholar] [CrossRef]
- Pizarro, J.G.; Folch, J.; Esparza, J.L.; Jordan, J.; Pallas, M.; Camins, A. A molecular study of pathways involved in the inhibition of cell proliferation in neuroblastoma B65 cells by the GSK-3 inhibitors lithium and SB-415286. J. Cell. Mol. Med. 2009, 13, 3906–3917. [Google Scholar] [CrossRef]
- Bgatova, N.; Taskaeva, I.; Makarova, V. Influence of distant tumor growth and lithium treatment on ultrastructural organization of kidney proximal tubules. Ultrastruct. Pathol. 2021, 45, 212–223. [Google Scholar] [CrossRef]
- Wu, S.; Zheng, S.D.; Huang, H.L.; Yan, L.C.; Yin, X.F.; Xu, H.N.; Zhang, K.J.; Gui, J.H.; Chu, L.; Liu, X.Y. Lithium down-regulates histone deacetylase 1 (HDAC1) and induces degradation of mutant huntingtin. J. Biol. Chem. 2013, 288, 35500–35510. [Google Scholar] [CrossRef]
- Taskaeva, Y.S.; Bgatova, N.P.; Dossymbekova, R.S.; Solovieva, A.O.; Miroshnichenko, S.M.; Sharipov, K.O.; Tungushbaeva, Z.B. In Vitro Effects of Lithium Carbonate on Cell Cycle, Apoptosis, and Autophagy in Hepatocellular Carcinoma-29 Cells. Bull. Exp. Biol. Med. 2020, 170, 246–250. [Google Scholar] [CrossRef]
- Sarkar, S.; Floto, R.A.; Berger, Z.; Imarisio, S.; Cordenier, A.; Pasco, M.; Cook, L.J.; Rubinsztein, D.C. Lithium induces autophagy by inhibiting inositol monophosphatase. J. Cell Biol. 2005, 170, 1101–1111. [Google Scholar] [CrossRef]
- Schaaf, M.B.; Keulers, T.G.; Vooijs, M.A.; Rouschop, K.M. LC3/GABARAP family proteins: Autophagy-(un)related functions. FASEB J. 2016, 30, 3961–3978. [Google Scholar] [CrossRef]
- Eskelinen, E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Asp. Med. 2006, 27, 495–502. [Google Scholar] [CrossRef]
- New, J.; Thomas, S.M. Autophagy-dependent secretion: Mechanism, factors secreted, and disease implications. Autophagy 2019, 15, 1682–1693. [Google Scholar] [CrossRef]
- Taskaeva, I.; Bgatova, N.; Gogaeva, I. Lithium effects on vesicular trafficking in hepatocellular carcinoma cells. Ultrastruct. Pathol. 2019, 43, 301–311. [Google Scholar] [CrossRef]
- Lahiri, V.; Hawkins, W.D.; Klionsky, D.J. Watch What You (Self-) Eat: Autophagic Mechanisms that Modulate Metabolism. Cell Metab. 2019, 29, 803–826. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, T.R.; Rajendran, S.; O’Reilly, S.; O’Sullivan, G.C.; McKenna, S.L. Lithium Modulates Autophagy in Esophageal and Colorectal Cancer Cells and Enhances the Efficacy of Therapeutic Agents In Vitro and In Vivo. PLoS ONE 2015, 10, e0134676. [Google Scholar] [CrossRef] [PubMed]
- Erguven, M.; Oktem, G.; Kara, A.N.; Bilir, A. Lithium chloride has a biphasic effect on prostate cancer stem cells and a proportional effect on midkine levels. Oncol. Lett. 2016, 12, 2948–2955. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, Q.; Wang, B.; Li, P.; Liu, P. LiCl Treatment Induces Programmed Cell Death of Schwannoma Cells through AKT- and MTOR-Mediated Necroptosis. Neurochem. Res. 2017, 42, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Meng, L.; Jiang, Y.; Cheng, W.; Tie, X.; Xia, J.; Wu, A. Lithium enhances the antitumour effect of temozolomide against TP53 wild-type glioblastoma cells via NFAT1/FasL signalling. Br. J. Cancer 2017, 116, 1302–1311. [Google Scholar] [CrossRef]
- Wang, J.S.; Wang, C.L.; Wen, J.F.; Wang, Y.J.; Hu, Y.B.; Ren, H.Z. Lithium inhibits proliferation of human esophageal cancer cell line Eca-109 by inducing a G2/M cell cycle arrest. World J. Gastroenterol. 2008, 14, 3982–3989. [Google Scholar] [CrossRef]
- Ronchi, A.; Salaroli, R.; Rivetti, S.; Della Bella, E.; Di Tomaso, T.; Voltattorni, M.; Cammelli, S.; Ceccarelli, C.; Giangaspero, F.; Barbieri, E.; et al. Lithium induces mortality in medulloblastoma cell lines. Int. J. Oncol. 2010, 37, 745–752. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, H.H.; Yong, T.S.; Jeon, S.H. Lithium chloride inhibits the migration and invasion of osteosarcoma cells by blocking nuclear translocation of phospho-Erk. Biochem. Biophys. Res. Commun. 2021, 581, 74–80. [Google Scholar] [CrossRef]
- Zubcic, V.; Rincic, N.; Kurtovic, M.; Trnski, D.; Musani, V.; Ozretic, P.; Levanat, S.; Leovic, D.; Sabol, M. GANT61 and Lithium Chloride Inhibit the Growth of Head and Neck Cancer Cell Lines Through the Regulation of GLI3 Processing by GSK3beta. Int. J. Mol. Sci. 2020, 21, 6410. [Google Scholar] [CrossRef]
- Zinke, J.; Schneider, F.T.; Harter, P.N.; Thom, S.; Ziegler, N.; Toftgard, R.; Plate, K.H.; Liebner, S. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma. Mol. Cancer 2015, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- Park, H.B.; Kim, J.W.; Baek, K.H. Regulation of Wnt Signaling through Ubiquitination and Deubiquitination in Cancers. Int. J. Mol. Sci. 2020, 21, 3904. [Google Scholar] [CrossRef]
- Sun, A.; Shanmugam, I.; Song, J.; Terranova, P.F.; Thrasher, J.B.; Li, B. Lithium suppresses cell proliferation by interrupting E2F-DNA interaction and subsequently reducing S-phase gene expression in prostate cancer. Prostate 2007, 67, 976–988. [Google Scholar] [CrossRef]
- Matsebatlela, T.; Gallicchio, V.; Becker, R. Lithium modulates cancer cell growth, apoptosis, gene expression and cytokine production in HL-60 promyelocytic leukaemia cells and their drug-resistant sub-clones. Biol. Trace Elem. Res. 2012, 149, 323–330. [Google Scholar] [CrossRef]
- Matthews, H.K.; Bertoli, C.; de Bruin, R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022, 23, 74–88. [Google Scholar] [CrossRef]
- Erdal, E.; Ozturk, N.; Cagatay, T.; Eksioglu-Demiralp, E.; Ozturk, M. Lithium-mediated downregulation of PKB/Akt and cyclin E with growth inhibition in hepatocellular carcinoma cells. Int. J. Cancer 2005, 115, 903–910. [Google Scholar] [CrossRef]
- Tsui, M.M.; Tai, W.C.; Wong, W.Y.; Hsiao, W.L. Selective G2/M arrest in a p53(Val135)-transformed cell line induced by lithium is mediated through an intricate network of MAPK and beta-catenin signaling pathways. Life Sci. 2012, 91, 312–321. [Google Scholar] [CrossRef]
- Yochum, G.S.; Sherrick, C.M.; Macpartlin, M.; Goodman, R.H. A beta-catenin/TCF-coordinated chromatin loop at MYC integrates 5’ and 3’ Wnt responsive enhancers. Proc. Natl. Acad. Sci. USA 2010, 107, 145–150. [Google Scholar] [CrossRef]
- Shah, M.; Rennoll, S.A.; Raup-Konsavage, W.M.; Yochum, G.S. A dynamic exchange of TCF3 and TCF4 transcription factors controls MYC expression in colorectal cancer cells. Cell Cycle 2015, 14, 323–332. [Google Scholar] [CrossRef]
- De Ruysscher, D.; Niedermann, G.; Burnet, N.G.; Siva, S.; Lee, A.W.M.; Hegi-Johnson, F. Radiotherapy toxicity. Nat. Rev. Dis. Primers 2019, 5, 13. [Google Scholar] [CrossRef]
- Stampone, E.; Bencivenga, D.; Barone, C.; Aulitto, A.; Verace, F.; Della Ragione, F.; Borriello, A. High Dosage Lithium Treatment Induces DNA Damage and p57(Kip2) Decrease. Int. J. Mol. Sci. 2020, 21, 1169. [Google Scholar] [CrossRef] [Green Version]
- Rouhani, M.; Goliaei, B.; Khodagholi, F.; Nikoofar, A. Lithium increases radiosensitivity by abrogating DNA repair in breast cancer spheroid culture. Arch. Iran. Med. 2014, 17, 352–360. [Google Scholar] [PubMed]
- Rouhani, M.; Ramshini, S.; Omidi, M. The Psychiatric Drug Lithium Increases DNA Damage and Decreases Cell Survival in MCF-7 and MDA-MB-231 Breast Cancer Cell Lines Expos ed to Ionizing Radiation. Curr. Mol. Pharmacol. 2019, 12, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Cammarota, F.; Conte, A.; Aversano, A.; Muto, P.; Ametrano, G.; Riccio, P.; Turano, M.; Valente, V.; Delrio, P.; Izzo, P.; et al. Lithium chloride increases sensitivity to photon irradiation treatment in primary mesenchymal colon cancer cells. Mol. Med. Rep. 2020, 21, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Nowicki, M.O.; Dmitrieva, N.; Stein, A.M.; Cutter, J.L.; Godlewski, J.; Saeki, Y.; Nita, M.; Berens, M.E.; Sander, L.M.; Newton, H.B.; et al. Lithium inhibits invasion of glioma cells; possible involvement of glycogen synthase kinase-3. Neuro Oncol. 2008, 10, 690–699. [Google Scholar] [CrossRef] [PubMed]
- Costabile, V.; Duraturo, F.; Delrio, P.; Rega, D.; Pace, U.; Liccardo, R.; Rossi, G.B.; Genesio, R.; Nitsch, L.; Izzo, P.; et al. Lithium chloride induces mesenchymaltoepithelial reverting transition in primary colon cancer cell cultures. Int. J. Oncol. 2015, 46, 1913–1923. [Google Scholar] [CrossRef]
- Brabletz, S.; Schuhwerk, H.; Brabletz, T.; Stemmler, M.P. Dynamic EMT: A multi-tool for tumor progression. EMBO J. 2021, 40, e108647. [Google Scholar] [CrossRef]
- Afzal, E.M.; Alinezhad, S.P.; Khorsand, M.M.; Khoshnood, M.J.P.; Takhshid, M.A.P. Effects of Two-by-Two Combination Therapy with Valproic Acid, Lithium Chloride, and Celecoxib on the Angiogenesis of the Chicken Chorioallantoic Membrane. Iran. J. Med. Sci. 2018, 43, 506–513. [Google Scholar]
- Guo, S.; Arai, K.; Stins, M.F.; Chuang, D.-M.; Lo, E.H. Lithium Upregulates Vascular Endothelial Growth Factor in Brain Endothelial Cells and Astrocytes. Stroke 2009, 40, 652–655. [Google Scholar] [CrossRef]
- Maeng, Y.S.; Lee, R.; Lee, B.; Choi, S.I.; Kim, E.K. Lithium inhibits tumor lymphangiogenesis and metastasis through the inhibition of TGFBIp expression in cancer cells. Sci. Rep. 2016, 6, 20739. [Google Scholar] [CrossRef]
- Ommati, M.M.; Niknahad, H.; Farshad, O.; Azarpira, N.; Heidari, R. In Vitro and In Vivo Evidence on the Role of Mitochondrial Impairment as a Mechanism of Lithium-Induced Nephrotoxicity. Biol. Trace Elem. Res. 2021, 199, 1908–1918. [Google Scholar] [CrossRef]
- Gawlik-Kotelnicka, O.; Mielicki, W.; Rabe-Jablonska, J.; Lazarek, J.; Strzelecki, D. Impact of lithium alone or in combination with haloperidol on oxidative stress parameters and cell viability in SH-SY5Y cell culture. Acta Neuropsychiatr. 2016, 28, 38–44. [Google Scholar] [CrossRef]
- Mohammadshirazi, A.; Sadrosadat, H.; Jaberi, R.; Zareikheirabadi, M.; Mirsadeghi, S.; Naghdabadi, Z.; Ghaneezabadi, M.; Fardmanesh, M.; Baharvand, H.; Kiani, S. Combinational therapy of lithium and human neural stem cells in rat spinal cord contusion model. J. Cell. Physiol. 2019, 234, 20742–20754. [Google Scholar] [CrossRef] [PubMed]
- Chadha, V.D.; Bhalla, P.; Dhawan, D.K. Zinc modulates lithium-induced hepatotoxicity in rats. Liver Int. 2008, 28, 558–565. [Google Scholar] [CrossRef]
- Repetto, G.; del Peso, A.; Sanz, P.; Repetto, M. In vitro effects of lithium and nickel at different levels on Neuro-2a mouse Neuroblastoma cells. Toxicol. In Vitro 2001, 15, 363–368. [Google Scholar] [CrossRef]
- Penso, J.; Beitner, R. Lithium detaches hexokinase from mitochondria and inhibits proliferation of B16 melanoma cells. Mol. Genet. Metab. 2003, 78, 74–78. [Google Scholar] [CrossRef]
- Patergnani, S.; Danese, A.; Bouhamida, E.; Aguiari, G.; Previati, M.; Pinton, P.; Giorgi, C. Various Aspects of Calcium Signaling in the Regulation of Apoptosis, Autophagy, Cell Proliferation, and Cancer. Int. J. Mol. Sci. 2020, 21, 8323. [Google Scholar] [CrossRef]
- Hashimoto, R.; Hough, C.; Nakazawa, T.; Yamamoto, T.; Chuang, D.M. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: Involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J. Neurochem. 2002, 80, 589–597. [Google Scholar] [CrossRef]
- Crespo-Biel, N.; Camins, A.; Canudas, A.M.; Pallas, M. Kainate-induced toxicity in the hippocampus: Potential role of lithium. Bipolar Disord. 2010, 12, 425–436. [Google Scholar] [CrossRef]
- Sourial-Bassillious, N.; Rydelius, P.A.; Aperia, A.; Aizman, O. Glutamate-mediated calcium signaling: A potential target for lithium action. Neuroscience 2009, 161, 1126–1134. [Google Scholar] [CrossRef]
- Crespo-Biel, N.; Camins, A.; Pallas, M.; Canudas, A.M. Evidence of calpain/cdk5 pathway inhibition by lithium in 3-nitropropionic acid toxicity in vivo and in vitro. Neuropharmacology 2009, 56, 422–428. [Google Scholar] [CrossRef]
- Camins, A.; Crespo-Biel, N.; Junyent, F.; Verdaguer, E.; Canudas, A.M.; Pallas, M. Calpains as a target for therapy of neurodegenerative diseases: Putative role of lithium. Curr. Drug Metab. 2009, 10, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Csordas, G.; Weaver, D.; Hajnoczky, G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol. 2018, 28, 523–540. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, S.W.; Kim, J.H.; Kim, H.J.; Um, J.; Jung, D.W.; Williams, D.R. Lithium Chloride Protects against Sepsis-Induced Skeletal Muscle Atrophy and Cancer Cachexia. Cells 2021, 10, 1017. [Google Scholar] [CrossRef] [PubMed]
- Abu-Baker, A.; Laganiere, J.; Gaudet, R.; Rochefort, D.; Brais, B.; Neri, C.; Dion, P.A.; Rouleau, G.A. Lithium chloride attenuates cell death in oculopharyngeal muscular dystrophy by perturbing Wnt/beta-catenin pathway. Cell Death Dis. 2013, 4, e821. [Google Scholar] [CrossRef]
- Verhees, K.J.; Schols, A.M.; Kelders, M.C.; Op den Kamp, C.M.; van der Velden, J.L.; Langen, R.C. Glycogen synthase kinase-3beta is required for the induction of skeletal muscle atrophy. Am. J. Physiol. Cell Physiol. 2011, 301, C995–C1007. [Google Scholar] [CrossRef]
- Xu, T.; Wang, S.; Li, X.; Li, X.; Qu, K.; Tong, H.; Zhang, R.; Bai, S.; Fan, J. Lithium chloride represses abdominal aortic aneurysm via regulating GSK3beta/SIRT1/NF-kappaB signaling pathway. Free Radic. Biol. Med. 2021, 166, 1–10. [Google Scholar] [CrossRef]
- Zassadowski, F.; Pokorna, K.; Ferre, N.; Guidez, F.; Llopis, L.; Chourbagi, O.; Chopin, M.; Poupon, J.; Fenaux, P.; Ann Padua, R.; et al. Lithium chloride antileukemic activity in acute promyelocytic leukemia is GSK-3 and MEK/ERK dependent. Leukemia 2015, 29, 2277–2284. [Google Scholar] [CrossRef]
- Merat, R.; Bugi-Marteyn, A.; Wrobel, L.J.; Py, C.; Daali, Y.; Schwarzler, C.; Liaudet, N. Drug-induced expression of the RNA-binding protein HuR attenuates the adaptive response to BRAF inhibition in melanoma. Biochem. Biophys. Res. Commun. 2019, 517, 181–187. [Google Scholar] [CrossRef]
- Korycka, A.; Robak, T. The effect of lithium on haematopoiesis of patients with acute myeloid leukaemia. Arch. Immunol. Ther. Exp. 1991, 39, 501–509. [Google Scholar]
- Ueda, M.; Stefan, T.; Stetson, L.; Ignatz-Hoover, J.J.; Tomlinson, B.; Creger, R.J.; Cooper, B.; Lazarus, H.M.; de Lima, M.; Wald, D.N.; et al. Phase I Trial of Lithium and Tretinoin for Treatment of Relapsed and Refractory Non-promyelocytic Acute Myeloid Leukemia. Front. Oncol. 2020, 10, 327. [Google Scholar] [CrossRef]
- Lyman, G.H.; Williams, C.C.; Preston, D.; Goldman, A.; Dinwoodie, W.R.; Saba, H.; Hartmann, R.; Jensen, R.; Shukovsky, L. Lithium carbonate in patients with small cell lung cancer receiving combination chemotherapy. Am. J. Med. 1981, 70, 1222–1229. [Google Scholar] [CrossRef]
- Fearon, K.C.; Falconer, J.S.; Ross, J.A.; Carter, D.C.; Hunter, J.O.; Reynolds, P.D.; Tuffnell, Q. An open-label phase I/II dose escalation study of the treatment of pancreatic cancer using lithium gammalinolenate. Anticancer Res. 1996, 16, 867–874. [Google Scholar]
- Farcas, A.; Mahalean, A.; Bulik, N.B.; Leucuta, D.; Mogosan, C. New safety signals assessed by the Pharmacovigilance Risk Assessment Committee at EU level in 2014–2017. Expert Rev. Clin. Pharmacol. 2018, 11, 1045–1051. [Google Scholar] [CrossRef]
- Thakur, S.; Tobey, A.; Klubo-Gwiezdzinska, J. The Role of Lithium in Management of Endocrine Tumors-A Comprehensive Review. Front. Oncol. 2019, 9, 1092. [Google Scholar] [CrossRef]
- Mifsud, S.; Cilia, K.; Mifsud, E.L.; Gruppetta, M. Lithium-associated hyperparathyroidism. Br. J. Hosp. Med. 2020, 81, 1–9. [Google Scholar] [CrossRef]
- Johnson, C.D.; Puntis, M.; Davidson, N.; Todd, S.; Bryce, R. Randomized, dose-finding phase III study of lithium gamolenate in patients with advanced pancreatic adenocarcinoma. Br. J. Surg. 2001, 88, 662–668. [Google Scholar] [CrossRef]
- Hager, E.D.; Dziambor, H.; Winkler, P.; Hohmann, D.; Macholdt, K. Effects of lithium carbonate on hematopoietic cells in patients with persistent neutropenia following chemotherapy or radiotherapy. J. Trace Elem. Med. Biol. 2002, 16, 91–97. [Google Scholar] [CrossRef]
- Hager, E.D.; Dziambor, H.; Hohmann, D.; Winkler, P.; Strama, H. Effects of lithium on thrombopoiesis in patients with low platelet cell counts following chemotherapy or radiotherapy. Biol. Trace Elem. Res. 2001, 83, 139–148. [Google Scholar] [CrossRef]
- Das, U.N. Occlusion of infusion vessels on gamma-linolenic acid infusion. Prostaglandins Leukot. Essent. Fat. Acids 2004, 70, 23–32. [Google Scholar] [CrossRef]
- Stein, R.S.; Vogler, W.R.; Lefante, J. Failure of lithium to limit neutropenia significantly during induction therapy of acute myelogenous leukemia. A Southeastern Cancer Study Group study. Am. J. Clin. Oncol. 1984, 7, 365–369. [Google Scholar] [CrossRef]
- Scarffe, J.H.; Chang, J. Failure of lithium to reduce period of neutropenia during induction therapy of acute myeloid leukemia. Hematol. Oncol. 1989, 7, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Stein, R.S.; Flexner, J.M.; Graber, S.E. Lithium and granulocytopenia during induction therapy of acute myelogenous leukemia. Blood 1979, 54, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Collado, S.; Charron, D.; Degos, L. Double-blind, placebo-controlled lithium treatment in chemotherapy induced aplasia for AML: Reduced antibiotic requirement. Med. Oncol. Tumor Pharmacother. 1988, 5, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Scanni, A.; Tomirotti, M.; Berra, S.; Licciardello, L.; Felicetta, I.; Bertolini, G.; Bregni, M. Lithium carbonate in the treatment of drug-induced leukopenia in patients with solid tumors. Tumori 1980, 66, 729–737. [Google Scholar] [CrossRef]
- Lyman, G.H.; Williams, C.C.; Dinwoodie, W.R.; Schocken, D.D. Sudden death in cancer patients receiving lithium. J. Clin. Oncol. 1984, 2, 1270–1276. [Google Scholar] [CrossRef]
- Najafi, S.; Heidarali, Z.; Rajabi, M.; Omidi, Z.; Zayeri, F.; Salehi, M.; Haghighat, S. Lithium and preventing chemotherapy-induced peripheral neuropathy in breast cancer patients: A placebo-controlled randomized clinical trial. Trials 2021, 22, 835. [Google Scholar] [CrossRef]
- Lubner, S.J.; Kunnimalaiyaan, M.; Holen, K.D.; Ning, L.; Ndiaye, M.; Loconte, N.K.; Mulkerin, D.L.; Schelman, W.R.; Chen, H. A preclinical and clinical study of lithium in low-grade neuroendocrine tumors. Oncologist 2011, 16, 452–457. [Google Scholar] [CrossRef]
- Koong, S.S.; Reynolds, J.C.; Movius, E.G.; Keenan, A.M.; Ain, K.B.; Lakshmanan, M.C.; Robbins, J. Lithium as a potential adjuvant to 131I therapy of metastatic, well differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 1999, 84, 912–916. [Google Scholar] [CrossRef]
- Furuta, T.; Sabit, H.; Dong, Y.; Miyashita, K.; Kinoshita, M.; Uchiyama, N.; Hayashi, Y.; Hayashi, Y.; Minamoto, T.; Nakada, M. Biological basis and clinical study of glycogen synthase kinase- 3beta-targeted therapy by drug repositioning for glioblastoma. Oncotarget 2017, 8, 22811–22824. [Google Scholar] [CrossRef]
- Rahman, T.; Sahrmann, J.M.; Olsen, M.A.; Nickel, K.B.; Miller, J.P.; Ma, C.; Grucza, R.A. Risk of Breast Cancer With Prolactin Elevating Antipsychotic Drugs: An Observational Study of US Women (Ages 18–64 Years). J. Clin. Psychopharmacol. 2022, 42, 7–16. [Google Scholar] [CrossRef]
- George, A.; Sturgeon, S.R.; Hankinson, S.E.; Shadyab, A.H.; Wallace, R.B.; Reeves, K.W. Psychotropic Medication Use and Postmenopausal Breast Cancer Risk. Cancer Epidemiol. Biomark. Prev. 2020, 29, 254–256. [Google Scholar] [CrossRef]
- Pourmohammadi, N.; Alimoradi, H.; Mehr, S.E.; Hassanzadeh, G.; Hadian, M.R.; Sharifzadeh, M.; Bakhtiarian, A.; Dehpour, A.R. Lithium attenuates peripheral neuropathy induced by paclitaxel in rats. Basic Clin. Pharmacol. Toxicol. 2012, 110, 231–237. [Google Scholar] [CrossRef]
- Zanni, G.; Goto, S.; Fragopoulou, A.F.; Gaudenzi, G.; Naidoo, V.; Di Martino, E.; Levy, G.; Dominguez, C.A.; Dethlefsen, O.; Cedazo-Minguez, A.; et al. Lithium treatment reverses irradiation-induced changes in rodent neural progenitors and rescues cognition. Mol. Psychiatry 2021, 26, 322–340. [Google Scholar] [CrossRef] [Green Version]
- Seano, G.; Nia, H.T.; Emblem, K.E.; Datta, M.; Ren, J.; Krishnan, S.; Kloepper, J.; Pinho, M.C.; Ho, W.W.; Ghosh, M.; et al. Solid stress in brain tumours causes neuronal loss and neurological dysfunction and can be reversed by lithium. Nat. Biomed. Eng. 2019, 3, 230–245. [Google Scholar] [CrossRef]
- Plotnikov, E.Y.; Grebenchikov, O.A.; Babenko, V.A.; Pevzner, I.B.; Zorova, L.D.; Likhvantsev, V.V.; Zorov, D.B. Nephroprotective effect of GSK-3beta inhibition by lithium ions and delta-opioid receptor agonist dalargin on gentamicin-induced nephrotoxicity. Toxicol. Lett. 2013, 220, 303–308. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, W.C.; Wang, C.Y.; Tsai, C.C.; Chen, C.L.; Chang, Y.T.; Kai, J.I.; Lin, C.F. Inhibiting glycogen synthase kinase-3 reduces endotoxaemic acute renal failure by down-regulating inflammation and renal cell apoptosis. Br. J. Pharmacol. 2009, 157, 1004–1013. [Google Scholar] [CrossRef]
- Teixeira, D.E.; Peruchetti, D.B.; Silva, L.S.; Silva-Aguiar, R.P.; Oquendo, M.B.; Silva-Filho, J.L.; Takiya, C.M.; Leal-Cardoso, J.H.; Pinheiro, A.A.S.; Caruso-Neves, C. Lithium ameliorates tubule-interstitial injury through activation of the mTORC2/protein kinase B pathway. PLoS ONE 2019, 14, e0215871. [Google Scholar] [CrossRef]
- Bao, H.; Zhang, Q.; Liu, X.; Song, Y.; Li, X.; Wang, Z.; Li, C.; Peng, A.; Gong, R. Lithium targeting of AMPK protects against cisplatin-induced acute kidney injury by enhancing autophagy in renal proximal tubular epithelial cells. FASEB J. 2019, 33, 14370–14381. [Google Scholar] [CrossRef]
- Beurel, E.; Kornprobst, M.; Blivet-Van Eggelpoel, M.J.; Ruiz-Ruiz, C.; Cadoret, A.; Capeau, J.; Desbois-Mouthon, C. GSK-3beta inhibition by lithium confers resistance to chemotherapy-induced apoptosis through the repression of CD95 (Fas/APO-1) expression. Exp. Cell Res. 2004, 300, 354–364. [Google Scholar] [CrossRef]
- Hou, L.; Xiong, N.; Liu, L.; Huang, J.; Han, C.; Zhang, G.; Li, J.; Xu, X.; Lin, Z.; Wang, T. Lithium protects dopaminergic cells from rotenone toxicity via autophagy enhancement. BMC Neurosci. 2015, 16, 82. [Google Scholar] [CrossRef]
- Wolff, E.F.; Hughes, M.; Merino, M.J.; Reynolds, J.C.; Davis, J.L.; Cochran, C.S.; Celi, F.S. Expression of benign and malignant thyroid tissue in ovarian teratomas and the importance of multimodal management as illustrated by a BRAF-positive follicular variant of papillary thyroid cancer. Thyroid 2010, 20, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Suganthi, M.; Sangeetha, G.; Benson, C.S.; Babu, S.D.; Sathyavathy, A.; Ramadoss, S.; Ravi Sankar, B. In vitro mechanisms involved in the regulation of cell survival by lithium chloride and IGF-1 in human hormone-dependent breast cancer cells (MCF-7). Toxicol. Lett. 2012, 214, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Suganthi, M.; Sangeetha, G.; Gayathri, G.; Ravi Sankar, B. Biphasic dose-dependent effect of lithium chloride on survival of human hormone-dependent breast cancer cells (MCF-7). Biol. Trace Elem. Res. 2012, 150, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Karlovic, D.; Jakopec, S.; Dubravcic, K.; Batinic, D.; Buljan, D.; Osmak, M. Lithium increases expression of p21(WAF/Cip1) and survivin in human glioblastoma cells. Cell Biol. Toxicol. 2007, 23, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Bachmann, R.F.; Wang, Y.; Yuan, P.; Zhou, R.; Li, X.; Alesci, S.; Du, J.; Manji, H.K. Common effects of lithium and valproate on mitochondrial functions: Protection against methamphetamine-induced mitochondrial damage. Int. J. Neuropsychopharmacol. 2009, 12, 805–822. [Google Scholar] [CrossRef]
- Silva, A.K.; Yi, H.; Hayes, S.H.; Seigel, G.M.; Hackam, A.S. Lithium chloride regulates the proliferation of stem-like cells in retinoblastoma cell lines: A potential role for the canonical Wnt signaling pathway. Mol. Vis. 2010, 16, 36–45. [Google Scholar]
- Fu, Y.; Zheng, Y.; Chan, K.G.; Liang, A.; Hu, F. Lithium chloride decreases proliferation and migration of C6 glioma cells harboring isocitrate dehydrogenase 2 mutant via GSK-3beta. Mol. Biol. Rep. 2014, 41, 3907–3913. [Google Scholar] [CrossRef]
- Tondo, L.; Alda, M.; Bauer, M.; Bergink, V.; Grof, P.; Hajek, T.; Lewitka, U.; Licht, R.W.; Manchia, M.; Muller-Oerlinghausen, B.; et al. Clinical use of lithium salts: Guide for users and prescribers. Int. J. Bipolar Disord. 2019, 7, 16. [Google Scholar] [CrossRef]
- Shvartsur, R.; Agam, G.; Uzzan, S.; Azab, A.N. Low-Dose Aspirin Augments the Anti-Inflammatory Effects of Low-Dose Lithium in Lipopolysaccharide-Treated Rats. Pharmaceutics 2022, 14, 901. [Google Scholar] [CrossRef]
- Agrawal, S.; Gollapudi, S.; Gupta, S.; Agrawal, A. Dendritic cells from the elderly display an intrinsic defect in the production of IL-10 in response to lithium chloride. Exp. Gerontol. 2013, 48, 1285–1292. [Google Scholar] [CrossRef]
- Li, N.; Zhang, X.; Dong, H.; Zhang, S.; Sun, J.; Qian, Y. Lithium Ameliorates LPS-Induced Astrocytes Activation Partly via Inhibition of Toll-Like Receptor 4 Expression. Cell. Physiol. Biochem. 2016, 38, 714–725. [Google Scholar] [CrossRef]
- Boufidou, F.; Nikolaou, C.; Alevizos, B.; Liappas, I.A.; Christodoulou, G.N. Cytokine production in bipolar affective disorder patients under lithium treatment. J. Affect. Disord. 2004, 82, 309–313. [Google Scholar] [CrossRef]
- Martin, M.; Rehani, K.; Jope, R.S.; Michalek, S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 2005, 6, 777–784. [Google Scholar] [CrossRef]
- Petersein, C.; Sack, U.; Mergl, R.; Schonherr, J.; Schmidt, F.M.; Lichtblau, N.; Kirkby, K.C.; Bauer, K.; Himmerich, H. Impact of lithium alone and in combination with antidepressants on cytokine production in vitro. J. Neural Transm. 2015, 122, 109–122. [Google Scholar] [CrossRef]
- Wu, Y.; Cai, D. Study of the effect of lithium on lymphokine-activated killer cell activity and its antitumor growth. Proc. Soc. Exp. Biol. Med. 1992, 201, 284–288. [Google Scholar] [CrossRef]
- Liu, K.J.; Lee, Y.L.; Yang, Y.Y.; Shih, N.Y.; Ho, C.C.; Wu, Y.C.; Huang, T.S.; Huang, M.C.; Liu, H.C.; Shen, W.W.; et al. Modulation of the development of human monocyte-derived dendritic cells by lithium chloride. J. Cell. Physiol. 2011, 226, 424–433. [Google Scholar] [CrossRef]
- Yu, Z.; Ono, C.; Aiba, S.; Kikuchi, Y.; Sora, I.; Matsuoka, H.; Tomita, H. Therapeutic concentration of lithium stimulates complement C3 production in dendritic cells and microglia via GSK-3 inhibition. Glia 2015, 63, 257–270. [Google Scholar] [CrossRef]
- Basu, A.; Ramamoorthi, G.; Albert, G.; Gallen, C.; Beyer, A.; Snyder, C.; Koski, G.; Disis, M.L.; Czerniecki, B.J.; Kodumudi, K. Differentiation and Regulation of T(H) Cells: A Balancing Act for Cancer Immunotherapy. Front. Immunol. 2021, 12, 669474. [Google Scholar] [CrossRef]
- Sakrajda, K.; Szczepankiewicz, A. Inflammation-Related Changes in Mood Disorders and the Immunomodulatory Role of Lithium. Int. J. Mol. Sci. 2021, 22, 1532. [Google Scholar] [CrossRef]
- Yang, C.; Wang, W.; Zhu, K.; Liu, W.; Luo, Y.; Yuan, X.; Wang, J.; Cheng, T.; Zhang, X. Lithium chloride with immunomodulatory function for regulating titanium nanoparticle-stimulated inflammatory response and accelerating osteogenesis through suppression of MAPK signaling pathway. Int. J. Nanomed. 2019, 14, 7475–7488. [Google Scholar] [CrossRef] [Green Version]
Ref. (Year) | Cancer Type | Lithium Salts | Dosage | Sample Size (N) | Cooperated Therapy | Comments of Efficacy |
---|---|---|---|---|---|---|
[116] (2001) | Pancreatic cancer | LiGLA | 700 mg once a day | 278 | N/A | Lithium lacked demonstrable efficacy. |
[117] (2002) | Ewing sarcoma/rhabdomyosarcoma/pancreatic cancer | Li2CO3 | 300 mg three times daily | 100 | Combined with daunorubicin, cytosine arabinoside, and thioguanine and radiotherapy | Lithium increased the number of neutrophil granulocytes significantly. Lithium increased the number of eosinophil granulocytes and lymphocytes significantly |
[118] (2001) | Ependymoblastoma/fibrosarcoma/malignant/teratoma/neuroblastoma | Li2CO3 | 300 mg three times daily | 100 | Combined with daunorubicin, cytosine arabinoside, and thioguanine and radiotherapy | Statistically and clinically significant leukocyte proliferation could be observed when using lithium for immunotherapy. A significant increase in the mean number of platelets for patients was observed after lithium treatment. |
[112] (1996) | Pancreatic cancer | LiGLA | 7 g/77 g once a day | 48 | N/A | The highest doses of lithium were associated with longer survival times as compared with the lowest doses. |
[119] (2004) | Hepatocellular carcinoma/giant-cell tumor of the bone/renal cell carcinoma | LiGLA | 750 mg once a day | 45 | Conjugated with iodized lymphographic oil | A significant reduction in the size of the tumor was observed. |
[111] (1981) | Small-cell lung cancer | Li2CO3 | 300 mg three times daily | 45 | Combined with daunorubicin, cytosine arabinoside, and thioguanine | Lithium demonstrated a higher objective response rate and longer survival. |
[120] (1984) | AML | Li2CO3 | 300 mg three times daily | 41 | Combined with cytosine arabinoside and daunorubicin | The duration of neutropenia was not significantly shorter for patients receiving lithium than for controls. |
[20] (1980) | Ewing sarcoma/rhabdomyosarcoma/nasopharyngeal carcinoma/osteogenic sarcoma/ependymoblastoma/fibrosarcoma/malignant/teratoma/neuroblastoma | Li2CO3 | 150 mg and 300 mg once a day | 39 | Combined with daunorubicin, cytosine arabinoside, and thioguanine and radiotherapy | Lithium reduced the period of leukopenia after chemotherapy. During lithium treatment, patients might suffer infections. |
[19] (2012) | Differentiated thyroid carcinoma | Li2CO3 | 300 mg three times daily | 29 | Near-total thyroidectomy was accepted before the study; 131I therapy | Lithium treatment improved the efficacy of thyroid remnant ablation. |
[121] (1989) | AML | Li2CO3 | 1200 mg Once a day | 29 | combined with daunorubicin, cytosine arabinoside, and thioguanine | The number of remissions, relapse-free survival, and survival were similar for the lithium-treated and control groups. There was no apparent clinical efficacy in the use of lithium to reduce the period of neutropenia in patients undergoing remission induction therapy for acute myeloid leukemia. |
[122] (1979) | AML | Li2CO3 | 300 mg three times daily | 27 | Combined with cytosine arabinoside and thioguanine | Lithium-treated group showed a shortened duration of neutropenia. The incidence of infections and the rate of remission were not affected by lithium. |
[123] (1988) | AML | Li2CO3 | 250 mg three times daily | 26 | N/A | No difference was observed in complete remission rates and disease-free survival between the two groups. A significant reduction in the number of days of antibiotic therapy required was found in the treated group. |
[124] (1980) | Colorectum cancer/stomach cancer/breast cancer/lung cancer/ovary cancer/tongue cancer/astrocytoma/plasmocytoma/Hodgkin’s disease/pancreas cancer/esophagus cancer/larynx cancers | Li2CO3 | 250 mg three times daily | 26 | Combined with 5-ftuorouracil, lomustine | Lithium was capable of raising the leukocyte count to a highly significant extent, without serious side effects. The leukocytosis was due to an increase in neutrophil granulocytes. |
[18] (1980) | Small-cell bronchogenic carcinoma | Li2CO3 | 300 mg three times daily | 23 | Combined with cyclophosphamide, doxorubicin, and vincristine | Infection-free survival was significantly longer in the lithium-treated group. The lithium-treated group suffered fewer neutropenia days. |
[125] (1984) | Small-cell lung cancer | Li2CO3 | 300 mg three times daily | 20 | Combined with doxorubicin and vincristine | Lithium administration was associated with a greater risk of sudden death and shorter survival. Lithium carbonate significantly reduced infection risk, but increased cardiomyopathy risk cooperating with anthracycline antibiotics. |
[126] (2021) | Breast cancer | Li2CO3 | 300 mg three times daily | 18 | N/A | Lithium was not advantageous or beneficial for the prevention of CIPN. Electromyography and nerve conduction velocity variables became better in the lithium group without significance. |
[127] (2011) | Low-grade neuroendocrine tumors | LiCl | 300 mg three times daily | 15 | N/A | Lithium lacked demonstrable efficacy. |
[128] (1999) | Differentiated thyroid carcinoma | Li2CO3 | 300 mg three times daily | 15 | Near-total thyroidectomy was accepted before the study; 131I therapy accepted | More 131I accumulated during lithium therapy. |
[110] (2020) | AML | Li2CO3 | 300 mg three times daily | 9 | N/A | Lithium induced differentiation of AML stem cells. |
[129] (2017) | Glioblastoma | Li2CO3 | 400 mg three times daily | 7 | Combined with cimetidine, olanzapine, and valproate | Lithium showed significantly longer survival. |
[130] (2022) | Breast cancer | N/A | N/A | 914 | N/A | All antipsychotic drugs (including lithium) are associated with a 35% increased risk of breast cancer. |
[131] (2019) | Breast cancer | N/A | N/A | 326 | N/A | All psychotropic medication use was not associated with invasive breast cancer risk. |
Refs. | Cancer Type | Dosage | Effects | Direction |
---|---|---|---|---|
[143] | Breast cancer | 50–100 mM | Lithium reduced cell viability and down-regulated the ratio of Bcl-2/Bax. | Antitumor |
[40] | Colon cancer | 10–60 mM | Lithium promoted ROS production, down-regulated cell viability, and lowered the expression of Bcl-2 and survivin. | Antitumor |
[144] | Glioblastoma | 20 mM | Lithium reduced cell viability. | Antitumor |
[73] | Leukemia | 12.5–30 mM | Lithium inhibited cell viability and induced apoptosis. | Antitumor |
[46] | Lung cancer | 20 mM | Lithium stimulated the overexpression of DR4 and DR5 and enhanced the efficiency of TRAIL. | Antitumor |
[95] | melanoma | 5–20 mM | Lithium separated hexokinase from mitochondria in a dosage manner. | Antitumor |
[140] | Neuroblastoma | 50 mM | Lithium reduced cell viability. | Antitumor |
[68] | Osteosarcoma | 20 mM | Lithium inhibited DNA replication and cell migration. | Antitumor |
[63] | Prostate cancer | 100–500 μM | Lithium down-regulated MK level, reduced cell viability, and induced apoptosis. | Antitumor |
[51] | Rhabdomyosarcoma | 10–25 mM | Lithium inhibited cell proliferation and enhanced the efficiency of arsenic trioxide. | Antitumor |
[143] | Breast cancer | 1–10 mM | Lithium up-regulated the ratio of Bcl-2/Bax and improved cell viability. | Pro-tumor |
[142] | Breast cancer | 110 mM | Lithium up-regulated Bcl-2, down-regulated p53 level, and then improved cell viability | Pro-tumor |
[144] | Glioblastoma | 0.5/2/20 mM | Lithium up-regulated p21 and survivin levels in a dosage-dependent manner. | Pro-tumor |
[139] | Hepatoblastoma/ lung carcinoma/breast carcinoma | 20 mM | Lithium down-regulated CD95 via inactivation of p53 and then suppressed apoptosis induced by etoposide and camptothecin. | Pro-tumor |
[145] | Neuroblastoma/ Neuron | 0.5–2 mM | Lithium down-regulated cytochrome C, up-regulated the ratio of Bcl-2/Bax and prevented mitochondrial damage. | Pro-tumor |
[91] | Neuroblastoma/ Neuron | 0.5/0.7 mM | Lithium increased cell viability significantly and down-regulated ROS levels. | Pro-tumor |
[140] | Neuroblastoma | 1–50 mM | Lithium prevented rotenone-induced apoptosis and mitochondrial dysfunction. | Pro-tumor |
[63] | Prostate cancer | 1–10 μM | Lithium up-regulated cell viability and MK level. | Pro-tumor |
[146] | Retinoblastoma | 20/40 mM | Lithium enhanced DNA replication and increased the portion of stem cells. | Pro-tumor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Zhu, B.; Zhan, M.; Hua, Z.-C. Lithium in Cancer Therapy: Friend or Foe? Cancers 2023, 15, 1095. https://doi.org/10.3390/cancers15041095
Yang C, Zhu B, Zhan M, Hua Z-C. Lithium in Cancer Therapy: Friend or Foe? Cancers. 2023; 15(4):1095. https://doi.org/10.3390/cancers15041095
Chicago/Turabian StyleYang, Chunhao, Bo Zhu, Mingjie Zhan, and Zi-Chun Hua. 2023. "Lithium in Cancer Therapy: Friend or Foe?" Cancers 15, no. 4: 1095. https://doi.org/10.3390/cancers15041095
APA StyleYang, C., Zhu, B., Zhan, M., & Hua, Z. -C. (2023). Lithium in Cancer Therapy: Friend or Foe? Cancers, 15(4), 1095. https://doi.org/10.3390/cancers15041095