Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Data
2.2. Treatment Details
2.3. Clinical Endpoint
2.4. MRI Acquisition and Segmentation
2.5. Dosimetric Features
2.6. Image Preprocessing and Radiomic Features Extraction
2.7. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Lesion Characteristics and Response Rate
3.3. Clinical Associations between Features and Treatment Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rumgay, H.; Ferlay, J.; de Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.E.P.P.; Soerjomataram, I. Global, regional and national burden of primary liver cancer by subtype. Eur. J. Cancer 2022, 161, 108–118. [Google Scholar] [CrossRef]
- Potters, L.; Gaspar, L.E.; Kavanagh, B.; Galvin, J.M.; Hartford, A.C.; Hevezi, J.M.; Kupelian, P.A.; Mohiden, N.; Samuels, M.A.; Timmerman, R.; et al. American Society for Therapeutic Radiology and Oncology (ASTRO) and American College of Radiology (ACR) practice guidelines for image-guided radiation therapy (IGRT). Int. J. Radiat. Oncol. Biol. Phys. 2010, 76, 319–325. [Google Scholar] [CrossRef] [PubMed]
- Pesapane, F.; Nezami, N.; Patella, F.; Geschwind, J.F. New concepts in embolotherapy of HCC. Med. Oncol. 2017, 34, 58. [Google Scholar] [PubMed]
- Bruix, J.; Sherman, M. Practice Guidelines Committee, Management of hepatocellular carcinoma. Hepatology 2005, 42, 1208–1236. [Google Scholar] [PubMed]
- European Association for the Study of the Liver. European Association for the Study of the, EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar]
- Lo, C.-M.; Ngan, H.; Tso, W.-K.; Liu, C.-L.; Lam, C.-M.; Poon, R.T.-P.; Fan, S.-T.; Wong, J. Randomized controlled trial of transarterial lipiodol chemoembolization for unresectable hepatocellular carcinoma. Hepatology 2002, 35, 1164–1171. [Google Scholar]
- Ghanaati, H.; Mohammadifard, M.; Mohammadifard, M. A review of applying transarterial chemoembolization (TACE) method for management of hepatocellular carcinoma. J. Fam. Med. Prim. Care 2021, 10, 3553–3560. [Google Scholar]
- Shim, S.J.; Seong, J.; Han, K.H.; Chon, C.Y.; Suh, C.O.; Lee, J.T. Local radiotherapy as a complement to incomplete transcatheter arterial chemoembolization in locally advanced hepatocellular carcinoma. Liver Int. 2005, 25, 1189–1196. [Google Scholar] [CrossRef]
- Shampain, K.L.; Hackett, C.E.; Towfighi, S.; Aslam, A.; Masch, W.R.; Harris, A.C.; Chang, S.D.; Khanna, K.; Mendiratta, V.; Gabr, A.M.; et al. SBRT for HCC: Overview of technique and treatment response assessment. Abdom. Radiol. 2021, 46, 3615–3624. [Google Scholar]
- Choi, S.H.; Seong, J. Stereotactic Body Radiotherapy: Does It Have a Role in Management of Hepatocellular Carcinoma? Yonsei Med. J. 2018, 59, 912–922. [Google Scholar] [CrossRef]
- Cárdenes, H.R.; Price, T.R.; Perkins, S.M.; Maluccio, M.; Kwo, P.; Breen, T.E.; Henderson, M.A.; Schefter, T.E.; Tudor, K.; Deluca, J.; et al. Phase I feasibility trial of stereotactic body radiation therapy for primary hepatocellular carcinoma. Clin. Transl. Oncol. 2010, 12, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.R.; Eslick, G.D. Transcatheter Arterial Chemoembolization Plus Radiotherapy Compared With Chemoembolization Alone for Hepatocellular Carcinoma: A Systematic Review and Meta-analysis. JAMA Oncol. 2015, 1, 756–765. [Google Scholar] [PubMed]
- Hawkins, M.A.; Dawson, L.A. Radiation therapy for hepatocellular carcinoma: From palliation to cure. Cancer 2006, 106, 1653–1663. [Google Scholar]
- Aguirre-Ghiso, J.A. Models, mechanisms and clinical evidence for cancer dormancy. Nat. Rev. Cancer 2007, 7, 834–846. [Google Scholar] [CrossRef] [PubMed]
- Steel, P.M. Exploitable mechanisms in combined radiotherapychemotherapy: The concept of additivity. Int. J. Radiat. Oncol. Biol. Phys. 1979, 5, 85–91. [Google Scholar] [PubMed]
- Seong, J.; Kim, S.; Suh, C. Enhancement of tumor radioresponse by combined chemotherapyin murine hepatocarcinoma. J. Gastroenterol. Hepatol. 2001, 16, 883–889. [Google Scholar] [PubMed]
- Chan MK, H.; Lee, V.; Chiang, C.L.; Lee FA, S.; Law, G.; Sin, N.Y.; Siu, K.L.; Wong FC, S.; Tung, S.Y.; Luk, H.; et al. Lipiodol versus Diaphragm in 4D-CBCT-guided Stereotactic Radiotherapy of Hepatocellular Carcinoma. Strahlenther. Und Onkol. 2016, 192, 92–101. [Google Scholar]
- Yue, J.; Sun, X.; Cai, J.; Yin, F.-F.; Yin, Y.; Zhu, J.; Lu, J.; Liu, T.; Yu, J.; Shi, X.; et al. Lipiodol: A potential direct surrogate for cone-beam computed tomography image guidance in radiotherapy of liver tumor. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 834–841. [Google Scholar] [CrossRef]
- Chiang, C.L.; Chan, M.K.H.; Yeung, C.S.Y.; Ho, C.H.M.; Lee, F.A.S.; Lee, V.W.Y.; Wong, F.C.S.; Blanck, O. Combined stereotactic body radiotherapy and trans-arterial chemoembolization as initial treatment in BCLC stage B-C hepatocellular carcinoma. Strahlenther. Onkol. 2019, 195, 254–264. [Google Scholar]
- Rhieu, B.-H.; Narang, A.; Meyer, J. Stereotactic Ablative Radiotherapy (SABR/SBRT) for Hepatocellular Carcinoma. Curr. Hepatol. Rep. 2018, 17, 392–398. [Google Scholar] [CrossRef]
- Chiang, C.-L.; Chan, A.C.Y.; Chiu, K.W.H.; Kong, F.-M.S. Combined Stereotactic Body Radiotherapy and Checkpoint Inhibition in Unresectable Hepatocellular Carcinoma: A Potential Synergistic Treatment Strategy. Front. Oncol. 2019, 9, 1157. [Google Scholar] [PubMed]
- Chiang, C.-L.; Chiu, K.W.-H.; Lee, F.A.-S.; Kong, F.-M.S.; Chan, A.C.-Y. Combined Stereotactic Body Radiotherapy and Immunotherapy Versus Transarterial Chemoembolization in Locally Advanced Hepatocellular Carcinoma: A Propensity Score Matching Analysis. Front. Oncol. 2021, 11, 798832. [Google Scholar] [PubMed]
- Chiang, C.L.; Chiu, K.W.H.; Chan, K.S.K.; Lee, F.A.S.; Li, J.C.B.; Wan, C.W.S.; Dai, W.C.; Lam, T.C.; Chen, W.; Wong, N.S.M.; et al. Sequential transarterial chemoembolisation and stereotactic body radiotherapy followed by immunotherapy as conversion therapy for patients with locally advanced, unresectable hepatocellular carcinoma (START-FIT): A single-arm, phase 2 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 169–178. [Google Scholar]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef]
- Avanzo, M.; Stancanello, J.; El Naqa, I. Beyond imaging: The promise of radiomics. Phys. Med. 2017, 38, 122–139. [Google Scholar] [PubMed]
- Yu, T.-T.; Lam, S.-K.; To, L.-H.; Tse, K.-Y.; Cheng, N.-Y.; Fan, Y.-N.; Lo, C.-L.; Or, K.-W.; Chan, M.-L.; Hui, K.-C.; et al. Pretreatment Prediction of Adaptive Radiation Therapy Eligibility Using MRI-Based Radiomics for Advanced Nasopharyngeal Carcinoma Patients. Front. Oncol. 2019, 9, 1050. [Google Scholar] [PubMed]
- Lam, S.-K.; Zhang, J.; Zhang, Y.-P.; Li, B.; Ni, R.-Y.; Zhou, T.; Peng, T.; Cheung, A.L.-Y.; Chau, T.-C.; Lee, F.K.-H.; et al. A Multi-Center Study of CT-Based Neck Nodal Radiomics for Predicting an Adaptive Radiotherapy Trigger of Ill-Fitted Thermoplastic Masks in Patients with Nasopharyngeal Carcinoma. Life 2022, 12, 241. [Google Scholar] [CrossRef]
- Zhang, Y.; Lam, S.; Yu, T.; Teng, X.; Zhang, J.; Lee, F.K.-H.; Au, K.-H.; Yip, C.W.-Y.; Wang, S.; Cai, J. Integration of an imbalance framework with novel high-generalizable classifiers for radiomics-based distant metastases prediction of advanced nasopharyngeal carcinoma. Knowl.-Based Syst. 2022, 235, 107649. [Google Scholar]
- Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of image analysis. Eur. Radiol. Exp. 2018, 2, 36. [Google Scholar]
- Lafata, K.; Cai, J.; Wang, C.; Hong, J.; Kelsey, C.R.; Yin, F.-F. Spatial-temporal variability of radiomic features and its effect on the classification of lung cancer histology. Phys. Med. Biol. 2018, 63, 225003. [Google Scholar]
- Teng, X.; Zhang, J.; Ma, Z.; Zhang, Y.; Lam, S.; Li, W.; Xiao, H.; Li, T.; Li, B.; Zhou, T.; et al. Improving radiomic model reliability using robust features from perturbations for head-and-neck carcinoma. Front. Oncol. 2022, 12, 974467. [Google Scholar] [PubMed]
- Pinker-Domenig, K.; Chin, J.; Melsaether, A.N.; Morris, E.A.; Moy, L. Precision Medicine and Radiogenomics in Breast Cancer: New Approaches toward Diagnosis and Treatment. Radiology 2018, 287, 732–747. [Google Scholar]
- Liu, Z.; Meng, X.; Zhang, H.; Li, Z.; Liu, J.; Sun, K.; Meng, Y.; Dai, W.; Xie, P.; Ding, Y.; et al. Predicting distant metastasis and chemotherapy benefit in locally advanced rectal cancer. Nat. Commun. 2020, 11, 4308. [Google Scholar] [PubMed]
- Elshafeey, N.; Kotrotsou, A.; Hassan, A.; Elshafei, N.; Hassan, I.; Ahmed, S.; Abrol, S.; Agarwal, A.; El Salek, K.; Bergamaschi, S.; et al. Multicenter study demonstrates radiomic features derived from magnetic resonance perfusion images identify pseudoprogression in glioblastoma. Nat. Commun. 2019, 10, 3170. [Google Scholar] [PubMed]
- Trebeschi, S.; Drago, S.; Birkbak, N.; Kurilova, I.; Cǎlin, A.; Pizzi, A.D.; Lalezari, F.; Lambregts, D.; Rohaan, M.; Parmar, C.; et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann. Oncol. 2019, 30, 998–1004. [Google Scholar]
- Colen, R.R.; Rolfo, C.; Ak, M.; Ayoub, M.; Ahmed, S.; Elshafeey, N.; Mamindla, P.; O Zinn, P.; Ng, C.; Vikram, R.; et al. Radiomics analysis for predicting pembrolizumab response in patients with advanced rare cancers. J. Immunother. Cancer 2021, 9, e001752. [Google Scholar]
- Jiang, W.; Song, Y.; Sun, Z.; Qiu, J.; Shi, L. Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1161–1170. [Google Scholar] [CrossRef]
- Bousabarah, K.; Blanck, O.; Temming, S.; Wilhelm, M.-L.; Hoevels, M.; Baus, W.W.; Ruess, D.; Visser-Vandewalle, V.; Ruge, M.I.; Treuer, H.; et al. Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: Results from two independent institutions. Radiat. Oncol. 2021, 16, 74. [Google Scholar] [CrossRef]
- Zhang, Y.; Shu, Z.; Ye, Q.; Chen, J.; Zhong, J.; Jiang, H.; Wu, C.; Yu, T.; Pang, P.; Ma, T.; et al. Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma via Multi-Parametric MRI Radiomics. Front. Oncol. 2021, 11, 633596. [Google Scholar] [CrossRef]
- Yang, L.; Gu, D.; Wei, J.; Yang, C.; Rao, S.; Wang, W.; Chen, C.; Ding, Y.; Tian, J.; Zeng, M. A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma. Liver Cancer 2019, 8, 373–386. [Google Scholar] [CrossRef]
- Luo, J.; Huang, Z.; Wang, M.; Li, T.; Huang, J. Prognostic role of multiparameter MRI and radiomics in progression of advanced unresectable hepatocellular carcinoma following combined transcatheter arterial chemoembolization and lenvatinib therapy. BMC Gastroenterol. 2022, 22, 108. [Google Scholar]
- Zhang, Z.; Jiang, H.; Chen, J.; Wei, Y.; Cao, L.; Ye, Z.; Li, X.; Ma, L.; Song, B. Hepatocellular carcinoma: Radiomics nomogram on gadoxetic acid-enhanced MR imaging for early postoperative recurrence prediction. Cancer Imaging 2019, 19, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Wu, J.; Zhang, Q.; Hua, Z.; Qi, W.; Wang, N.; Lin, T.; Sheng, L.; Cui, D.; Liu, J.; et al. Radiomics Analysis Based on Multiparametric MRI for Predicting Early Recurrence in Hepatocellular Carcinoma After Partial Hepatectomy. J. Magn. Reson. Imaging 2021, 53, 1066–1079. [Google Scholar] [PubMed]
- Jiang, H.; Liu, X.; Chen, J.; Wei, Y.; Lee, J.M.; Cao, L.; Wu, Y.; Duan, T.; Li, X.; Ma, L.; et al. Man or machine? Prospective comparison of the version 2018 EASL, LI-RADS criteria and a radiomics model to diagnose hepatocellular carcinoma. Cancer Imaging 2019, 19, 84. [Google Scholar]
- Huang, X.; Long, L.; Wei, J.; Li, Y.; Xia, Y.; Zuo, P.; Chai, X. Radiomics for diagnosis of dual-phenotype hepatocellular carcinoma using Gd-EOB-DTPA-enhanced MRI and patient prognosis. J. Cancer Res. Clin. Oncol. 2019, 145, 2995–3003. [Google Scholar] [CrossRef]
- Aujay, G.; Etchegaray, C.; Blanc, J.-F.; Lapuyade, B.; Papadopoulos, P.; Pey, M.-A.; Bordenave, L.; Trillaud, H.; Saut, O.; Pinaquy, J.-B. Comparison of MRI-based response criteria and radiomics for the prediction of early response to transarterial radioembolization in patients with hepatocellular carcinoma. Diagn. Interv. Imaging 2022, 103, 360–366. [Google Scholar]
- Kuang, Y.; Li, R.; Jia, P.; Ye, W.; Zhou, R.; Zhu, R.; Wang, J.; Lin, S.; Pang, P.; Ji, W. MRI-Based Radiomics: Nomograms predicting the short-term response after transcatheter arterial chemoembolization (TACE) in hepatocellular carcinoma patients with diameter less than 5 cm. Abdom. Radiol. 2021, 46, 3772–3789. [Google Scholar]
- Liu, Q.-P.; Yang, K.-L.; Xu, X.; Liu, X.-S.; Qu, J.-R.; Zhang, Y.-D. Radiomics analysis of pretreatment MRI in predicting tumor response and outcome in hepatocellular carcinoma with transarterial chemoembolization: A two-center collaborative study. Abdom. Radiol. 2022, 47, 651–663. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, H.; Xia, W.; Wang, D.; Zhou, B.; Zhao, X.; Yang, G.; Xu, L.; Zhang, W.; Liu, P.; et al. Predicting the Outcome of Transcatheter Arterial Embolization Therapy for Unresectable Hepatocellular Carcinoma Based on Radiomics of Preoperative Multiparameter MRI. J. Magn. Reson. Imaging 2020, 52, 1083–1090. [Google Scholar] [CrossRef]
- Lam, S.-K.; Zhang, Y.; Zhang, J.; Li, B.; Sun, J.-C.; Liu, C.Y.-T.; Chou, P.-H.; Teng, X.; Ma, Z.-R.; Ni, R.-Y.; et al. Multi-organ omics-based prediction for adaptive radiation therapy eligibility in nasopharyngeal carcinoma patients undergoing concurrent chemoradiotherapy. Front. Oncol. 2022, 11, 5406. [Google Scholar] [CrossRef]
- Li, B.; Zheng, X.; Zhang, J.; Lam, S.; Guo, W.; Wang, Y.; Cui, S.; Teng, X.; Zhang, Y.; Ma, Z.; et al. Lung Subregion Partitioning by Incremental Dose Intervals Improves Omics-Based Prediction for Acute Radiation Pneumonitis in Non-Small-Cell Lung Cancer Patients. Cancers 2022, 14, 4889. [Google Scholar] [PubMed]
- Li, B.; Ren, G.; Guo, W.; Zhang, J.; Lam, S.-K.; Zheng, X.; Teng, X.; Wang, Y.; Yang, Y.; Dan, Q.; et al. Function-Wise Dual-Omics analysis for radiation pneumonitis prediction in lung cancer patients. Comput. Intell. Pers. Med. 2022, 110. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Zhang, J.; Zwanenburg, A.; Sun, J.; Huang, Y.; Lam, S.; Zhang, Y.; Li, B.; Zhou, T.; Xiao, H.; et al. Building reliable radiomic models using image perturbation. Sci. Rep. 2022, 12, 1–10. [Google Scholar]
- Sangro, B.; Gomez-Martin, C.; de la Mata, M.; Iñarrairaegui, M.; Garralda, E.; Barrera, P.; Riezu-Boj, J.I.; Larrea, E.; Alfaro, C.; Sarobe, P.; et al. A clinical trial of CTLA-4 blockade with tremelimumab in patients with hepatocellular carcinoma and chronic hepatitis C. J. Hepatol. 2013, 59, 81–88. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H., 3rd; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef]
- Cruite, I.; Tang, A.; Sirlin, C.B. Imaging-based diagnostic systems for hepatocellular carcinoma. AJR Am. J. Roentgenol. 2013, 201, 41–55. [Google Scholar] [PubMed]
- Hou, Z.; Ren, W.; Li, S.; Liu, J.; Sun, Y.; Yan, J.; Wan, S. Radiomic analysis in contrast-enhanced CT: Predict treatment response to chemoradiotherapy in esophageal carcinoma. Oncotarget 2017, 8, 104444–104454. [Google Scholar]
- Wang, G.; He, L.; Yuan, C.; Huang, Y.; Liu, Z.; Liang, C. Pretreatment MR imaging radiomics signatures for response prediction to induction chemotherapy in patients with nasopharyngeal carcinoma. Eur. J. Radiol. 2018, 98, 100–106. [Google Scholar] [CrossRef]
- Park, J.H.; Kim, D.H.; Kim, S.H.; Kim, M.Y.; Baik, S.K.; Hong, I.S. The Clinical Implications of Liver Resection Margin Size in Patients with Hepatocellular Carcinoma in Terms of Positron Emission Tomography Positivity. World J. Surg. 2018, 42, 1514–1522. [Google Scholar]
- Nardone, V.; Reginelli, A.; Guida, C.; Belfiore, M.P.; Biondi, M.; Mormile, M.; Buonamici, F.B.; Di Giorgio, E.; Spadafora, M.; Tini, P.; et al. Delta-radiomics increases multicentre reproducibility: A phantom study. Med. Oncol. 2020, 37, 38. [Google Scholar] [CrossRef]
- Plautz, T.E.; Zheng, C.; Noid, G.; Li, X.A. Time stability of delta-radiomics features and the impact on patient analysis in longitudinal CT images. Med. Phys. 2019, 46, 1663–1676. [Google Scholar] [PubMed]
- Goh, V.; Ganeshan, B.; Nathan, P.; Juttla, J.K.; Vinayan, A.; Miles, K.A. Assessment of Response to Tyrosine Kinase Inhibitors in Metastatic Renal Cell Cancer: CT Texture as a Predictive Biomarker. Radiology 2011, 261, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Nasief, H.; Zheng, C.; Schott, D.; Hall, W.; Tsai, S.; Erickson, B.; Li, X.A. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis. Oncol. 2019, 3, 25. [Google Scholar] [CrossRef] [PubMed]
- Dercle, L.; Fronheiser, M.; Lu, L.; Du, S.; Hayes, W.; Leung, D.K.; Roy, A.; Wilkerson, J.; Guo, P.; Fojo, A.T.; et al. Identification of Non-Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin. Cancer Res. 2020, 26, 2151–2162. [Google Scholar] [PubMed]
- Fave, X.; Zhang, L.; Yang, J.; Mackin, D.; Balter, P.; Gomez, D.; Followill, D.; Jones, A.K.; Stingo, F.; Liao, Z.; et al. Delta-radiomics features for the prediction of patient outcomes in non-small cell lung cancer. Sci. Rep. 2017, 7, 588. [Google Scholar]
- Khorrami, M.; Prasanna, P.; Gupta, A.; Patil, P.; Velu, P.D.; Thawani, R.; Corredor, G.; Alilou, M.; Bera, K.; Fu, P.; et al. Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non-Small Cell Lung Cancer. Cancer Immunol. Res. 2020, 8, 108–119. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, M.; Zhang, Y.; Luo, Y.; He, S.; Wang, Y.; Chen, F.; Liu, Y.; Yang, Q.; Li, Y.; et al. Imaging Biomarkers to Predict and Evaluate the Effectiveness of Immunotherapy in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 657615. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Liu, F.; Yang, W.; Ding, J.; Chen, W.; Wei, Y.; Li, B.; Zheng, L. A radiomics nomogram for the prediction of overall survival in patients with hepatocellular carcinoma after hepatectomy. Cancer Imaging 2020, 20, 82. [Google Scholar] [CrossRef]
- Mulé, S.; Thiefin, G.; Costentin, C.; Durot, C.; Rahmouni, A.; Luciani, A.; Hoeffel, C. Advanced Hepatocellular Carcinoma: Pretreatment Contrast-enhanced CT Texture Parameters as Predictive Biomarkers of Survival in Patients Treated with Sorafenib. Radiology 2018, 288, 445–455. [Google Scholar]
- Yip, C.; Landau, D.; Kozarski, R.; Ganeshan, B.; Thomas, R.; Michaelidou, A.; Goh, V. Heterogeneity as Potential Prognostic Biomarker in Patients Treated with Definitive Chemotherapy and Radiation Therapy. Radiology 2014, 2014, 141–148. [Google Scholar]
- Yoon, S.H.; Park, C.M.; Park, S.J.; Yoon, J.-H.; Hahn, S.; Goo, J.M. Tumor Heterogeneity in Lung Cancer: Assessment with Dynamic Contrast-enhanced MR Imaging. Radiology 2016, 280, 940–948. [Google Scholar] [PubMed]
- Zhang, H.; Graham, C.M.; Elci, O.; Griswold, M.E.; Zhang, X.; Khan, M.A.; Pitman, K.; Caudell, J.J.; Hamilton, R.D.; Ganeshan, B.; et al. Locally Advanced Squamous Cell Carcinoma of the Head and Neck: CT Texture and Histogram Analysis Allow Independent Prediction of Overall Survival in Patients Treated with Induction Chemotherapy. Radiology 2013, 269, 801–809. [Google Scholar]
- Ganeshan, B.; Miles, K.; Young, R.; Chatwin, C. Hepatic entropy and uniformity: Additional parameters that can potentially increase the effectiveness of contrast enhancement during abdominal CT. Clin. Radiol. 2007, 62, 761–768. [Google Scholar] [PubMed]
- Long, Y.; Liang, Y.; Li, S.; Guo, J.; Wang, Y.; Luo, Y.; Wu, Y. Therapeutic outcome and related predictors of stereotactic body radiotherapy for small liver-confined HCC: A systematic review and meta-analysis of observational studies. Radiat. Oncol. 2021, 16, 68. [Google Scholar] [PubMed]
- Bujold, A.; Massey, C.A.; Kim, J.J.; Brierley, J.; Cho, C.; Wong, R.K.; Dinniwell, R.E.; Kassam, Z.; Ringash, J.; Cummings, B.; et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J. Clin. Oncol. 2013, 31, 1631–1639. [Google Scholar]
- Tse, R.V.; Hawkins, M.; Lockwood, G.; Kim, J.J.; Cummings, B.; Knox, J.; Sherman, M.; Dawson, L.A. Phase I study of individualized stereotactic body radiotherapy for hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J. Clin. Oncol. 2008, 26, 657–664. [Google Scholar] [CrossRef]
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun. 2017, 8, 15618. [Google Scholar] [CrossRef]
- Du, F.; Tang, N.; Cui, Y.; Wang, W.; Zhang, Y.; Li, Z.; Li, J. A Novel Nomogram Model Based on Cone-Beam CT Radiomics Analysis Technology for Predicting Radiation Pneumonitis in Esophageal Cancer Patients Undergoing Radiotherapy. Front. Oncol. 2020, 10, 596013. [Google Scholar] [CrossRef]
- Mostafaei, S.; Abdollahi, H.; Dehkordi, S.K.; Shiri, I.; Razzaghdoust, A.; Moghaddam, S.H.Z.; Saadipoor, A.; Koosha, F.; Cheraghi, S.; Mahdavi, S.R. CT imaging markers to improve radiation toxicity prediction in prostate cancer radiotherapy by stacking regression algorithm. Radiol. Med. 2020, 125, 87–97. [Google Scholar] [CrossRef]
- Bourbonne, V.; Da-Ano, R.; Jaouen, V.; Lucia, F.; Dissaux, G.; Bert, J.; Pradier, O.; Visvikis, D.; Hatt, M.; Schick, U. Radiomics analysis of 3D dose distributions to predict toxicity of radiotherapy for lung cancer. Radiother. Oncol. 2021, 155, 144–150. [Google Scholar]
- Lucia, F.; Bourbonne, V.; Visvikis, D.; Miranda, O.; Gujral, D.; Gouders, D.; Dissaux, G.; Pradier, O.; Tixier, F.; Jaouen, V.; et al. Radiomics Analysis of 3D Dose Distributions to Predict Toxicity of Radiotherapy for Cervical Cancer. J. Pers. Med. 2021, 11, 398. [Google Scholar] [PubMed]
- Puisieux, M.F.; Pellat, A.; Assaf, A.; Ginestet, C.; Brezault, C.; Dhooge, M.; Soyer, P.; Coriat, R. Therapeutic Management of Advanced Hepatocellular Carcinoma: An Updated Review. Cancers 2022, 14, 2357. [Google Scholar]
Total Number of Patients | 26 |
---|---|
Gender | |
| 25 |
| 1 |
Age (y), mean ± SD | 67.0 ± 7.6 |
| 5 |
| 10 |
| 10 |
| 1 |
Diameters of largest tumor nodule (cm), mean ± SD | 9.4 ± 3.7 |
Sum of diameter of tumor nodule (cm), mean ± SD | 12.6 ± 5.6 |
Medical History | |
| 17 |
| 4 |
| 2 |
Vascular invasion | |
| 6 |
| 14 |
CP Score | |
| 19 |
| 6 |
| 1 |
BCLC Stage | |
| 3 |
| 7 |
| 16 |
Lesion numbers | |
| 14 |
| 8 |
| 4 |
3 Months | 6 Months | |||||
---|---|---|---|---|---|---|
Respondent Group (n = 18) | Non-Respondent Group (n = 24) | p-Value | Respondent Group (n = 28) | Non-Respondent Group (n = 14) | p-Value | |
GTV size (cc) *, mean ± SD | 374.3 ± 426.5 | 491.0 ± 634.6 | 0.504 | 295.4 ± 376.2 | 732.2 ± 728.2 | 0.014 |
| 3 | 3 | 4 | 2 | ||
| 5 | 11 | 12 | 3 | ||
| 5 | 1 | 6 | 1 | ||
| 3 | 4 | 4 | 3 | ||
| 2 | 5 | 2 | 5 | ||
PTV size (cc), mean ± SD | 510.1 ± 534.9 | 654.1 ± 758.3.0 | 0.496 | 418.4 ± 479.6 | 940.4 ± 857.0 | 0.015 |
Prescribed Dose for SBRT, mean ± SD | 34.3 ± 4.7 | 32.9 ± 5.2 | 0.377 | 33.9 ± 4.7 | 32.7 ± 5.5 | 0.449 |
| 1 | 4 | 2 | 3 | ||
| 7 | 11 | 12 | 6 | ||
| 4 | 3 | 5 | 2 | ||
| 6 | 5 | 9 | 2 | ||
| - | 1 | - | 1 | ||
| - | - | - | - | ||
Response Rate | ||||||
| 3 | - | 13 | - | ||
| 15 | - | 15 | - | ||
| - | 16 | - | 6 | ||
| - | 8 | - | 8 |
(a) | |
---|---|
Features | p-Value |
PVP radiomic features | |
First-order feature | |
Uniformity | 0.048 |
Second-order feature | |
GLCM_Sum Entropy | 0.040 |
DeltaP radiomic features | |
First-order feature | |
Entropy | 0.045 |
Uniformity | 0.029 |
Second-order feature | |
GLCM_Difference Variance | 0.011 |
GLCM_Joint Energy | 0.040 |
GLCM_Joint Entropy | 0.037 |
GLCM_Sum Entropy | 0.033 |
GLRLM_Gray-Level Non-Uniformity | 0.031 |
GLRLM_Gray-Level Non-Uniformity Normalized | 0.037 |
GLRLM_Run Entropy | 0.010 |
GLSZM_Gray-Level Non-Uniformity Normalized | 0.010 |
GLSZM_Size Zone Non-Uniformity Normalized | 0.003 |
GLSZM_Small Area Emphasis | 0.003 |
GLDM_Dependence Entropy | 0.029 |
GLDM_Gray-Level Non-Uniformity | 0.019 |
NGTDM_Contrast | 0.029 |
(b) | |
Features | p-Value |
Shape and size features | |
Major Axis Length | 0.018 |
Maximum 3D Diameter | 0.049 |
AP radiomic features | |
First-order feature | |
Kurtosis | 0.008 |
Maximum | 0.017 |
Uniformity | 0.040 |
Second-order feature | |
GLCM_Auto-correlation | 0.004 |
GLCM_Joint Average | 0.004 |
GLRLM_Gray-Level Non-Uniformity | 0.049 |
GLRLM_Gray-Level Non-Uniformity Normalized | 0.046 |
GLRLM_High Gray-Level Run Emphasis | 0.004 |
GLRLM_Long Run High Gray-Level Emphasis | 0.021 |
GLRLM_Short Run High Gray-Level Emphasis | 0.004 |
GLSZM_Gray-Level Non-Uniformity | 0.049 |
GLSZM_High Gray-Level Zone Emphasis | 0.005 |
GLSZM_Small Area High Gray-Level Emphasis | 0.005 |
GLDM_High Gray-Level Emphasis | 0.004 |
GLDM_Small Dependence High Gray-Level Emphasis | 0.021 |
NGTDM_Coarseness | 0.049 |
PVP radiomic features | |
Second-order feature | |
GLSZM_High Gray-Level Zone Emphasis | 0.046 |
DeltaP radiomic features | |
First-order feature | |
Entropy | 0.012 |
Maximum | 0.024 |
Median | 0.049 |
Minimum | 0.014 |
Range | 0.038 |
Uniformity | 0.030 |
Second-order feature | |
GLCM_Joint Entropy | 0.030 |
GLCM_Sum Entropy | 0.013 |
GLRLM_Gray-Level Non-Uniformity | 0.026 |
GLRLM_Gray-Level Non-Uniformity Normalized | 0.030 |
GLRLM_Run Entropy | 0.009 |
GLSZM_Gray-Level Non-Uniformity Normalized | 0.002 |
GLDM_Gray-Level Non-Uniformity | 0.002 |
NGTDM_Contrast | 0.010 |
Dosimetric features | |
V35Gy Percentage | 0.035 |
(a) | ||||
---|---|---|---|---|
Features | FDR-Adjusted p-Value a | AUC | Sensitivity | Specificity |
DeltaP radiomic features | ||||
Second-order feature | ||||
GLCM_Joint Entropy | 0.063 | 0.690 (0.527–0.843) | 0.625 | 0.667 |
GLRLM_Run Entropy | 0.044 | 0.734 (0.573–0.869) | 0.625 | 0.667 |
GLSZM_Gray-Level Non-Uniformity Normalized | 0.038 | 0.734 (0.566–0.881) | 0.625 | 0.667 |
GLSZM_Small Area Emphasis | 0.038 | 0.766 (0.600–0.912) | 0.625 | 0.667 |
(b) | ||||
Features | FDR-Adjusted p-Value a | AUC | Sensitivity | Specificity |
Shape and size features | ||||
Major Axis Length | 0.074 | 0.724 (0.529–0.891) | 0.714 | 0.607 |
AP radiomic features | ||||
First-order feature | ||||
Kurtosis | 0.028 | 0.750 (0.589–0.895) | 0.786 | 0.643 |
Maximum | 0.028 | 0.727 (0.564–0.879) | 0.714 | 0.607 |
Second-order feature | ||||
GLRLM_Short Run High Gray-Level Emphasis | 0.028 | 0.773 (0.606–0.917) | 0.857 | 0.679 |
GLDM_Small Dependence High Gray-Level Emphasis | 0.055 | 0.719 (0.533–0.859) | 0.786 | 0.643 |
DeltaP radiomic features | ||||
First-order feature | ||||
Range | 0.047 | 0.699 (0.518–0.865) | 0.786 | 0.643 |
Second-order feature | ||||
GLCM_Joint Entropy | 0.070 | 0.707 (0.527–0.877) | 0.643 | 0.571 |
GLRLM_Run Entropy | 0.047 | 0.747 (0.593–0.883) | 0.714 | 0.607 |
GLSZM_Gray-Level Non-Uniformity Normalized | 0.047 | 0.788 (0.633–0.909) | 0.786 | 0.643 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ho, L.-M.; Lam, S.-K.; Zhang, J.; Chiang, C.-L.; Chan, A.C.-Y.; Cai, J. Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers 2023, 15, 1105. https://doi.org/10.3390/cancers15041105
Ho L-M, Lam S-K, Zhang J, Chiang C-L, Chan AC-Y, Cai J. Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers. 2023; 15(4):1105. https://doi.org/10.3390/cancers15041105
Chicago/Turabian StyleHo, Lok-Man, Sai-Kit Lam, Jiang Zhang, Chi-Leung Chiang, Albert Chi-Yan Chan, and Jing Cai. 2023. "Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy" Cancers 15, no. 4: 1105. https://doi.org/10.3390/cancers15041105
APA StyleHo, L. -M., Lam, S. -K., Zhang, J., Chiang, C. -L., Chan, A. C. -Y., & Cai, J. (2023). Association of Multi-Phasic MR-Based Radiomic and Dosimetric Features with Treatment Response in Unresectable Hepatocellular Carcinoma Patients following Novel Sequential TACE-SBRT-Immunotherapy. Cancers, 15(4), 1105. https://doi.org/10.3390/cancers15041105