Hyponatremia and Cancer: From Bedside to Benchside
Abstract
:Simple Summary
Abstract
1. Introduction
2. Hyponatremia in Cancer and AVP Receptor Antagonists
2.1. Aetiology of Hyponatremia in Cancer Patients
2.2. Clinical Manifestations of Chronic Hyponatremia
2.3. Hyponatremia in Cancer: Does It Affect Patient Outcome?
2.4. Hyponatremia and Cancer: What Did Basic Research Tell Us?
2.5. AVPR Antagonists
2.6. Vaptans and Cancer: The Lab Perspective
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Adrogué, H.J.; Madias, N.E. Hyponatremia. N. Engl. J. Med. 2000, 342, 1581–1589. [Google Scholar] [CrossRef]
- Rondon-Berrios, H.; Agaba, E.I.; Tzamaloukas, A.H. Hyponatremia: Pathophysiology, Classification, Manifestations and Management. Int. Urol. Nephrol. 2014, 46, 2153–2165. [Google Scholar] [CrossRef] [PubMed]
- Cuesta, M.; Thompson, C.J. The Syndrome of Inappropriate Antidiuresis (SIAD). Best Pract. Res. Clin. Endocrinol. Metab. 2016, 30, 175–187. [Google Scholar] [CrossRef]
- Renneboog, B.; Musch, W.; Vandemergel, X.; Manto, M.U.; Decaux, G. Mild Chronic Hyponatremia Is Associated with Falls, Unsteadiness, and Attention Deficits. Am. J. Med. 2006, 119, 71.e1–71.e8. [Google Scholar] [CrossRef] [PubMed]
- Suárez, V.; Norello, D.; Sen, E.; Todorova, P.; Hackl, M.J.; Hüser, C.; Grundmann, F.; Kubacki, T.; Becker, I.; Peri, A.; et al. Impairment of Neurocognitive Functioning, Motor Performance, and Mood Stability in Hospitalized Patients with Euvolemic Moderate and Profound Hyponatremia. Am. J. Med. 2020, 133, 986–993.e5. [Google Scholar] [CrossRef] [PubMed]
- Wald, R.; Jaber, B.L.; Price, L.L.; Upadhyay, A.; Madias, N.E. Impact of Hospital-Associated Hyponatremia on Selected Outcomes. Arch. Intern. Med. 2010, 170, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Giuliani, C.; Parenti, G.; Norello, D.; Verbalis, J.G.; Forti, G.; Maggi, M.; Peri, A. Moderate Hyponatremia Is Associated with Increased Risk of Mortality: Evidence from a Meta-Analysis. PLoS ONE 2013, 8, e80451. [Google Scholar] [CrossRef] [PubMed]
- Mohan, S.; Gu, S.; Parikh, A.; Radhakrishnan, J. Prevalence of Hyponatremia and Association with Mortality: Results from NHANES. Am. J. Med. 2013, 126, 1127–1137.e1. [Google Scholar] [CrossRef]
- Holland-Bill, L.; Christiansen, C.F.; Heide-Jørgensen, U.; Ulrichsen, S.P.; Ring, T.; Jørgensen, J.O.L.; Sørensen, H.T. Hyponatremia and Mortality Risk: A Danish Cohort Study of 279508 Acutely Hospitalized Patients. Eur. J. Endocrinol. 2015, 173, 71–81. [Google Scholar] [CrossRef]
- Doshi, S.M.; Shah, P.; Lei, X.; Lahoti, A.; Salahudeen, A.K. Hyponatremia in Hospitalized Cancer Patients and Its Impact on Clinical Outcomes. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2012, 59, 222–228. [Google Scholar] [CrossRef]
- Berardi, R.; Rinaldi, S.; Caramanti, M.; Grohè, C.; Santoni, M.; Morgese, F.; Torniai, M.; Savini, A.; Fiordoliva, I.; Cascinu, S. Hyponatremia in Cancer Patients: Time for a New Approach. Crit. Rev. Oncol. Hematol. 2016, 102, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.J.; Glezerman, I.G.; Boklage, S.H.; Chiodo, J., 3rd; Tidwell, B.A.; Lamerato, L.E.; Schulman, K.L. The Occurrence of Hyponatremia and Its Importance as a Prognostic Factor in a Cross-Section of Cancer Patients. BMC Cancer 2016, 16, 564. [Google Scholar] [CrossRef] [PubMed]
- Grohé, C. Hyponatremia in Oncology Patients. Front. Horm. Res. 2019, 52, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Kasi, P.M. Proposing the Use of Hyponatremia as a Marker to Help Identify High Risk Individuals for Lung Cancer. Med. Hypotheses 2012, 79, 327–328. [Google Scholar] [CrossRef] [PubMed]
- Berghmans, T.; Paesmans, M.; Body, J.J. A Prospective Study on Hyponatraemia in Medical Cancer Patients: Epidemiology, Aetiology and Differential Diagnosis. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2000, 8, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Ellison, D.H.; Berl, T. Clinical Practice. The Syndrome of Inappropriate Antidiuresis. N. Engl. J. Med. 2007, 356, 2064–2072. [Google Scholar] [CrossRef]
- Verbalis, J.G.; Goldsmith, S.R.; Greenberg, A.; Korzelius, C.; Schrier, R.W.; Sterns, R.H.; Thompson, C.J. Diagnosis, Evaluation, and Treatment of Hyponatremia: Expert Panel Recommendations. Am. J. Med. 2013, 126, S1–S42. [Google Scholar] [CrossRef]
- Sørensen, J.B.; Andersen, M.K.; Hansen, H.H. Syndrome of Inappropriate Secretion of Antidiuretic Hormone (SIADH) in Malignant Disease. J. Intern. Med. 1995, 238, 97–110. [Google Scholar] [CrossRef]
- Liamis, G.; Milionis, H.; Elisaf, M. A Review of Drug-Induced Hyponatremia. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2008, 52, 144–153. [Google Scholar] [CrossRef]
- Raftopoulos, H. Diagnosis and Management of Hyponatremia in Cancer Patients. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2007, 15, 1341–1347. [Google Scholar] [CrossRef]
- Berardi, R.; Santoni, M.; Rinaldi, S.; Nunzi, E.; Smerilli, A.; Caramanti, M.; Morgese, F.; Torniai, M.; Savini, A.; Fiordoliva, I.; et al. Risk of Hyponatraemia in Cancer Patients Treated with Targeted Therapies: A Systematic Review and Meta-Analysis of Clinical Trials. PLoS ONE 2016, 11, e0152079. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.Y.; Miyoshi, H.; Nakamura, A.; Kurita, T.; Atsumi, T. Hyponatremia Can Be a Powerful Predictor of the Development of Isolated ACTH Deficiency Associated with Nivolumab Treatment [Letter to the Editor]. Endocr. J. 2017, 64, 235–236. [Google Scholar] [CrossRef] [PubMed]
- Decaux, G. Is Asymptomatic Hyponatremia Really Asymptomatic? Am. J. Med. 2006, 119, S79–S82. [Google Scholar] [CrossRef] [PubMed]
- Rondon-Berrios, H.; Berl, T. Mild Chronic Hyponatremia in the Ambulatory Setting: Significance and Management. Clin. J. Am. Soc. Nephrol. 2015, 10, 2268–2278. [Google Scholar] [CrossRef]
- Hoorn, E.J.; Rivadeneira, F.; van Meurs, J.B.J.; Ziere, G.; Stricker, B.H.C.; Hofman, A.; Pols, H.A.P.; Zietse, R.; Uitterlinden, A.G.; Zillikens, M.C. Mild Hyponatremia as a Risk Factor for Fractures: The Rotterdam Study. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2011, 26, 1822–1828. [Google Scholar] [CrossRef]
- Sajadieh, A.; Binici, Z.; Mouridsen, M.R.; Nielsen, O.W.; Hansen, J.F.; Haugaard, S.B. Mild Hyponatremia Carries a Poor Prognosis in Community Subjects. Am. J. Med. 2009, 122, 679–686. [Google Scholar] [CrossRef]
- Nair, V.; Niederman, M.S.; Masani, N.; Fishbane, S. Hyponatremia in Community-Acquired Pneumonia. Am. J. Nephrol. 2007, 27, 184–190. [Google Scholar] [CrossRef]
- Ma, Q.-Q.; Fan, X.-D.; Li, T.; Hao, Y.-Y.; Ma, F. Short- and Long-Term Prognostic Value of Hyponatremia in Patients with Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0193857. [Google Scholar] [CrossRef]
- Rodrigues, B.; Staff, I.; Fortunato, G.; McCullough, L.D. Hyponatremia in the Prognosis of Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 2014, 23, 850–854. [Google Scholar] [CrossRef]
- Waikar, S.S.; Curhan, G.C.; Brunelli, S.M. Mortality Associated with Low Serum Sodium Concentration in Maintenance Hemodialysis. Am. J. Med. 2011, 124, 77–84. [Google Scholar] [CrossRef]
- Chawla, A.; Sterns, R.H.; Nigwekar, S.U.; Cappuccio, J.D. Mortality and Serum Sodium: Do Patients Die from or with Hyponatremia? Clin. J. Am. Soc. Nephrol. 2011, 6, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Velavan, P.; Khan, N.K.; Goode, K.; Rigby, A.S.; Loh, P.H.; Komajda, M.; Follath, F.; Swedberg, K.; Madeira, H.; Cleland, J.G.F. Predictors of Short Term Mortality in Heart Failure—Insights from the Euro Heart Failure Survey. Int. J. Cardiol. 2010, 138, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Arroyo, V.; Rodés, J.; Gutiérrez-Lizárraga, M.A.; Revert, L. Prognostic Value of Spontaneous Hyponatremia in Cirrhosis with Ascites. Am. J. Dig. Dis. 1976, 21, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Schrier, R.W. Water and Sodium Retention in Edematous Disorders: Role of Vasopressin and Aldosterone. Am. J. Med. 2006, 119, S47–S53. [Google Scholar] [CrossRef]
- Eckart, A.; Hausfater, P.; Amin, D.; Amin, A.; Haubitz, S.; Bernard, M.; Baumgartner, A.; Struja, T.; Kutz, A.; Christ-Crain, M.; et al. Hyponatremia and Activation of Vasopressin Secretion Are Both Independently Associated with 30-Day Mortality: Results of a Multicenter, Observational Study. J. Intern. Med. 2018, 284, 270–281. [Google Scholar] [CrossRef]
- Renneboog, B.; Sattar, L.; Decaux, G. Attention and Postural Balance Are Much More Affected in Older than in Younger Adults with Mild or Moderate Chronic Hyponatremia. Eur. J. Intern. Med. 2017, 41, e25–e26. [Google Scholar] [CrossRef]
- Nowak, K.L.; Yaffe, K.; Orwoll, E.S.; Ix, J.H.; You, Z.; Barrett-Connor, E.; Hoffman, A.R.; Chonchol, M. Serum Sodium and Cognition in Older Community-Dwelling Men. Clin. J. Am. Soc. Nephrol. 2018, 13, 366–374. [Google Scholar] [CrossRef]
- Corona, G.; Norello, D.; Parenti, G.; Sforza, A.; Maggi, M.; Peri, A. Hyponatremia, Falls and Bone Fractures: A Systematic Review and Meta-Analysis. Clin. Endocrinol. 2018, 89, 505–513. [Google Scholar] [CrossRef]
- Negri, A.L.; Ayus, J.C. Hyponatremia and Bone Disease. Rev. Endocr. Metab. Disord. 2017, 18, 67–78. [Google Scholar] [CrossRef]
- Gankam Kengne, F.; Andres, C.; Sattar, L.; Melot, C.; Decaux, G. Mild Hyponatremia and Risk of Fracture in the Ambulatory Elderly. QJM 2008, 101, 583–588. [Google Scholar] [CrossRef]
- Kinsella, S.; Moran, S.; Sullivan, M.O.; Molloy, M.G.M.; Eustace, J.A. Hyponatremia Independent of Osteoporosis Is Associated with Fracture Occurrence. Clin. J. Am. Soc. Nephrol. 2010, 5, 275–280. [Google Scholar] [CrossRef]
- Kuo, S.C.H.; Kuo, P.-J.; Rau, C.-S.; Wu, S.-C.; Hsu, S.-Y.; Hsieh, C.-H. Hyponatremia Is Associated with Worse Outcomes from Fall Injuries in the Elderly. Int. J. Environ. Res. Public Health 2017, 14, 460. [Google Scholar] [CrossRef]
- Usala, R.L.; Fernandez, S.J.; Mete, M.; Cowen, L.; Shara, N.M.; Barsony, J.; Verbalis, J.G. Hyponatremia Is Associated with Increased Osteoporosis and Bone Fractures in a Large US Health System Population. J. Clin. Endocrinol. Metab. 2015, 100, 3021–3031. [Google Scholar] [CrossRef] [PubMed]
- van Staa, T.P.; Leufkens, H.G.M.; Cooper, C. The Epidemiology of Corticosteroid-Induced Osteoporosis: A Meta-Analysis. Osteoporos. Int. A J. Establ. Result Coop. Eur. Found. Osteoporos. Natl. Osteoporos. Found. USA 2002, 13, 777–787. [Google Scholar] [CrossRef] [PubMed]
- Kruse, C.; Eiken, P.; Verbalis, J.; Vestergaard, P. The Effect of Chronic Mild Hyponatremia on Bone Mineral Loss Evaluated by Retrospective National Danish Patient Data. Bone 2016, 84, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Verbalis, J.G.; Barsony, J.; Sugimura, Y.; Tian, Y.; Adams, D.J.; Carter, E.A.; Resnick, H.E. Hyponatremia-Induced Osteoporosis. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2010, 25, 554–563. [Google Scholar] [CrossRef] [PubMed]
- Corona, G.; Giuliani, C.; Verbalis, J.G.; Forti, G.; Maggi, M.; Peri, A. Hyponatremia Improvement Is Associated with a Reduced Risk of Mortality: Evidence from a Meta-Analysis. PLoS ONE 2015, 10, e0124105. [Google Scholar] [CrossRef]
- Schrier, R.W.; Gross, P.; Gheorghiade, M.; Berl, T.; Verbalis, J.G.; Czerwiec, F.S.; Orlandi, C. Tolvaptan, a Selective Oral Vasopressin V2-Receptor Antagonist, for Hyponatremia. N. Engl. J. Med. 2006, 355, 2099–2112. [Google Scholar] [CrossRef]
- Verbalis, J.G.; Ellison, H.; Hobart, M.; Krasa, H.; Ouyang, J.; Czerwiec, F.S. Tolvaptan and Neurocognitive Function in Mild to Moderate Chronic Hyponatremia: A Randomized Trial (INSIGHT). Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2016, 67, 893–901. [Google Scholar] [CrossRef]
- Gosch, M.; Joosten-Gstrein, B.; Heppner, H.-J.; Lechleitner, M. Hyponatremia in Geriatric Inhospital Patients: Effects on Results of a Comprehensive Geriatric Assessment. Gerontology 2012, 58, 430–440. [Google Scholar] [CrossRef]
- Cuesta, M.; Slattery, D.; Goulden, E.L.; Gupta, S.; Tatro, E.; Sherlock, M.; Tormey, W.; O’Neill, S.; Thompson, C.J. Hyponatraemia in Patients with Community-Acquired Pneumonia; Prevalence and Aetiology, and Natural History of SIAD. Clin. Endocrinol. (Oxf.) 2019, 90, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Berni, A.; Malandrino, D.; Corona, G.; Maggi, M.; Parenti, G.; Fibbi, B.; Poggesi, L.; Bartoloni, A.; Lavorini, F.; Fanelli, A.; et al. Serum Sodium Alterations in SARS CoV-2 (COVID-19) Infection: Impact on Patient Outcome. Eur. J. Endocrinol. 2021, 185, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J. COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Shin, J. Il Inflammation and Hyponatremia: An Underrecognized Condition? Korean J. Pediatr. 2013, 56, 519–522. [Google Scholar] [CrossRef]
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 762–768. [Google Scholar] [CrossRef]
- Mastorakos, G.; Weber, J.S.; Magiakou, M.A.; Gunn, H.; Chrousos, G.P. Hypothalamic-Pituitary-Adrenal Axis Activation and Stimulation of Systemic Vasopressin Secretion by Recombinant Interleukin-6 in Humans: Potential Implications for the Syndrome of Inappropriate Vasopressin Secretion. J. Clin. Endocrinol. Metab. 1994, 79, 934–939. [Google Scholar] [CrossRef]
- Akbar, M.R.; Pranata, R.; Wibowo, A.; Irvan; Sihite, T.A.; Martha, J.W. The Prognostic Value of Hyponatremia for Predicting Poor Outcome in Patients with COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 666949. [Google Scholar] [CrossRef]
- Boscoe, A.; Paramore, C.; Verbalis, J.G. Cost of Illness of Hyponatremia in the United States. Cost Eff. Resour. Alloc. 2006, 4, 10. [Google Scholar] [CrossRef]
- Berardi, R.; Caramanti, M.; Fiordoliva, I.; Morgese, F.; Savini, A.; Rinaldi, S.; Torniai, M.; Tiberi, M.; Ferrini, C.; Castagnani, M.; et al. Hyponatraemia Is a Predictor of Clinical Outcome for Malignant Pleural Mesothelioma. Support. Care Cancer Off. J. Multinatl. Assoc. Support. Care Cancer 2015, 23, 621–626. [Google Scholar] [CrossRef]
- Gandhi, L.; Johnson, B.E. Paraneoplastic Syndromes Associated with Small Cell Lung Cancer. J. Natl. Compr. Canc. Netw. 2006, 4, 631–638. [Google Scholar] [CrossRef]
- Rawson, N.S.; Peto, J. An Overview of Prognostic Factors in Small Cell Lung Cancer. A Report from the Subcommittee for the Management of Lung Cancer of the United Kingdom Coordinating Committee on Cancer Research. Br. J. Cancer 1990, 61, 597–604. [Google Scholar] [CrossRef]
- Zhou, M.H.; Wang, Z.H.; Zhou, H.W.; Liu, M.; Gu, Y.J.; Sun, J.Z. Clinical Outcome of 30 Patients with Bone Marrow Metastases. J. Cancer Res. Ther. 2018, 14, S512–S515. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.S.; Bae, E.H.; Ma, S.K.; Kweon, S.S.; Kim, S.W. Prognostic Impact of Hyponatraemia in Patients with Colorectal Cancer. Color. Dis. Off. J. Assoc. Coloproctology Gt. Br. Irel. 2015, 17, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Dhaliwal, H.S.; Rohatiner, A.Z.; Gregory, W.; Richards, M.A.; Johnson, P.W.; Whelan, J.S.; Gallagher, C.J.; Matthews, J.; Ganesan, T.S.; Barnett, M.J. Combination Chemotherapy for Intermediate and High Grade Non-Hodgkin’s Lymphoma. Br. J. Cancer 1993, 68, 767–774. [Google Scholar] [CrossRef] [PubMed]
- Ginès, P.; Guevara, M. Hyponatremia in Cirrhosis: Pathogenesis, Clinical Significance, and Management. Hepatology 2008, 48, 1002–1010. [Google Scholar] [CrossRef] [PubMed]
- Cescon, M.; Cucchetti, A.; Grazi, G.L.; Ferrero, A.; Viganò, L.; Ercolani, G.; Zanello, M.; Ravaioli, M.; Capussotti, L.; Pinna, A.D. Indication of the Extent of Hepatectomy for Hepatocellular Carcinoma on Cirrhosis by a Simple Algorithm Based on Preoperative Variables. Arch. Surg. 2009, 144, 57–63; discussion 63. [Google Scholar] [CrossRef]
- Vasudev, N.S.; Brown, J.E.; Brown, S.R.; Rafiq, R.; Morgan, R.; Patel, P.M.; O’Donnell, D.; Harnden, P.; Rogers, M.; Cocks, K.; et al. Prognostic Factors in Renal Cell Carcinoma: Association of Preoperative Sodium Concentration with Survival. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2008, 14, 1775–1781. [Google Scholar] [CrossRef]
- Schutz, F.A.B.; Xie, W.; Donskov, F.; Sircar, M.; McDermott, D.F.; Rini, B.I.; Agarwal, N.; Pal, S.K.; Srinivas, S.; Kollmannsberger, C.; et al. The Impact of Low Serum Sodium on Treatment Outcome of Targeted Therapy in Metastatic Renal Cell Carcinoma: Results from the International Metastatic Renal Cell Cancer Database Consortium. Eur. Urol. 2014, 65, 723–730. [Google Scholar] [CrossRef]
- Abu Zeinah, G.F.; Al-Kindi, S.G.; Hassan, A.A.; Allam, A. Hyponatraemia in Cancer: Association with Type of Cancer and Mortality. Eur. J. Cancer Care 2015, 24, 224–231. [Google Scholar] [CrossRef]
- Berardi, R.; Rinaldi, S.; Belfiori, G.; Partelli, S.; Crippa, S.; Torniai, M.; Falconi, M. The Role of Hyponatraemia Before Surgery in Patients with Radical Resected Pancreatic Cancer. Clin. Med. Insights Oncol. 2020, 14, 1179554920936605. [Google Scholar] [CrossRef]
- Berardi, R.; Mocchegiani, F.; Rinaldi, S.; Fiordoliva, I.; Rovinelli, F.; Caramanti, M.; Federici, A.; Burattini, M.; Morgese, F.; Torniai, M.; et al. Hyponatremia Is a Predictor of Clinical Outcome for Resected Biliary Tract Cancers: A Retrospective Single-Center Study. Oncol. Ther. 2020, 8, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.-C.; Li, C.-C.; Wen, S.-C.; Singla, N.; Woldu, S.L.; Robyak, H.; Huang, C.-N.; Ke, H.-L.; Li, W.-M.; Lee, H.-Y.; et al. Validation of Hyponatremia as a Prognostic Predictor in Multiregional Upper Tract Urothelial Carcinoma. J. Clin. Med. 2020, 9, 1218. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.-Y.; Gong, T.-T.; Yang, Z.; Liu, Y.; Wang, L.; Wang, Y.-N.; Wu, Q.-J. Prognostic Value of Preoperative Hyponatremia in Patients with Epithelial Ovarian Cancer. J. Cancer 2019, 10, 836–842. [Google Scholar] [CrossRef] [PubMed]
- Osterlind, K.; Andersen, P.K. Prognostic Factors in Small Cell Lung Cancer: Multivariate Model Based on 778 Patients Treated with Chemotherapy with or without Irradiation. Cancer Res. 1986, 46, 4189–4194. [Google Scholar] [PubMed]
- Waikar, S.S.; Mount, D.B.; Curhan, G.C. Mortality after Hospitalization with Mild, Moderate, and Severe Hyponatremia. Am. J. Med. 2009, 122, 857–865. [Google Scholar] [CrossRef]
- Doshi, K.H.; Shriyan, B.; Nookala, M.K.; Kannan, S.; Joshi, A.; Noronha, V.; Gota, V.; Prabhash, K. Prognostic Significance of Pretreatment Sodium Levels in Patients of Nonsmall Cell Lung Cancer Treated with Pemetrexed-Platinum Doublet Chemotherapy. J. Cancer Res. Ther. 2018, 14, 1049–1053. [Google Scholar] [CrossRef]
- Kawashima, A.; Tsujimura, A.; Takayama, H.; Arai, Y.; Nin, M.; Tanigawa, G.; Uemura, M.; Nakai, Y.; Nishimura, K.; Nonomura, N. Impact of Hyponatremia on Survival of Patients with Metastatic Renal Cell Carcinoma Treated with Molecular Targeted Therapy. Int. J. Urol. Off. J. Jpn. Urol. Assoc. 2012, 19, 1050–1057. [Google Scholar] [CrossRef]
- Penttilä, P.; Bono, P.; Peltola, K.; Donskov, F. Hyponatremia Associates with Poor Outcome in Metastatic Renal Cell Carcinoma Patients Treated with Everolimus: Prognostic Impact. Acta Oncol. 2018, 57, 1580–1585. [Google Scholar] [CrossRef]
- Refardt, J.; Brabander, T.; Minczeles, N.S.; Feelders, R.A.; de Herder, W.W.; Hofland, J. Prognostic Value of Dysnatremia for Survival in Neuroendocrine Neoplasm Patients. Eur. J. Endocrinol. 2022, 187, 209–217. [Google Scholar] [CrossRef]
- Kegasawa, T.; Sakamori, R.; Maesaka, K.; Yamada, R.; Tahata, Y.; Urabe, A.; Kodama, T.; Hikita, H.; Imanaka, K.; Ohkawa, K.; et al. Lower Serum Sodium Levels Are Associated with the Therapeutic Effect of Sorafenib on Hepatocellular Carcinoma. Dig. Dis. Sci. 2021, 66, 1720–1729. [Google Scholar] [CrossRef]
- Svaton, M.; Fiala, O.; Pesek, M.; Bruha, F.; Mukensnabl, P.; Racek, J.; Minarik, M.; Bortlicek, Z. Predictive and Prognostic Significance of Sodium Levels in Patients with NSCLC Treated by Erlotinib. Anticancer Res. 2014, 34, 7461–7465. [Google Scholar]
- Selmer, C.; Madsen, J.C.; Torp-Pedersen, C.; Gislason, G.H.; Faber, J. Hyponatremia, All-Cause Mortality, and Risk of Cancer Diagnoses in the Primary Care Setting: A Large Population Study. Eur. J. Intern. Med. 2016, 36, 36–43. [Google Scholar] [CrossRef]
- Hansen, O.; Sørensen, P.; Hansen, K.H. The Occurrence of Hyponatremia in SCLC and the Influence on Prognosis: A Retrospective Study of 453 Patients Treated in a Single Institution in a 10-Year Period. Lung Cancer 2010, 68, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Berardi, R.; Santoni, M.; Newsom-Davis, T.; Caramanti, M.; Rinaldi, S.; Tiberi, M.; Morgese, F.; Torniai, M.; Pistelli, M.; Onofri, A.; et al. Hyponatremia Normalization as an Independent Prognostic Factor in Patients with Advanced Non-Small Cell Lung Cancer Treated with First-Line Therapy. Oncotarget 2017, 8, 23871–23879. [Google Scholar] [CrossRef]
- Balachandran, K.; Okines, A.; Gunapala, R.; Morganstein, D.; Popat, S. Resolution of Severe Hyponatraemia Is Associated with Improved Survival in Patients with Cancer. BMC Cancer 2015, 15, 163. [Google Scholar] [CrossRef] [PubMed]
- Barsony, J.; Sugimura, Y.; Verbalis, J.G. Osteoclast Response to Low Extracellular Sodium and the Mechanism of Hyponatremia-Induced Bone Loss. J. Biol. Chem. 2011, 286, 10864–10875. [Google Scholar] [CrossRef] [PubMed]
- Barsony, J.; Manigrasso, M.B.; Xu, Q.; Tam, H.; Verbalis, J.G. Chronic Hyponatremia Exacerbates Multiple Manifestations of Senescence in Male Rats. Age Dordr. 2013, 35, 271–288. [Google Scholar] [CrossRef]
- Marroncini, G.; Anceschi, C.; Naldi, L.; Fibbi, B.; Brogi, M.; Lanzilao, L.; Fanelli, A.; Maggi, M.; Peri, A. Hyponatremia-Related Liver Steatofibrosis and Impaired Spermatogenesis: Evidence from a Mouse Model of the Syndrome of Inappropriate Antidiuresis. J. Endocrinol. Investig. 2022. [Google Scholar] [CrossRef]
- Anstee, Q.M.; Reeves, H.L.; Kotsiliti, E.; Govaere, O.; Heikenwalder, M. From NASH to HCC: Current Concepts and Future Challenges. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 411–428. [Google Scholar] [CrossRef]
- Benvenuti, S.; Deledda, C.; Luciani, P.; Modi, G.; Bossio, A.; Giuliani, C.; Fibbi, B.; Peri, A. Low Extracellular Sodium Causes Neuronal Distress Independently of Reduced Osmolality in an Experimental Model of Chronic Hyponatremia. Neuromol. Med. 2013, 15, 493–503. [Google Scholar] [CrossRef]
- Mancuso, C. Heme Oxygenase and Its Products in the Nervous System. Antioxid. Redox Signal. 2004, 6, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Gunter, K.; Maines, M.D. Neurons Overexpressing Heme Oxygenase-1 Resist Oxidative Stress-Mediated Cell Death. J. Neurochem. 2000, 75, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Marnett, L.J. Oxyradicals and DNA Damage. Carcinogenesis 2000, 21, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Zelenka, J.; Koncošová, M.; Ruml, T. Targeting of Stress Response Pathways in the Prevention and Treatment of Cancer. Biotechnol. Adv. 2018, 36, 583–602. [Google Scholar] [CrossRef] [PubMed]
- Marroncini, G.; Fibbi, B.; Errico, A.; Grappone, C.; Maggi, M.; Peri, A. Effects of Low Extracellular Sodium on Proliferation and Invasive Activity of Cancer Cells In Vitro. Endocrine 2020, 67, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Marroncini, G.; Anceschi, C.; Naldi, L.; Fibbi, B.; Baldanzi, F.; Martinelli, S.; Polvani, S.; Maggi, M.; Peri, A. Low Sodium and Tolvaptan Have Opposite Effects in Human Small Cell Lung Cancer Cells. Mol. Cell Endocrinol. 2021, 537, 111419. [Google Scholar] [CrossRef]
- Dyberg, C.; Fransson, S.; Andonova, T.; Sveinbjörnsson, B.; Lännerholm-Palm, J.; Olsen, T.K.; Forsberg, D.; Herlenius, E.; Martinsson, T.; Brodin, B.; et al. Rho-Associated Kinase Is a Therapeutic Target in Neuroblastoma. Proc. Natl. Acad. Sci. USA 2017, 114, E6603–E6612. [Google Scholar] [CrossRef]
- Xia, Y.; Cai, X.; Fan, J.; Zhang, L.; Li, Z.; Ren, J.; Wu, G.; Zhu, F. RhoA/ROCK Pathway Inhibition by Fasudil Suppresses the Vasculogenic Mimicry of U2OS Osteosarcoma Cells In Vitro. Anticancer Drugs 2017, 28, 514–521. [Google Scholar] [CrossRef]
- Xia, Y.; Cai, X.-Y.; Fan, J.-Q.; Zhang, L.-L.; Ren, J.-H.; Chen, J.; Li, Z.-Y.; Zhang, R.-G.; Zhu, F.; Wu, G. Rho Kinase Inhibitor Fasudil Suppresses the Vasculogenic Mimicry of B16 Mouse Melanoma Cells Both In Vitro and In Vivo. Mol. Cancer Ther. 2015, 14, 1582–1590. [Google Scholar] [CrossRef]
- Yamamura, Y.; Ogawa, H.; Yamashita, H.; Chihara, T.; Miyamoto, H.; Nakamura, S.; Onogawa, T.; Yamashita, T.; Hosokawa, T.; Mori, T. Characterization of a Novel Aquaretic Agent, OPC-31260, as an Orally Effective, Nonpeptide Vasopressin V2 Receptor Antagonist. Br. J. Pharmacol. 1992, 105, 787–791. [Google Scholar] [CrossRef]
- Ohnishi, A.; Orita, Y.; Okahara, R.; Fujihara, H.; Inoue, T.; Yamamura, Y.; Yabuuchi, Y.; Tanaka, T. Potent Aquaretic Agent. A Novel Nonpeptide Selective Vasopressin 2 Antagonist (OPC-31260) in Men. J. Clin. Investig. 1993, 92, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Serradeil-Le Gal, C.; Wagnon, J.; Garcia, C.; Lacour, C.; Guiraudou, P.; Christophe, B.; Villanova, G.; Nisato, D.; Maffrand, J.P.; Le Fur, G. Biochemical and Pharmacological Properties of SR 49059, a New, Potent, Nonpeptide Antagonist of Rat and Human Vasopressin V1a Receptors. J. Clin. Investig. 1993, 92, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Freidinger, R.M.; Pettibone, D.J. Small Molecule Ligands for Oxytocin and Vasopressin Receptors. Med. Res. Rev. 1997, 17, 1–16. [Google Scholar] [CrossRef]
- Tahara, A.; Tomura, Y.; Wada, K.I.; Kusayama, T.; Tsukada, J.; Takanashi, M.; Yatsu, T.; Uchida, W.; Tanaka, A. Pharmacological Profile of YM087, a Novel Potent Nonpeptide Vasopressin V1A and V2 Receptor Antagonist, in Vitro and in Vivo. J. Pharmacol. Exp. Ther. 1997, 282, 301–308. [Google Scholar]
- Yamamura, Y.; Nakamura, S.; Itoh, S.; Hirano, T.; Onogawa, T.; Yamashita, T.; Yamada, Y.; Tsujimae, K.; Aoyama, M.; Kotosai, K.; et al. OPC-41061, a Highly Potent Human Vasopressin V2-Receptor Antagonist: Pharmacological Profile and Aquaretic Effect by Single and Multiple Oral Dosing in Rats. J. Pharmacol. Exp. Ther. 1998, 287, 860–867. [Google Scholar]
- deGoma, E.M.; Vagelos, R.H.; Fowler, M.B.; Ashley, E.A. Emerging Therapies for the Management of Decompensated Heart Failure: From Bench to Bedside. J. Am. Coll. Cardiol. 2006, 48, 2397–2409. [Google Scholar] [CrossRef]
- Spasovski, G.; Vanholder, R.; Allolio, B.; Annane, D.; Ball, S.; Bichet, D.; Decaux, G.; Fenske, W.; Hoorn, E.J.; Ichai, C.; et al. Clinical Practice Guideline on Diagnosis and Treatment of Hyponatraemia. Eur. J. Endocrinol. 2014, 170, G1–G47. [Google Scholar] [CrossRef]
- Aylwin, S.; Burst, V.; Peri, A.; Runkle, I.; Thatcher, N. ‘Dos and Don’ts’ in the Management of Hyponatremia. Curr. Med. Res. Opin. 2015, 31, 1755–1761. [Google Scholar] [CrossRef]
- Soupart, A.; Coffernils, M.; Couturier, B.; Gankam-Kengne, F.; Decaux, G. Efficacy and Tolerance of Urea Compared with Vaptans for Long-Term Treatment of Patients with SIADH. Clin. J. Am. Soc. Nephrol. 2012, 7, 742–747. [Google Scholar] [CrossRef]
- Perelló-Camacho, E.; Pomares-Gómez, F.J.; López-Penabad, L.; Mirete-López, R.M.; Pinedo-Esteban, M.R.; Domínguez-Escribano, J.R. Clinical Efficacy of Urea Treatment in Syndrome of Inappropriate Antidiuretic Hormone Secretion. Sci. Rep. 2022, 12, 10266. [Google Scholar] [CrossRef]
- Soupart, A.; Silver, S.; Schroöeder, B.; Sterns, R.; Decaux, G. Rapid (24-Hour) Reaccumulation of Brain Organic Osmolytes (Particularly Myo-Inositol) in Azotemic Rats after Correction of Chronic Hyponatremia. J. Am. Soc. Nephrol. 2002, 13, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Nervo, A.; D’Angelo, V.; Rosso, D.; Castellana, E.; Cattel, F.; Arvat, E.; Grossi, E. Urea in Cancer Patients with Chronic SIAD-Induced Hyponatremia: Old Drug, New Evidence. Clin. Endocrinol. (Oxf.) 2019, 90, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, J.; de Boer, M.P.; Hempenius, L.; van Roon, E.N. Urea for Hyponatraemia Due to the Syndrome of Inappropriate Antidiuretic Hormone Secretion. Neth. J. Med. 2020, 78, 125–131. [Google Scholar] [PubMed]
- Sousa, C.; Ferreira, R.; Santos, S.B.; Azevedo, N.F.; Melo, L.D.R. Advances on Diagnosis of Helicobacter Pylori Infections. Crit. Rev. Microbiol. 2022, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Verbalis JG, H.E. The Use of an Algorithm to Aid Diagnosis and Treatment of Patients with Hyponatraemia Secondary to SIADH. In Proceedings of the 12th European Congress of Endocrinology, Prague, Czech Republic, 24–28 April 2010. [Google Scholar]
- Furst, H.; Hallows, K.R.; Post, J.; Chen, S.; Kotzker, W.; Goldfarb, S.; Ziyadeh, F.N.; Neilson, E.G. The Urine/Plasma Electrolyte Ratio: A Predictive Guide to Water Restriction. Am. J. Med. Sci. 2000, 319, 240–244. [Google Scholar] [CrossRef]
- Castillo, J.J.; Vincent, M.; Justice, E. Diagnosis and Management of Hyponatremia in Cancer Patients. Oncologist 2012, 17, 756–765. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Shijubo, N.; Kodama, T.; Mori, K.; Sugiura, T.; Kuriyama, T.; Kawahara, M.; Shinkai, T.; Iguchi, H.; Sakurai, M. Clinical Implication of the Antidiuretic Hormone (ADH) Receptor Antagonist Mozavaptan Hydrochloride in Patients with Ectopic ADH Syndrome. Jpn. J. Clin. Oncol. 2011, 41, 148–152. [Google Scholar] [CrossRef]
- Gattone, V.H., 2nd; Wang, X.; Harris, P.C.; Torres, V.E. Inhibition of Renal Cystic Disease Development and Progression by a Vasopressin V2 Receptor Antagonist. Nat. Med. 2003, 9, 1323–1326. [Google Scholar] [CrossRef]
- Torres, V.E.; Wang, X.; Qian, Q.; Somlo, S.; Harris, P.C.; Gattone, V.H. 2nd Effective Treatment of an Orthologous Model of Autosomal Dominant Polycystic Kidney Disease. Nat. Med. 2004, 10, 363–364. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Ward, C.J.; Harris, P.C.; Torres, V.E. Vasopressin Directly Regulates Cyst Growth in Polycystic Kidney Disease. J. Am. Soc. Nephrol. 2008, 19, 102–108. [Google Scholar] [CrossRef]
- Torres, V.E.; Chapman, A.B.; Devuyst, O.; Gansevoort, R.T.; Grantham, J.J.; Higashihara, E.; Perrone, R.D.; Krasa, H.B.; Ouyang, J.; Czerwiec, F.S. Tolvaptan in Patients with Autosomal Dominant Polycystic Kidney Disease. N. Engl. J. Med. 2012, 367, 2407–2418. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Torres, V.E. Emerging Therapies for Autosomal Dominant Polycystic Kidney Disease with a Focus on CAMP Signaling. Front. Mol. Biosci. 2022, 9, 981963. [Google Scholar] [CrossRef] [PubMed]
- Nagao, S.; Nishii, K.; Katsuyama, M.; Kurahashi, H.; Marunouchi, T.; Takahashi, H.; Wallace, D.P. Increased Water Intake Decreases Progression of Polycystic Kidney Disease in the PCK Rat. J. Am. Soc. Nephrol. 2006, 17, 2220–2227. [Google Scholar] [CrossRef] [PubMed]
- Reif, G.A.; Yamaguchi, T.; Nivens, E.; Fujiki, H.; Pinto, C.S.; Wallace, D.P. Tolvaptan Inhibits ERK-Dependent Cell Proliferation, Cl− Secretion, and in Vitro Cyst Growth of Human ADPKD Cells Stimulated by Vasopressin. Am. J. Physiol. Ren. Physiol. 2011, 301, F1005–F1013. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Beland, F.A.; Chen, S.; Liu, F.; Guo, L.; Fang, J.-L. Mechanisms of Tolvaptan-Induced Toxicity in HepG2 Cells. Biochem. Pharmacol. 2015, 95, 324–336. [Google Scholar] [CrossRef]
- Marroncini, G.; Anceschi, C.; Naldi, L.; Fibbi, B.; Baldanzi, F.; Maggi, M.; Peri, A. The V(2) Receptor Antagonist Tolvaptan Counteracts Proliferation and Invasivity in Human Cancer Cells. J. Endocrinol. Investig. 2022, 45, 1693–1708. [Google Scholar] [CrossRef]
- Sinha, S.; Dwivedi, N.; Tao, S.; Jamadar, A.; Kakade, V.R.; Neil, M.O.; Weiss, R.H.; Enders, J.; Calvet, J.P.; Thomas, S.M.; et al. Targeting the Vasopressin Type-2 Receptor for Renal Cell Carcinoma Therapy. Oncogene 2020, 39, 1231–1245. [Google Scholar] [CrossRef]
- Sarfaty, M.; Leshno, M.; Gordon, N.; Moore, A.; Neiman, V.; Rosenbaum, E.; Goldstein, D.A. Cost Effectiveness of Nivolumab in Advanced Renal Cell Carcinoma. Eur. Urol. 2018, 73, 628–634. [Google Scholar] [CrossRef]
- Jones, T.M.; Carew, J.S.; Nawrocki, S.T. Therapeutic Targeting of Autophagy for Renal Cell Carcinoma Therapy. Cancers 2020, 12, 1185. [Google Scholar] [CrossRef]
- Hsieh, J.J.; Purdue, M.P.; Signoretti, S.; Swanton, C.; Albiges, L.; Schmidinger, M.; Heng, D.Y.; Larkin, J.; Ficarra, V. Renal Cell Carcinoma. Nat. Rev. Dis. Prim. 2017, 3, 17009. [Google Scholar] [CrossRef]
- Serradeil-Le Gal, C.; Raufaste, D.; Marty, E.; Garcia, C.; Maffrand, J.P.; Le Fur, G. Binding of [3H] SR 49059, a Potent Nonpeptide Vasopressin V1a Antagonist, to Rat and Human Liver Membranes. Biochem. Biophys. Res. Commun. 1994, 199, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, A.; Verbalis, J.G. Vasopressin Receptor Antagonists. Kidney Int. 2006, 69, 2124–2130. [Google Scholar] [CrossRef] [PubMed]
- Lemmens-Gruber, R.; Kamyar, M. Vasopressin Antagonists. Cell Mol. Life Sci. 2006, 63, 1766–1779. [Google Scholar] [CrossRef]
- Brouard, R.; Bossmar, T.; Fournié-Lloret, D.; Chassard, D.; Akerlund, M. Effect of SR49059, an Orally Active V1a Vasopressin Receptor Antagonist, in the Prevention of Dysmenorrhoea. BJOG 2000, 107, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Decaux, G.; Soupart, A.; Vassart, G. Non-Peptide Arginine-Vasopressin Antagonists: The Vaptans. Lancet 2008, 371, 1624–1632. [Google Scholar] [CrossRef]
- Zhao, N.; Peacock, S.O.; Lo, C.H.; Heidman, L.M.; Rice, M.A.; Fahrenholtz, C.D.; Greene, A.M.; Magani, F.; Copello, V.A.; Martinez, M.J.; et al. Arginine Vasopressin Receptor 1a Is a Therapeutic Target for Castration-Resistant Prostate Cancer. Sci. Transl. Med. 2019, 11, 815–827. [Google Scholar] [CrossRef]
- Macedo, F.; Ladeira, K.; Pinho, F.; Saraiva, N.; Bonito, N.; Pinto, L.; Goncalves, F. Bone Metastases: An Overview. Oncol. Rev. 2017, 11, 321. [Google Scholar] [CrossRef]
- Heidman, L.M.; Peinetti, N.; Copello, V.A.; Burnstein, K.L. Exploiting Dependence of Castration-Resistant Prostate Cancer on the Arginine Vasopressin Signaling Axis by Repurposing Vaptans. Mol. Cancer Res. 2022, 20, 1295–1304. [Google Scholar] [CrossRef]
Tolvaptan | Conivaptan | |
---|---|---|
RECEPTOR | AVPR type 2 | AVPR type 1a and 2 |
SELECTIVITY (KiV1a:KiV2) | 29:1 | 10:1 |
ROUTE OF ADMINISTRATION | Oral | Intravenous |
URINE VOLUME | Increased | Increased |
URINE OSMOLALITY | Decreased | Decreased |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fibbi, B.; Marroncini, G.; Naldi, L.; Anceschi, C.; Errico, A.; Norello, D.; Peri, A. Hyponatremia and Cancer: From Bedside to Benchside. Cancers 2023, 15, 1197. https://doi.org/10.3390/cancers15041197
Fibbi B, Marroncini G, Naldi L, Anceschi C, Errico A, Norello D, Peri A. Hyponatremia and Cancer: From Bedside to Benchside. Cancers. 2023; 15(4):1197. https://doi.org/10.3390/cancers15041197
Chicago/Turabian StyleFibbi, Benedetta, Giada Marroncini, Laura Naldi, Cecilia Anceschi, Alice Errico, Dario Norello, and Alessandro Peri. 2023. "Hyponatremia and Cancer: From Bedside to Benchside" Cancers 15, no. 4: 1197. https://doi.org/10.3390/cancers15041197
APA StyleFibbi, B., Marroncini, G., Naldi, L., Anceschi, C., Errico, A., Norello, D., & Peri, A. (2023). Hyponatremia and Cancer: From Bedside to Benchside. Cancers, 15(4), 1197. https://doi.org/10.3390/cancers15041197