How Much Stress Does a Surgeon Endure? The Effects of the Robotic Approach on the Autonomic Nervous System of a Surgeon in the Modern Era of Thoracic Surgery
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Work-Ups
2.2. Selection Criteria for Robotic or Open Approaches
- -
- All I stage (IA1, IA2, IA3, and IB) cases without clinical lymph node involvement (cN0);
- -
- All clinical N1 stage (T1a, b, c to T2a, b, cN1)–IIB stage cases.
- -
- Neoadjuvant therapy (chemo- or immunotherapy for IIIA-B preoperative staging);
- -
- Tumor dimensions > 5 cm, chest wall involvement, or adjacency to mediastinal structures (IIB and IIIA).
2.3. Surgical Technique (RATS and Open Approach)
2.4. Patient Outcomes
2.5. Cardiovascular and Respiratory Activities of the Surgeons
- -
- Cardiovascular activity (mean, maximum, and minimum heart rates), thanks to a 6-lead ECG signal at 500 Hz using 4 ink-based dry electrodes;
- -
- Respiratory activity (mean, maximum, and minimum respiratory rates), desaturation, and time of desaturation, thanks to a 3-channel respiratory signal at 50 Hz from circumferential strain sensors placed at the thoracic, xiphoid, and abdominal levels;
- -
- Body activity and temperature (mean, maximum, and minimum body temperatures), thanks to a contact sensor under the right armpit;
- -
- Blood oxygen saturation (SpO2) (mean, maximum, and minimum SpO2 values, desaturation, and time in desaturation) from an optical module under the left armpit;
- -
- Activity level and body position from an inertial measurement unit (IMU) on the back.
2.6. Psychological Monitoring of the Surgeons’ State
- -
- STAI-Y1 is one of the scales of the STAI-Y (State-Trait Anxiety Inventory) [21,22], which aims to measure the presence and grade of anxiety. In particular, the STAI-Y1 rates the situation-related (that is, state) anxiety in the person filling the questionnaire. The questionnaire consists of 20 items with responses related to terms of intensity (from “almost never” to “almost always”) on a 5-point scale.
- -
- The Self-Assessment Manikin (SAM) is a non-verbal pictorial 5-point scale assessment technique that directly measures the valence (negative–positive) and arousal associated with a person’s affective reaction to a stimulus [23], providing a synthetic rating for emotional activation.
- -
- Perceived body part discomfort was measured on a 0 (no discomfort) to 10 (complete discomfort) scale. The considered body parts were the neck, shoulders (right and left separately), upper and lower back (separately), and right and left wrist/hand, as seen in similar studies [24].
2.7. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melfi, F.M.; Menconi, G.F.; Mariani, A.M.; Angeletti, C.A. Early experience with robotic technology for thoracoscopic surgery. Eur. J. Cardiothorac. Surg. 2002, 21, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.F.; Sun, Z.; Speicher, P.J.; Saud, S.M.; Gulack, B.C.; Hartwig, M.G.; Harpole, D.H., Jr.; Onaitis, M.W.; Tong, B.C.; D’Amico, T.A.; et al. Use and outcomes of minimally invasive lobectomy for stage i non-small cell lung cancer in the national cancer data base. Ann. Thorac. Surg. 2016, 101, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Louie, B.E.; Wilson, J.L.; Kim, S.; Cerfolio, R.J.; Park, B.J.; Farivar, A.S.; Vallières, E.; Aye, R.W.; Burfeind, W.R., Jr.; Block, M.I. Comparison of video-assisted thoracoscopic surgery and robotic approaches for clinical stage i and stage ii non-small cell lung cancer using the society of thoracic surgeons database. Ann. Thorac. Surg. 2016, 102, 917–924. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.; Xie, L.; Chen, G.; Tang, J.-M.; Ben, X.-S. Robotic thoracic surgery versus video- assisted thoracic surgery for lung cancer: A meta-analysis. Interact. Cardiovasc. Thorac. Surg. 2015, 21, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Jalbert, J.; Isaacs, A.J.; Altorki, N.K.; Isom, O.W.; Sedrakyan, A. Comparative effectiveness of robotic-assisted vs. thoracoscopic lobectomy. Chest 2014, 146, 1505–1512. [Google Scholar] [CrossRef]
- Augustin, F.; Bodner, J.; Maier, H.; Schwinghammer, C.; Pichler, B.; Lucciarini, P.; Pratschke, J.; Schmid, T. Robotic-assisted minimally invasive vs. thoracoscopic lung lobectomy: Comparison of perioperative results in a learning curve setting. Langenbeck’s Arch. Surg. 2013, 398, 895–901. [Google Scholar] [CrossRef]
- Pan, H.; Gu, Z.; Tian, Y.; Jiang, L.; Zhu, H.; Ning, J.; Huang, J.; Luo, Q. Propensity score-matched comparison of robotic- and video-assisted thoracoscopic surgery, and open lobectomy for non-small cell lung cancer patients aged 75 years or older. Front. Oncol. 2022, 12, 1009298. [Google Scholar] [CrossRef]
- Casiraghi, M.; Mariolo, A.V.; Mohamed, S.; Sedda, G.; Maisonneuve, P.; Mazzella, A.; Lo Iacono, G.; Petrella, F.; Spaggiari, L. Long-Term Outcomes of Robotic-Assisted, Video-Assisted and Open Surgery in Non-Small Cell Lung Cancer: A Matched Analysis. J. Clin. Med. 2022, 11, 11. [Google Scholar] [CrossRef]
- Kent, M.S.; Hartwig, M.G.; Vallières, E.; Abbas, A.E.; Cerfolio, R.J.; Dylewski, M.R.; Fabian, T.; Herrera, L.J.; Jett, K.G.; Lazzaro, R.S.; et al. Pulmonary Open, Robotic and Thoracoscopic Lobectomy (PORTaL) Study: An Analysis of 5721 Cases. Ann. Surg. 2021, 277, 528–533. [Google Scholar] [CrossRef]
- Shagabayeva, L.; Fu, B.; Panda, N.; Potter, A.L.; Auchincloss, H.G.; Mansur, A.; Yang, C.F.J.; Schumacher, L. Open, Video- and Robot-Assisted Thoracoscopic Lobectomy for Stage II-IIIA Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2022, 115, 184–190. [Google Scholar] [CrossRef]
- Ruitenburg, M.M.; Frings-Dresen, M.H.W.; Sluiter, J.K. Physical job demands and related health complaints among surgeons. Int. Arch. Occup. Environ. Health 2013, 86, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Pozzi, G.; Ruggiero, F.; Mameli, F.; Cavicchioli, M.; Barbieri, S.; Canevini, M.P.; Priori, A.; Pravettoni, G.; Sani, G.; et al. A Systematic Review and Provisional Metanalysis on Psychopathologic Burden on Health Care Workers of Coronavirus Outbreaks. Front. Psychiatry 2020, 11, 568664. [Google Scholar] [CrossRef]
- Triberti, S.; Petrella, F.; Gorini, A.; Pappalardo, O.; Sebri, V.; Savioni, L.; Redaelli, A.; Pravettoni, G. Augmenting surgery: Medical students’ assessment and ergonomics of 3D holograms vs. CT Scans for pre- operative planning. EAI Endorsed Trans. Pervasive Health Technol. 2021, 7, e5. [Google Scholar] [CrossRef]
- Amirian, I.; Toftegård Andersen, L.; Rosenberg, J.; Gögenur, I. Decreased heart rate variability in surgeons during night shifts. Can. J. Surg. 2014, 57, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Dekker, J.M.; Crow, R.S.; Folsom, A.R.; Hannan, P.J.; Liao, D.; Swenne, C.A.; Schouten, E.G. Low heart rate variability in a 2-minute rhythm strip predicts risk of coronary heart disease and mortality from several causes: The ARIC study. Atherosclerosis risk in communities. Circulation 2000, 102, 1239–1244. [Google Scholar] [CrossRef]
- Jones, K.I.; Amawi, F.; Bhalla, A.; Peacock, O.; Williams, J.P.; Lund, J.N. Assessing surgeon stress when operating using heart rate variability and the state trait anxiety inventory: Will surgery be the death of us? Colorectal. Dis. 2015, 17, 335–341. [Google Scholar] [CrossRef]
- Ciraulo, L.A.; Robaczewski, M.L.; Ciraulo, N.A.; Ciraulo, R.S.; Robaczewski, G.D.; Falank, C.R.; Ontengco, J.B.; Ciraulo, D.L. Biometric Analysis of Surgeons’ Physiologic Responses During Surgery. Am. Surg. 2020, 86, 1548–1552. [Google Scholar] [CrossRef]
- Casiraghi, M.; Galetta, D.; Borri, A.; Tessitore, A.; Romano, R.; Diotti, C.; Brambilla, D.; Maisonneuve, P.; Spaggiari, L. Ten Years’ Experience in Robotic-Assisted Thoracic Surgery for Early Stage Lung Cancer. Thorac. Cardiovasc. Surg. 2019, 67, 564–572. [Google Scholar]
- Veronesi, G.; Galetta, D.; Maisonneuve, P.; Melfi, F.; Schmid, R.A.; Borri, A.; Vannucci, F.; Spaggiari, L. Four-arm robotic lobectomy for the treatment of early-stage lung cancer. J. Thorac. Cardiovasc. Surg. 2010, 140, 19–25. [Google Scholar] [CrossRef]
- Galetta, D.; Casiraghi, M.; Pardolesi, A.; Borri, A.; Spaggiari, L. New stapling devices in robotic surgery. J. Vis. Surg. 2017, 3, 45. [Google Scholar] [CrossRef]
- Spielberger, C.D. Manual For the State-Trait Anxiety Inventory; Consulting Psychologists Press: Palo Alto, CA, USA, 1983. [Google Scholar]
- Pedrabissi, L.; Santinello, M. Verifica della validità dello STAI forma Y di Spielberger [Verification of the validity of the STAI, form, Y., by spielberger]. Giunti Organ. Spec. 1989, 191–192, 11–14. [Google Scholar]
- Bradley, M.M.; Lang, P.J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 1994, 25, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Davila, V.J.; Meltzer, A.J.; Fortune, E.; Morrow, M.M.; Lowndes, B.R.; Linden, A.R.; Hallbeck, M.S.; Money, S.R. Intraprocedural ergonomics of vascular surgeons. J. Vasc. Surg. 2020, 73, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.G.; Staveland, L.E. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv. Psychol. 1988, 52, 139–183. [Google Scholar]
- Charkoudian, N.; Rabbitts, J.A. Sympathetic neural mechanisms in human cardiovascular health and disease. Mayo Clin. Proc. 2009, 84, 822–830. [Google Scholar] [CrossRef] [Green Version]
All Surgeons | Surgeon A | Surgeon B | |||||||
---|---|---|---|---|---|---|---|---|---|
Open | RATS | p-Value | Open | RATS | p-Value | Open | RATS | p-Value | |
N (%) | N (%) | N (%) | N (%) | N (%) | N (%) | ||||
Patients | 40 | 40 | 20 | 20 | 20 | 20 | |||
Intervention | |||||||||
RLL | 6 | 3 | 3 | 2 | 3 | 1 | |||
LLL | 4 | 6 | 2 | 4 | 2 | 2 | |||
ML | 1 | 2 | 0 | 1 | 1 | 1 | |||
RUL | 10 | 14 | 5 | 7 | 5 | 7 | |||
LUL | 10 | 15 | 6 | 6 | 4 | 9 | |||
Right pneumonectomy | 1 | 0 | 0 | 0 | 1 | 0 | |||
Left pneumonectomy | 1 | 0 | 0 | 0 | 1 | 0 | |||
Bilobectomy | 4 | 0 | 2 | 0 | 2 | 0 | |||
Classic segmentectomy | 3 | 0 | 0.04 | 2 | 0 | 1 | 0 | ||
Conversion | 0 | 1 | - | 0 | 1 | 0 | 0 | ||
Neoadjuvant CT | |||||||||
No | 18 | 37 | 5 | 20 | 13 | 17 | |||
Yes | 22 | 3 | <0.0001 | 15 | 0 | <0.0001 | 7 | 3 | 0.27 |
Comorbidities | |||||||||
Lung comorbidity | 22 | 12 | 0.04 | 13 | 9 | 0.34 | 9 | 3 | 0.08 |
Cardiac comorbidity | 23 | 21 | 0.82 | 12 | 13 | 1.00 | 11 | 8 | 0.53 |
Metabolic comorbidity | 14 | 18 | 0.49 | 5 | 12 | 0.05 | 9 | 6 | 0.51 |
Other comorbidity | 22 | 24 | 0.82 | 8 | 10 | 0.75 | 14 | 14 | 1.00 |
Complications | |||||||||
No | 29 | 35 | 15 | 15 | 14 | 20 | |||
Yes | 11 | 5 | 0.16 | 5 | 5 | 1.00 | 6 | 0 | 0.02 |
Air leak | 5 | 2 | 0.43 | 3 | 2 | 1.00 | 2 | 0 | 0.49 |
Atrial fibrillation | 4 | 2 | 0.68 | 0 | 2 | 0.15 | 4 | 0 | 0.11 |
Other complications | 6 | 1 | 0.11 | 2 | 1 | 1.00 | 4 | 0 | 0.11 |
Postoperative outcomes | Open | RATS | p-value | Open | RATS | p-value | Open | RATS | p-value |
mean ± SD | mean ± SD | mean ± SD | mean ± SD | mean ± SD | mean ± SD | ||||
Hospitalization, days | 8.3 ± 3.2 | 5.4 ± 2.3 | <0.0001 | 7.2 ± 2.8 | 6.0 ± 3.1 | 0.20 | 9.4 ± 3.3 | 4.9 ± 1.0 | <0.0001 |
Drainage, days | 5.7 ± 2.5 | 4.2 ± 2.0 | 0.003 | 5.4 ± 3.2 | 4.7 ± 2.6 | 0.45 | 6.0 ± 1.5 | 3.6 ± 0.8 | <0.0001 |
Intervention length, min | 146 ± 50 | 124 ± 27 | 0.02 | 143 ± 38 | 130 ± 24 | 0.19 | 150 ± 61 | 119 ± 30 | 0.054 |
All Surgeons | Surgeon A | Surgeon B | |||||||
---|---|---|---|---|---|---|---|---|---|
Open | RATS | p-Value | Open | RATS | p-Value | Open | RATS | p-Value | |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||||
Heart Rate at baseline | |||||||||
Mean | 80.6 ± 3.0 | 80.5 ± 3.9 | 0.91 | 78.9 ± 2.9 | 77.6 ± 3.0 | 0.17 | 82.3 ± 2.1 | 83.4 ± 2.2 | 0.11 |
Min | 75.5 ± 3.1 | 74.4 ± 3.1 | 0.15 | 74.4 ± 3.1 | 72.8 ± 2.8 | 0.11 | 76.6 ± 2.8 | 76.1 ± 2.5 | 0.56 |
Max | 85.7 ± 4.3 | 86.6 ± 5.7 | 0.45 | 83.5 ± 3.8 | 82.4 ± 4.2 | 0.41 | 88.0 ± 3.5 | 90.7 ± 3.7 | 0.02 |
Heart Rate during intervention | |||||||||
Mean | 107.3 ± 9.1 | 95.6 ± 10.4 | <0.0001 | 104.6 ± 5.8 | 88.1 ± 3.1 | <0.0001 | 109.9 ± 11.0 | 103.0 ± 9.7 | 0.04 |
Mean difference | Diff = 11.7 ± 9.8 | Diff = 16.5 ± 4.6 | Diff = 6.9 ± 10.4 | ||||||
Min | 95.4 ± 9.8 | 84.3 ± 9.9 | <0.0001 | 88.3 ± 6.4 | 78.3 ± 5.1 | <0.0001 | 102.5 ± 7.0 | 90.3 ± 9.9 | <0.0001 |
Max | 123.7 ± 12.2 | 110.3 ± 10.2 | <0.0001 | 118.1 ± 6.7 | 103.6 ± 5.1 | <0.0001 | 129.3 ± 14.0 | 117.1 ± 9.5 | 0.003 |
Respiratory frequency | |||||||||
Mean | 18.0 ± 2.5 | 17.4 ± 4.4 | 0.42 | 15.7 ± 0.9 | 13.2 ± 1.6 | <0.0001 | 20.3 ± 1.0 | 21.5 ± 1.2 | 0.002 |
Min | 10.0 ± 0.2 | 9.8 ± 0.6 | 0.22 | 10.0 ± 0.0 | 9.8 ± 0.8 | 0.17 | 9.9 ± 0.3 | 9.9 ± 0.3 | 1.00 |
Max | 27.8 ± 3.1 | 28.2 ± 4.6 | 0.65 | 25.1 ± 1.5 | 24.3 ± 3.0 | 0.29 | 30.6 ± 1.1 | 32.2 ± 1.3 | 0.0002 |
Body temperature | |||||||||
Mean | 36.2 ± 0.5 | 36.2 ± 0.3 | 0.69 | 36.2 ± 0.6 | 36.4 ± 0.3 | 0.23 | 36.3 ± 0.3 | 36.0 ± 0.2 | 0.01 |
Min | 35.7 ± 0.3 | 35.8 ± 0.5 | 0.43 | 35.6 ± 0.4 | 35.8 ± 0.7 | 0.21 | 35.8 ± 0.3 | 35.8 ± 0.3 | 0.47 |
Max | 36.9 ± 0.5 | 36.5 ± 0.4 | 0.0004 | 37.1 ± 0.4 | 36.7 ± 0.3 | 0.001 | 36.6 ± 0.5 | 36.3 ± 0.3 | 0.008 |
Saturation | |||||||||
Mean | 97.7 ± 0.9 | 97.7 ± 0.7 | 0.69 | 97.5 ± 1.2 | 98.1 ± 0.2 | 0.06 | 97.8 ± 0.4 | 97.4 ± 0.9 | 0.07 |
Min | 90.8 ± 3.0 | 91.8 ± 2.5 | 0.12 | 89.4 ± 3.5 | 91.5 ± 3.1 | 0.06 | 92.2 ± 1.5 | 92.1 ± 1.9 | 0.85 |
Max | 98.5 ± 0.8 | 98.6 ± 0.6 | 0.53 | 98.4 ± 1.0 | 98.7 ± 0.5 | 0.34 | 98.6 ± 0.5 | 98.6 ± 0.7 | 0.79 |
Desaturation | |||||||||
Duration | 214 ± 153 | 227 ± 326 | 0.83 | 106 ± 69.7 | 85.7 ± 61.0 | 0.34 | 323 ± 135 | 368 ± 415 | 0.65 |
Mean value | 3.8 ± 0.4 | 3.7 ± 0.6 | 0.53 | 3.7 ± 0.5 | 3.4 ± 0.7 | 0.08 | 3.8 ± 0.4 | 4.0 ± 0.0 | 0.04 |
SAM Arousal | SAM Valence | STAI-Y 1 | |
---|---|---|---|
Open Approach | −1.00 (0.94) | 1.30 (1.06) | −1.30 (5.85) |
Robot-assisted approach | −0.33 (0.62) | 0.27 (0.59) | 3.67 (3.24) |
Total | −0.60 (0.82) | 0.68 (0.95) | 1.68 (5.01) |
Neck | Right Shoulder | Left Shoulder | Upper Back | Lower Back | Left Hand/Wrist | Right Hand/Wrist | |
---|---|---|---|---|---|---|---|
Open Approach | 2.50 (2.12) | 2.30 (2.06) | 2.50 (2.42) | 3.40 (2.72) | 3.50 (2.88) | 0.50 (1.27) | 0.10 (0.32) |
Robot-assisted approach | 1.00 (1.25) | 0.47 (0.99) | 0.33 (0.90) | 1.07 (1.58) | 1.07 (1.71) | 0.47 (0.83) | 0.47 (0.83) |
Total | 1.60 (1.78) | 1.20 (1.73) | 1.20 (1.96) | 2.00 (2.36) | 2.04 (2.51) | 0.48 (1.00) | 0.32 (0.69) |
Mental Demand | Physical Demand | Frustration | Temporal Demand | Effort | Performance | |
---|---|---|---|---|---|---|
Open Approach | 15.80 (4.47) | 12.10 (5.51) | 7.20 (4.29) | 11.00 (4.76) | 12.10 (5.34) | 13.60 (4.06) |
Robot-assisted approach | 9.67 (5.00) | 4.80 (3.30) | 2.93 (1.44) | 7.00 (3.64) | 7.07 (3.37) | 9.60 (4.45) |
Total | 12.12 (5.61) | 7.72 (5.44) | 4.64 (3.56) | 8.60 (4.50) | 9.08 (4.86) | 11.20 (4.66) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzella, A.; Casiraghi, M.; Galetta, D.; Cara, A.; Maisonneuve, P.; Petrella, F.; Lo Iacono, G.; Brivio, E.; Guiddi, P.; Pravettoni, G.; et al. How Much Stress Does a Surgeon Endure? The Effects of the Robotic Approach on the Autonomic Nervous System of a Surgeon in the Modern Era of Thoracic Surgery. Cancers 2023, 15, 1207. https://doi.org/10.3390/cancers15041207
Mazzella A, Casiraghi M, Galetta D, Cara A, Maisonneuve P, Petrella F, Lo Iacono G, Brivio E, Guiddi P, Pravettoni G, et al. How Much Stress Does a Surgeon Endure? The Effects of the Robotic Approach on the Autonomic Nervous System of a Surgeon in the Modern Era of Thoracic Surgery. Cancers. 2023; 15(4):1207. https://doi.org/10.3390/cancers15041207
Chicago/Turabian StyleMazzella, Antonio, Monica Casiraghi, Domenico Galetta, Andrea Cara, Patrick Maisonneuve, Francesco Petrella, Giorgio Lo Iacono, Eleonora Brivio, Paolo Guiddi, Gabriella Pravettoni, and et al. 2023. "How Much Stress Does a Surgeon Endure? The Effects of the Robotic Approach on the Autonomic Nervous System of a Surgeon in the Modern Era of Thoracic Surgery" Cancers 15, no. 4: 1207. https://doi.org/10.3390/cancers15041207
APA StyleMazzella, A., Casiraghi, M., Galetta, D., Cara, A., Maisonneuve, P., Petrella, F., Lo Iacono, G., Brivio, E., Guiddi, P., Pravettoni, G., & Spaggiari, L. (2023). How Much Stress Does a Surgeon Endure? The Effects of the Robotic Approach on the Autonomic Nervous System of a Surgeon in the Modern Era of Thoracic Surgery. Cancers, 15(4), 1207. https://doi.org/10.3390/cancers15041207