Evaluation of Delayed-Type Hypersensitivity to Antineoplastic Drugs—An Overview
Abstract
:Simple Summary
Abstract
1. Introduction
2. Mechanisms of Delayed-Type Hypersensitivity
3. Delayed-Type Hypersensitivity Response to Antineoplastic
3.1. Alkylating Agents
3.1.1. Metal Salts
3.1.2. Mustard Gas Derivates
3.2. Antitumor Antibiotics
3.2.1. Anthracyclines
3.2.2. Non-Anthracyclines
3.3. Spindle Inhibitors
3.3.1. Taxanes
3.3.2. Topoisomerase Inhibitors
3.4. Signal Transduction Inhibitors
3.4.1. Multikinase
3.4.2. VEGF
3.4.3. EGFR
3.4.4. BRAF and MEK1/2
3.5. Antimetabolites
3.5.1. Purine Analogs
3.5.2. Pyrimidine Analogs
4. Preclinical Test
4.1. In Vivo Test for the Preclinical Assessment
4.2. In Vitro Test for the Preclinical Drug Assessment
4.3. The T-Cell Priming Assay
4.4. Myeloid U937 Skin Sensitization Test (MUSST)
4.5. The Human Cell Line Activation Test (h-CLAT)
4.6. IL-8 Luc Assay
4.7. The THP-1 Activation Assay
4.8. Direct Peptide Reactivity Assay (DPRA)
4.9. KeratinoSens
5. Preclinical Assays to Detect Antineoplastic-Mediated-DTH
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brandt, O.; Bircher, A.J. Delayed-type hypersensitivity to oral and parenteral drugs. JDDG J. Dtsch. Dermatol. Ges. 2017, 15, 1111–1132. [Google Scholar] [CrossRef] [PubMed]
- Coombs, R.R.A.; Gell, P.G.H. Classification of allergic reactions responsible for drug hypersensitivity reactions. In Clinical Aspects of Immunology, 2nd ed.; Davis: Philadelphia, PA, USA, 1968; pp. 575–596. [Google Scholar]
- Dispenza, M.C. Classification of hypersensitivity reactions. Allergy Asthma Proc. 2019, 40, 470–473. [Google Scholar] [CrossRef] [PubMed]
- Lenz, H.J. Management and preparedness for infusion and hypersensitivity reactions. Oncologist 2007, 12, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Strickland, J.; Zang, Q.; Kleinstreuer, N.; Paris, M.; Lehmann, D.M.; Choksi, N.; Matheson, J.; Jacobs, A.; Lowit, A.; Allen, D.; et al. Integrated decision strategies for skin sensitization hazard. J. Appl. Toxicol. 2016, 36, 1150–1162. [Google Scholar] [CrossRef]
- Novak-Bilić, G.; Vučić, M.; Japundžić, I.; Meštrović-Štefekov, J.; Stanić-Duktaj, S.; Lugović-Mihić, L. Irritant and allergic contact dermatitis—Skin lesion characteristics. Acta Clin. Croat. 2018, 57, 713–720. [Google Scholar] [CrossRef]
- Janeway, C.; Travers, P.; Walport, M.; Shlomchik, M.J. Immunobiology, 5th ed.; Garland Science: New York, NY, USA, 2001. [Google Scholar]
- Descotes, J.; Choquet-Kastylevsky, G. Gell and Coombs’s classification: Is it still valid? Toxicology 2001, 158, 43–49. [Google Scholar] [CrossRef]
- Brandi, G.; Pantaleo, M.A.; Galli, C.; Falcone, A.; Antonuzzo, A.; Mordenti, P.; Di Marco, M.C.; Biasco, G. Hypersensitivity reactions related to oxaliplatin (OHP). Br. J. Cancer 2003, 89, 477–481. [Google Scholar] [CrossRef]
- Syrigou, E.; Makrilia, N.; Koti, I.; Saif, M.W.; Syrigos, K.N. Hypersensitivity reactions to antineoplastic agents: An overview. Anticancer Drugs 2009, 20, 1–6. [Google Scholar] [CrossRef]
- Roychowdhury, S.; Svensson, C.K. Mechanisms of drug-induced delayed-type hypersensitivity reactions in the skin. AAPS J. 2005, 7, E834–E846. [Google Scholar] [CrossRef]
- Pichler, W.J. Delayed drug hypersensitivity reactions. Ann. Intern. Med. 2003, 139, 683–693. [Google Scholar] [CrossRef]
- Haynes, D.; Ortega-Loayza, A.G. Adverse cutaneous reactions to chemotherapeutic drugs. Clin. Dermatol. 2020, 38, 712–728. [Google Scholar] [CrossRef] [PubMed]
- Shiohara, T.; Iijima, M.; Ikezawa, Z.; Hashimoto, K. The diagnosis of a DRESS syndrome has been sufficiently established on the basis of typical clinical features and viral reactivations. Br. J. Dermatol. 2007, 156, 1083–1084. [Google Scholar] [CrossRef] [PubMed]
- Bocquet, H.; Bagot, M.; Roujeau, J.C. Drug-induced pseudolymphoma and drug hypersensitivity syndrome (Drug Rash with Eosinophilia and Systemic Symptoms: DRESS). Semin. Cutan. Med. Surg. 1996, 15, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Kardaun, S.; Sekula, P.; Valeyrie-Allanore, L.; Liss, Y.; Chu, C.; Creamer, D.; Sidoroff, A.; Naldi, L.; Mockenhaupt, M.; Roujeau, J.; et al. Drug reaction with eosinophilia and systemic symptoms (DRESS): An original multisystem adverse drug reaction. Results from the prospective RegiSCAR study. Br. J. Dermatol. 2013, 169, 1071–1080. [Google Scholar] [CrossRef] [PubMed]
- Husain, Z.; Reddy, B.Y.; Schwartz, R.A. DRESS syndrome: Part I. Clinical perspectives. J. Am. Acad. Dermatol. 2013, 68, 693.e1–693.e14. [Google Scholar] [CrossRef]
- Vaida, I.; Roszkiewicz, F.; Gruson, B.; Makdassi, R.; Damaj, G. Drug rash with eosinophilia and systemic symptoms after chlorambucil treatment in chronic lymphocytic leukaemia. Pharmacology 2009, 83, 148–149. [Google Scholar] [CrossRef]
- Ng, C.Y.; Chen, C.B.; Wu, M.Y.; Wu, J.; Yang, C.H.; Hui, R.C.Y.; Chang, Y.C.; Lu, C.W. Anticancer Drugs Induced Severe Adverse Cutaneous Drug Reactions: An Updated Review on the Risks Associated with Anticancer Targeted Therapy or Immunotherapies. J. Immunol. Res. 2018, 2018, 5376476. [Google Scholar] [CrossRef]
- Rugo, H.S.; Voigt, J. Scalp Hypothermia for Preventing Alopecia During Chemotherapy. A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Breast Cancer 2018, 18, 19–28. [Google Scholar] [CrossRef]
- Dodiuk-Gad, R.P.; Hung, S.-I.; Valeyrie-Allanore, L.; Shear, N.H. Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: An Update. Am. J. Clin. Dermatol. 2015, 16, 475–493. [Google Scholar] [CrossRef]
- Pereira, F.A.; Mudgil, A.V.; Rosmarin, D.M. Toxic epidermal necrolysis. J. Am. Acad. Dermatol. 2007, 56, 181–200. [Google Scholar] [CrossRef]
- de Prost, N.; Mekontso-Dessap, A.; Valeyrie-Allanore, L.; Van Nhieu, J.T.; Duong, T.A.; Chosidow, O.; Wolkenstein, P.; Brun-Buisson, C.; Maître, B. Acute respiratory failure in patients with toxic epidermal necrolysis: Clinical features and factors associated with mechanical ventilation. Crit. Care Med. 2014, 42, 118–128. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.-C.; Liu, W.-C.; Kuo, M.-C.; Lee, C.-H.; Hwang, S.-J.; Chen, H.-C. Acute renal failure and its risk factors in Stevens-Johnson syndrome and toxic epidermal necrolysis. Am. J. Nephrol. 2009, 29, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.A.; Stephen, S.; Ashchyan, H.J.; James, W.D.; Micheletti, R.G.; Rosenbach, M. Neutrophilic dermatoses: Pathogenesis, Sweet syndrome, neutrophilic eccrine hidradenitis, and Behçet disease. J. Am. Acad. Dermatol. 2018, 79, 987–1006. [Google Scholar] [CrossRef] [PubMed]
- Heath, M.S.; Ortega-Loayza, A.G. Insights into the Pathogenesis of Sweet’s Syndrome. Front. Immunol. 2019, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Walker, D.C.; Cohen, P.R. Trimethoprim-sulfamethoxazole-associated acute febrile neutrophilic dermatosis: Case report and review of drug-induced Sweet’s syndrome. J. Am. Acad. Dermatol. 1996, 34, 918–923. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, L.; Hansel, K.; Pelliccia, S.; Tramontana, M.; Stingeni, L. Systemic delayed hypersensitivity reaction to chlorambucil: A case report and literature review. Contact Dermat. 2018, 78, 171–173. [Google Scholar] [CrossRef]
- Pietrantonio, F.; Moriconi, L.; Torino, F.; Romano, A.; Gargovich, A. Unusual reaction to chlorambucil: A case report. Cancer Lett. 1990, 54, 109–111. [Google Scholar] [CrossRef]
- Aydogdu, I.; Ozcan, C.; Harputluoglu, M.; Karincaoglu, Y.; Turhan, O.; Ozcanu, A. Severe adverse skin reaction to chlorambucil in a patient with chronic lymphocytic leukemia. Anticancer Drugs 1997, 8, 468–469. [Google Scholar] [CrossRef]
- Barone, C.; Cassano, A.; Astone, A. Toxic epidermal necrolysis during chlorambucil therapy in chronic lymphocytic leukaemia. Eur. J. Cancer Clin. Oncol. 1990, 26, 1262. [Google Scholar] [CrossRef]
- E Knisley, R.; A Settipane, G.; Albala, M.M. Unusual reaction to chlorambucil in a patient with chronic lymphocytic leukemia. Arch. Dermatol. 1971, 104, 77–79. [Google Scholar] [CrossRef]
- Hitchins, R.N.; A Hocker, G.; Thomson, D.B. Chlorambucil Allergy—A Series of Three Cases. Aust. N. Z. J. Med. 1987, 17, 600–602. [Google Scholar] [CrossRef] [PubMed]
- Torricelli, R.; Kurer, S.B.; Kroner, T.; Wüthrich, B. Delayed allergic reaction to Chlorambucil (Leukeran). Case report and literature review. Schweiz. Med. Wochenschr. 1995, 125, 1870–1873. [Google Scholar] [PubMed]
- McAlpine, J.N.; Kelly, M.G.; O’malley, D.M.; Azodi, M.; Coombe, K.; Schwartz, P.E.; Rutherford, T.J. Atypical presentations of carboplatin hypersensitivity reactions: Characterization and management in patients with gynecologic malignancies. Gynecol. Oncol. 2006, 103, 288–292. [Google Scholar] [CrossRef]
- Solberg, L.; Wick, M.R.; E Bruckman, J. Doxorubicin-enhanced skin reaction after whole-body electron-beam irradiation for leukemia cutis. Mayo Clin. Proc. 1980, 55, 711–715. [Google Scholar]
- Brodsky, A.; Aparici, I.; Argeri, C.; Goldenberg, D. Stevens-Johnson syndrome, respiratory distress and acute renal failure due to synergic bleomycin-cisplatin toxicity. J. Clin. Pharmacol. 1989, 29, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Giaccone, G.; Risio, M.; Bonardi, G.; Calciati, A. Stevens-Johnson syndrome and fatal pulmonary toxicity to combination chemotherapy containing bleomycin: A case report. Tumori 1986, 72, 331–333. [Google Scholar] [CrossRef]
- Kattan, J.G.; Farhat, F.S.; Chahine, G.Y.; Nasr, F.L.; Moukadem, W.T.; Younes, F.C.; Yazbeck, N.J.; Ghosn, M.G.; Cancer Research Group. Weekly docetaxel, zoledronic acid and estramustine in hormone-refractory prostate cancer (HRPC). Investig. New Drugs 2008, 26, 75–79. [Google Scholar] [CrossRef]
- Kılıç, M.; Yalaza, M.; Bilgic, C.I.; Dener, C.; Kilic, M.O. Docetaxel-induced Scleroderma in A Breast Cancer Patient: A Case Report. J. Breast Health 2015, 11, 95–97. [Google Scholar] [CrossRef]
- Sawada, Y.; Sugita, K.; Kabashima, R.; Nakamura, M.; Tokura, Y. Docetaxel-induced Stevens-Johnson syndrome with regenerating epidermis composed of atypical keratinocytes. J. Eur. Acad. Dermatol. Venereol. 2009, 23, 1333–1335. [Google Scholar] [CrossRef]
- Dourakis, S.P.; Sevastianos, V.A.; Alexopoulou, A.; Deutsch, M.; Stavrianeas, N. Treatment side effects. Case 2. Toxic, epidermal, necrolysis-like reaction associated with docetaxel chemotherapy. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2002, 20, 3030–3032. [Google Scholar] [CrossRef]
- Hiraki, A.; Aoe, K.; Murakami, T.; Maeda, T.; Eda, R.; Takeyama, H. Stevens-Johnson syndrome induced by paclitaxel in a patient with squamous cell carcinoma of the lung: A case report. Anticancer Res. 2004, 24, 1135–1137. [Google Scholar] [PubMed]
- Jameson, C.H.; Solanki, D.L. Stevens-Johnson syndrome associated with etoposide therapy. Cancer Treat. Rep. 1983, 67, 1050–1051. [Google Scholar] [PubMed]
- Dickson, E.L.; Bakhru, A.; Chan, M.P. Topotecan-induced Sweet’s syndrome: A case report. Gynecol. Oncol. Case Rep. 2013, 4, 50–52. [Google Scholar] [CrossRef] [PubMed]
- Valeyrie, L.; Bastuji-Garin, S.; Revuz, J.; Bachot, N.; Wechsler, J.; Berthaud, P.; Tulliez, M.; Giraudier, S. Adverse cutaneous reactions to imatinib (STI571) in Philadelphia chromosome-positive leukemias: A prospective study of 54 patients. J. Am. Acad. Dermatol. 2003, 48, 201–206. [Google Scholar] [CrossRef] [PubMed]
- Scheinfeld, N. Imatinib mesylate and dermatology part 2: A review of the cutaneous side effects of imatinib mesylate. J. Drugs Dermatol. 2006, 5, 228–231. [Google Scholar] [PubMed]
- Amitay-Laish, I.; Stemmer, S.M.; Lacouture, M.E. Adverse cutaneous reactions secondary to tyrosine kinase inhibitors including imatinib mesylate, nilotinib, and dasatinib. Dermatol. Ther. 2011, 24, 386–395. [Google Scholar] [CrossRef]
- Pavithran, K.; Thomas, M. Imatinib induced Stevens-Johnson syndrome: Lack of recurrence following re-challenge with a lower dose. Indian J. Dermatol. Venereol. Leprol. 2005, 71, 288–289. [Google Scholar] [CrossRef]
- Jha, P.; Himanshu, D.; Jain, N.; Singh, A.K. Imatinib-induced Stevens-Johnsons syndrome. BMJ Case Rep. 2013, 2013, bcr2012007926. [Google Scholar] [CrossRef]
- Hsieh, H.-J.; Chan, A.L.; Lin, S.-J. Stevens-Johnson syndrome induced by combination of imatinib and allopurinol. Chemotherapy 2009, 55, 197–199. [Google Scholar] [CrossRef]
- Goldman, J.; Duval-Modeste, A.B.; Lambert, A.; Contentin, N.; Courville, P.; Musette, P.; Joly, P. Imatinib-induced DRESS. Ann. Dermatol. Venereol. 2008, 135, 393–396. [Google Scholar] [CrossRef]
- Vatel, O.; Aumont, C.; Mathy, V.; Petit, M.; Feriel, J.; Sloma, I.; Bennaceur-Griscelli, A.; Turhan, A.G. Drug reaction with eosinophilia and systemic symptoms (DRESS) induced by imatinib in chronic myeloid leukemia. Leuk. Lymphoma 2016, 58, 473–474. [Google Scholar] [CrossRef]
- Le Nouail, P.; Viseux, V.; Chaby, G.; Billet, A.; Denoeux, J.P.; Lok, C. Drug reaction with eosinophilia and systemic symptoms (DRESS) following imatinib therapy. Ann. Dermatol. Venereol. 2006, 133, 686–688. [Google Scholar] [CrossRef] [PubMed]
- Mandal, P.K.; Kumar, M.; Dolai, T.K.; Bhattacharrya, M. Imatinib causing drug rash with eosinophilia and systemic symptoms: A rare cutaneous reaction. Indian Dermatol. Online J. 2014, 5 (Suppl. S2), S120–S122. [Google Scholar] [CrossRef] [PubMed]
- Lahouel, I.; Saidi, W.; Laarif, M.; Aounallah, A. A new case of imatinib-induced drug reaction with eosinophilia and systemic symptoms. Indian J. Dermatol. Venereol. Leprol. 2017, 83, 224. [Google Scholar] [CrossRef] [PubMed]
- Zgolli, F.; Aouinti, I.; Charfi, O.; Badri, T.; Elaidli, S.; Kastalli, S.; Lakhoua, G.; Zaïem, A. Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) Syndrome Induced by Imatinib. Curr. Drug Saf. 2019, 14, 151–154. [Google Scholar] [CrossRef]
- Schaich, M.; Schäkel, K.; Illmer, T.; Ehninger, G.; Bornhäuser, M. Severe epidermal necrolysis after treatment with imatinib and consecutive allogeneic hematopoietic stem cell transplantation. Ann. Hematol. 2003, 82, 303–304. [Google Scholar] [CrossRef]
- Kaune, K.M.; Baumgart, M.; Gesk, S.; Mitteldorf, C.; Baesecke, J.; Glass, B.; Haase, D.; Siebert, R.; Ghadimi, B.M.; Neumann, C.; et al. Bullous sweet syndrome in a patient with t(9;22)(q34;q11)-positive chronic myeloid leukemia treated with the tyrosine kinase inhibitor nilotinib: Interphase cytogenetic detection of BCR-ABL- positive lesional cells. Arch. Dermatol. 2008, 144, 361–364. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, S.Y.; Kim, G.M. Case of sunitinib-induced Stevens-Johnson syndrome. J. Dermatol. 2013, 40, 753–754. [Google Scholar] [CrossRef]
- Vignand-Courtin, C.; Martin, C.; Le Beller, C.; Mateus, C.; Barbault-Foucher, S.; Rieutord, A. Cutaneous side effects associated with sunitinib: An analysis of 8 cases. Int. J. Clin. Pharm. 2012, 34, 286–289. [Google Scholar] [CrossRef]
- Ikeda, M.; Fujita, T.; Amoh, Y.; Mii, S.; Matsumoto, K.; Iwamura, M. Stevens-Johnson syndrome induced by sorafenib for metastatic renal cell carcinoma. Urol. Int. 2013, 91, 482–483. [Google Scholar] [CrossRef]
- Choi, M.K.; Woo, H.Y.; Heo, J.; Cho, M.; Kim, G.H.; Am Song, G.; Kim, M.B. Toxic Epidermal Necrolysis Associated with Sorafenib and Tosufloxacin in a Patient with Hepatocellular Carcinoma. Ann. Dermatol. 2011, 23 (Suppl. S3), S404–S407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimmerman, E.I.; Gibson, A.A.; Hu, S.; Vasilyeva, A.; Orwick, S.J.; Du, G.; Mascara, G.P.; Ong, S.S.; Chen, T.; Vogel, P.; et al. Multikinase Inhibitors Induce Cutaneous Toxicity through OAT6-Mediated Uptake and MAP3K7-Driven Cell Death. Cancer Res. 2016, 76, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Yeh, C.-N.; Chung, W.-H.; Su, S.-C.; Chen, Y.-Y.; Cheng, C.-T.; Lin, Y.-L.; Chang, W.-C.; Hui, R.C.-Y.; Chiang, K.-C.; Chen, T.-W.; et al. Fas/Fas ligand mediates keratinocyte death in sunitinib-induced hand-foot skin reaction. J. Investig. Dermatol. 2014, 134, 2768–2775. [Google Scholar] [CrossRef]
- Blanchet, B.; Billemont, B.; Barète, S.; Garrigue, H.; Cabanes, L.; Coriat, R.; Francès, C.; Knebelmann, B.; Goldwasser, F. Toxicity of sorafenib: Clinical and molecular aspects. Expert Opin. Drug Saf. 2010, 9, 275–287. [Google Scholar] [CrossRef]
- Namba, M.; Tsunemi, Y.; Kawashima, M. Sorafenib-induced erythema multiforme: Three cases. Eur. J. Dermatol. 2011, 21, 1015–1016. [Google Scholar] [CrossRef]
- Kodaira, M.; Takahashi, S.; Takeuchi, K.; Yuasa, T.; Saotome, T.; Yonese, J.; Fukui, I.; Hatake, K. Sorafenib-induced erythema multiforme for metastatic renal cell carcinoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2010, 21, 1563–1565. [Google Scholar] [CrossRef]
- Bilaç, C.; Müezzinoğlu, T.; Ermertcan, A.T.; Kayhan, T.Ç.; Temeltaş, G.; Öztürkcan, S.; Temiz, P. Sorafenib-induced erythema multiforme in metastatic renal cell carcinoma. Cutan. Ocul. Toxicol. 2009, 28, 90–92. [Google Scholar] [CrossRef] [PubMed]
- MacGregor, J.L.; Silvers, D.N.; Grossman, M.E.; Sherman, W.H. Sorafenib-induced erythema multiforme. J. Am. Acad. Dermatol. 2007, 56, 527–528. [Google Scholar] [CrossRef] [PubMed]
- Sohn, K.-H.; Oh, S.-Y.; Lim, K.-W.; Kim, M.-Y.; Lee, S.-Y.; Kang, H.-R. Sorafenib induces delayed-onset cutaneous hypersensitivity: A case series. Allergy Asthma Immunol. Res. 2015, 7, 304–307. [Google Scholar] [CrossRef]
- Mihara, Y.; Yamaguchi, K.; Nakama, T.; Nakayama, G.; Kamei, H.; Ishibashi, N.; Uchida, S.; Akagi, Y.; Ogata, Y. Stevens-Johnson syndrome induced by regorafenib in a patient with progressive recurrent rectal carcinoma. Gan Kagaku Ryoho 2015, 42, 233–236. [Google Scholar]
- Finger, P.T.; Fam, A. Cutaneous Cell-Mediated Delayed Hypersensitivity to Intravitreal Bevacizumab. Middle East Afr. J. Ophthalmol. 2020, 27, 182–184. [Google Scholar] [CrossRef] [PubMed]
- Doesch, J.; Debus, D.; Meyer, C.; Papadopoulos, T.; Schultz, E.S.; Ficker, J.H.; Brueckl, W.M. Afatinib-associated Stevens-Johnson syndrome in an EGFR-mutated lung cancer patient. Lung Cancer Amst. Neth. 2016, 95, 35–38. [Google Scholar] [CrossRef] [PubMed]
- Honda, Y.; Hattori, Y.; Katsura, S.; Terashima, T.; Manabe, T.; Otsuka, A.; Miyachi, Y. Stevens-Johnson syndrome-like erosive dermatitis possibly related to afatinib. Eur. J. Dermatol. 2016, 26, 413–414. [Google Scholar] [CrossRef]
- Wnorowski, A.M.; de Souza, A.; Chachoua, A.; Cohen, D.E. The management of EGFR inhibitor adverse events: A case series and treatment paradigm. Int. J. Dermatol. 2012, 51, 223–232. [Google Scholar] [CrossRef]
- Huang, J.-J.; Ma, S.-X.; Hou, X.; Wang, Z.; Zeng, Y.-D.; Qin, T.; Dinglin, X.-X.; Chen, L.-K. Toxic epidermal necrolysis related to AP (pemetrexed plus cisplatin) and gefitinib combination therapy in a patient with metastatic non-small cell lung cancer. Chin. J. Cancer 2015, 34, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Jackman, D.M.; Cioffredi, L.A.; Jacobs, L.; Sharmeen, F.; Morse, L.K.; Lucca, J.; Plotkin, S.R.; Marcoux, P.J.; Rabin, M.S.; Lynch, T.J.; et al. A phase I trial of high dose gefitinib for patients with leptomeningeal metastases from non-small cell lung cancer. Oncotarget 2015, 6, 4527–4536. [Google Scholar] [CrossRef]
- Urosevic-Maiwald, M.; Harr, T.; French, L.; Dummer, R. Stevens-Johnson syndrome and toxic epidermal necrolysis overlap in a patient receiving cetuximab and radiotherapy for head and neck cancer. Int. J. Dermatol. 2012, 51, 864–867. [Google Scholar] [CrossRef]
- Lin, W.-L.; Lin, W.-C.; Yang, J.-Y.; Chang, Y.-C.; Ho, H.-C.; Yang, L.-C.; Yang, C.-H.; Hung, S.-I.; Chung, W.-H. Fatal toxic epidermal necrolysis associated with cetuximab in a patient with colon cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2008, 26, 2779–2780. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-S.; Chu, P.-Y. Toxic epidermal necrolysis caused by cetuximab plus minocycline in head and neck cancer. Am. J. Otolaryngol. 2010, 31, 288–290. [Google Scholar] [CrossRef]
- Pantano, F.; Silletta, M.; Iovieno, A.; Vincenzi, B.; Santini, D.; Galluzzo, S.; Bonini, S.; Tonini, G. Stevens-Johnson syndrome associated with reduced tear production complicating the use of cetuximab and panitunumab. Int. J. Colorectal. Dis. 2009, 24, 1247–1248. [Google Scholar] [CrossRef]
- Lamiaux, M.; Scalbert, C.; Lepesant, P.; Desmedt, E.; Templier, C.; Dziwniel, V.; Staumont-Sallé, D.; Mortier, L. Severe skin toxicity with organ damage under the combination of targeted therapy following immunotherapy in metastatic melanoma. Melanoma Res. 2018, 28, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Bellón, T.; Lerma, V.; González-Valle, O.; Herrada, C.G.; de Abajo, F. Vemurafenib-induced toxic epidermal necrolysis: Possible cross-reactivity with other sulfonamide compounds. Br. J. Dermatol. 2016, 174, 621–624. [Google Scholar] [CrossRef] [PubMed]
- Minor, D.R.; Rodvien, R.; Kashani-Sabet, M. Successful desensitization in a case of Stevens-Johnson syndrome due to vemurafenib. Melanoma Res. 2012, 22, 410–411. [Google Scholar] [CrossRef]
- Arenbergerova, M.; Mrazova, I.; Horazdovsky, J.; Sticova, E.; Fialova, A.; Arenberger, P. Toxic epidermal necrolysis induced by vemurafenib after nivolumab failure. J. Eur. Acad. Dermatol. Venereol. 2017, 31, e253–e254. [Google Scholar] [CrossRef]
- Jeudy, G.; Dalac-Rat, S.; Bonniaud, B.; Hervieu, A.; Petrella, T.; Collet, E.; Vabres, P. Successful switch to dabrafenib after vemurafenib-induced toxic epidermal necrolysis. Br. J. Dermatol. 2015, 172, 1454–1455. [Google Scholar] [CrossRef]
- Lapresta, A.; Dotor, A.; González-Herrada, C. Toxic epidermal necrolysis induced by vemurafenib. Actas Dermosifiliogr. 2015, 106, 682–683. [Google Scholar] [CrossRef] [PubMed]
- Wantz, M.; Spanoudi-Kitrimi, I.; Lasek, A.; Lebas, D.; Quinchon, J.F.; Modiano, P. Vemurafenib-induced toxic epidermal necrolysis. Ann. Dermatol. Venereol. 2014, 141, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Lecamwasam, K.; Purshouse, K.; Reed, J.; Middleton, M.; Fearfield, L. Toxic epidermal necrolysis in a patient receiving vemurafenib for treatment of metastatic malignant melanoma. Br. J. Dermatol. 2014, 170, 997–999. [Google Scholar] [CrossRef]
- Wenk, K.S.; Pichard, D.C.; Nasabzadeh, T.; Jang, S.; Venna, S.S. Vemurafenib-induced DRESS. JAMA Dermatol. 2013, 149, 1242–1243. [Google Scholar] [CrossRef]
- Munch, M.; Peuvrel, L.; Brocard, A.; Saint Jean, M.; Khammari, A.; Dreno, B.; Quereux, G. Early-Onset Vemurafenib-Induced DRESS Syndrome. Dermatology 2016, 232, 126–128. [Google Scholar] [CrossRef]
- Maximova, N.; Maestro, A.; Zanon, D.; Marcuzzi, A. Rapid recovery of postnivolumab vemurafenib-induced Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) syndrome after tocilizumab and infliximab administration. J. Immunother. Cancer 2020, 8, e000388. [Google Scholar] [CrossRef] [PubMed]
- Gey, A.; Milpied, B.; Dutriaux, C.; Mateus, C.; Robert, C.; Perro, G.; Taieb, A.; Ezzedine, K.; Jouary, T. Severe cutaneous adverse reaction associated with vemurafenib: DRESS, AGEP or overlap reaction? J. Eur. Acad. Dermatol. Venereol. 2016, 30, 178–179. [Google Scholar] [CrossRef] [PubMed]
- Pinard, C.; Mignard, C.; Samain, A.; Duval-Modeste, A.-B.; Joly, P. Successful use of dabrafenib after the occurrence of drug rash with eosinophilia and systemic symptoms (DRESS) induced by vemurafenib. JAAD Case Rep. 2017, 3, 532–533. [Google Scholar] [CrossRef] [PubMed]
- Neha, R.; Beulah, E.; Anusha, B.; Vasista, S.; Stephy, C.; Subeesh, V. Vemurafenib Induced Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS): A Disproportionality Analysis in FAERS Database. Curr. Rev. Clin. Exp. Pharmacol. 2021, 16, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Yorio, J.T.; Mays, S.R.; Ciurea, A.M.; Cohen, P.R.; Wang, W.L.; Hwu, W.J.; Gonzalez, N.; Richard, J.L.; Kim, K.B. Case of vemurafenib-induced Sweet’s syndrome. J. Dermatol. 2014, 41, 817–820. [Google Scholar] [CrossRef]
- Pattanaprichakul, P.; Tetzlaff, M.T.; Lapolla, W.J.; Torres-Cabala, C.A.; Duvic, M.; Prieto, V.G.; Tsai, K.; Curry, J.L. Sweet syndrome following vemurafenib therapy for recurrent cholangiocarcinoma. J. Cutan. Pathol. 2014, 41, 326–328. [Google Scholar] [CrossRef]
- Morgado-Carrasco, D.; Moreno-Rivera, N.; Fustà-Novell, X.; Garcia-Herrera, A.; Carrera, C.; Puig, S. Histiocytoid Sweet’s syndrome during combined therapy with BRAF and MEK inhibitors for metastatic melanoma. Melanoma Res. 2018, 28, 256–257. [Google Scholar] [CrossRef]
- Tallman, M.S.; Hakimian, D.; Zanzig, C.; Hogan, D.K.; Rademaker, A.; Rose, E.; Variakojis, D. Cladribine in the treatment of relapsed or refractory chronic lymphocytic leukemia. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1995, 13, 983–988. [Google Scholar] [CrossRef]
- Angelopoulou, M.A.; Poziopoulos, C.; Boussiotis, V.A.; Kontopidou, F.; Pangalis, G.A. Fludarabine monophosphate in refractory B-chronic lymphocytic leukemia: Maintenance may be significant to sustain response. Leuk. Lymphoma 1996, 21, 321–324. [Google Scholar] [CrossRef]
- Sendur, M.A.N.; Kilickap, S. Stevens-Johnson syndrome after treatment with capecitabine. Clin. Oncol. R. Coll. Radiol. 2008, 20, 202–203. [Google Scholar] [CrossRef]
- Khan, U.; Rizvi, H.; Ali, F.; Lebovic, D. Sweet syndrome: A painful reality. BMJ Case Rep. 2016, 2016, bcr2016217606. [Google Scholar] [CrossRef] [PubMed]
- Sommers, K.R.; Kong, K.M.; Bui, D.T.; Fruehauf, J.P.; Holcombe, R.F. Stevens-Johnson syndrome/toxic epidermal necrolysis in a patient receiving concurrent radiation and gemcitabine. Anticancer Drugs 2003, 14, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Talamonti, M.S.; Catalano, P.J.; Vaughn, D.J.; Whittington, R.; Beauchamp, R.D.; Berlin, J.; Benson, A.B. Eastern Cooperative Oncology Group Phase I trial of protracted venous infusion fluorouracil plus weekly gemcitabine with concurrent radiation therapy in patients with locally advanced pancreas cancer: A regimen with unexpected early toxicity. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2000, 18, 3384–3389. [Google Scholar] [CrossRef]
- Mermershtain, W.; Cohen, A.; Lazarev, I.; Grunwald, M.; Ariad, S. Toxic epidermal necrolysis associated with gemcitabine therapy in a patient with metastatic transitional cell carcinoma of the bladder. J. Chemother. 2003, 15, 510–511. [Google Scholar] [CrossRef]
- Martorell-Calatayud, A.; Requena, C.; Sanmartín, O.; Balmer, N.; Guillén-Barona, C. Gemcitabine-associated sweet syndrome-like eruption. J. Am. Acad. Dermatol. 2011, 65, 1236–1238. [Google Scholar] [CrossRef]
- Özkan, A.; Apak, H.; Celkan, T.T.; Yüksel, L.; Yildiz, I. Toxic epidermal necrolysis after the use of high-dose cytosine arabinoside. Pediatr. Dermatol. 2001, 18, 38–40. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.S.; Yamamoto, M.; Kerbauy, J. Toxic epidermal necrolysis after the use of intermediate dose of cytosine arabinoside. Rev. Assoc. Med. Bras 1998, 44, 53–55. [Google Scholar]
- Tintle, S.; Patel, V.; Ruskin, A.; Halasz, C. Azacitidine: A new medication associated with Sweet syndrome. J. Am. Acad. Dermatol. 2011, 64, e77–e79. [Google Scholar] [CrossRef]
- Trickett, H.B.; Cumpston, A.; Craig, M. Azacitidine-associated Sweet’s syndrome. Am. J. Health-Syst. Pharm. 2012, 69, 869–871. [Google Scholar] [CrossRef]
- Polyzos, A.; Tsavaris, N.; Kosmas, C.; Arnaouti, T.; Kalahanis, N.; Tsigris, C.; Giannopoulos, A.; Karatzas, G.; Giannikos, L.; Sfikakis, P.P. Hypersensitivity reactions to carboplatin administration are common but not always severe: A 10-year experience. Oncology 2001, 61, 129–133. [Google Scholar] [CrossRef]
- Gowda, A.; Goel, R.; Berdzik, J.; Leichman, C.G.; Javle, M. Hypersensitivity Reactions to oxaliplatin: Incidence and management. Oncology 2004, 18, 1671–1675. [Google Scholar]
- Umebayashi, Y.; Enomoto, H.; Ogasawara, M. Drug eruption due to peplomycin: An unusual form of Stevens-Johnson syndrome with pustules. J. Dermatol. 2004, 31, 802–805. [Google Scholar] [CrossRef] [PubMed]
- Etoposide. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury; National Institute of Diabetes and Digestive and Kidney Diseases: Bethesda, MD, USA, 2012. [Google Scholar]
- Coleman, E.L.; Olamiju, B.; Leventhal, J.S. Potentially life-threatening severe cutaneous adverse reactions associated with tyrosine kinase inhibitors (Review). Oncol. Rep. 2021, 45, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, L.-T.; Chung, H.-M.; Lin, J.-T.; Chiou, T.-J.; Liu, J.-H.; Fan, F.S.; Wang, W.-S.; Yen, C.-C.; Chen, P.-M. Stevens-Johnson syndrome after treatment with STI571: A case report. Br. J. Haematol. 2002, 117, 620–622. [Google Scholar] [CrossRef] [PubMed]
- Severino, G.; Chillotti, C.; De Lisa, R.; Del Zompo, M.; Ardau, R. Adverse reactions during imatinib and lansoprazole treatment in gastrointestinal stromal tumors. Ann. Pharmacother. 2005, 39, 162–164. [Google Scholar] [CrossRef]
- Vidal, D.; Puig, L.; Sureda, A.; Alomar, A. Sti571-induced Stevens-Johnson Syndrome. Br. J. Haematol. 2002, 119, 274–275. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Gonzalez, B.; Pascual-Ramirez, J.C.; Fernández-Abellán, P.; Belinchón, I.; Rivas, C.; Vegara-Aguilera, G. Severe skin reaction to imatinib in a case of Philadelphia-positive acute lymphoblastic leukemia. Blood 2003, 101, 2446. [Google Scholar] [CrossRef]
- Poprach, A.; Pavlik, T.; Melichar, B.; Puzanov, I.; Dusek, L.; Bortlicek, Z.; Vyzula, R.; Abrahamova, J.; Buchler, T. Skin toxicity and efficacy of sunitinib and sorafenib in metastatic renal cell carcinoma: A national registry-based study. Ann. Oncol. 2012, 23, 3137–3143. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Hackshaw, A.; Feng, Q.; Fu, X.; Zhang, Y.; Mao, C.; Tang, J. Comparison of gefitinib, erlotinib and afatinib in non-small cell lung cancer: A meta-analysis. Int. J. Cancer 2017, 140, 2805–2819. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, W.-Z.; Liu, T.; Feng, X.; Yang, N.; Zhou, H.-F. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J. Recept. Signal Transduct. 2015, 35, 600–604. [Google Scholar] [CrossRef]
- Curtin, J.A.; Fridlyand, J.; Kageshita, T.; Patel, H.N.; Busam, K.J.; Kutzner, H.; Cho, K.-H.; Aiba, S.; Bröcker, E.-B.; LeBoit, P.E.; et al. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 2005, 353, 2135–2147. [Google Scholar] [CrossRef] [PubMed]
- Caunt, C.J.; Sale, M.J.; Smith, P.D.; Cook, S.J. MEK1 and MEK2 inhibitors and cancer therapy: The long and winding road. Nat. Rev. Cancer 2015, 15, 577–592. [Google Scholar] [CrossRef] [PubMed]
- Meunier, P.; Castaigne, S.; Bastie, J.N.; Chosidow, O.; Aractingi, S. Cutaneous reactions after treatment with 2-chlorodeoxyadenosine. Acta Derm. Venereol. 1996, 76, 385–386. [Google Scholar] [PubMed]
- Klecak, G. The Freund’s Complete Adjuvant Test and the Open Epicutaneous Test. A complementary test procedure for realistic assessment of allergenic potential. Curr. Probl. Dermatol. 1985, 14, 152–171. [Google Scholar]
- Dean, J.H.; Twerdok, L.E.; Tice, R.R.; Sailstad, D.M.; Hattan, D.G.; Stokes, W.S. ICCVAM evaluation of the murine local lymph node assay. Conclusions and recommendations of an independent scientific peer review panel. Regul. Toxicol. Pharmacol. 2001, 34, 258–273. [Google Scholar] [CrossRef]
- Basketter, D.A.; Evans, P.; Fielder, R.J.; Gerberick, G.F.; Dearman, R.J.; Kimber, I. Local lymph node assay—Validation, conduct and use in practice. Food Chem. Toxicol. 2002, 40, 593–598. [Google Scholar] [CrossRef]
- Weaver, J.L.; Chapdelaine, J.M.; Descotes, J.; Germolec, D.; Holsapple, M.; House, R.; Lebrec, H.; Meade, J.; Pieters, R.; Hastings, K.L.; et al. Evaluation of a lymph node proliferation assay for its ability to detect pharmaceuticals with potential to cause immune-mediated drug reactions. J. Immunotoxicol. 2005, 2, 11–20. [Google Scholar] [CrossRef]
- Potter, T.M.; Neun, B.W.; Dobrovolskaia, M.A. In Vitro and In Vivo Methods for Analysis of Nanoparticle Potential to Induce Delayed-Type Hypersensitivity Reactions. In Characterization of Nanoparticles Intended for Drug Delivery; Humana Press: New York, NY, USA, 2018; pp. 197–210. [Google Scholar]
- Allen, I.C. Delayed-Type Hypersensitivity Models in Mice. In Mouse Models of Innate Immunity: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013; pp. 101–107. [Google Scholar]
- Corti, D.; Galbiati, V.; Gatti, N.; Marinovich, M.; Galli, C.L.; Corsini, E. Optimization of the THP-1 activation assay to detect pharmaceuticals with potential to cause immune mediated drug reactions. Toxicol. In Vitro 2015, 29, 1339–1349. [Google Scholar] [CrossRef]
- Pichler, W.J. Pharmacological interaction of drugs with antigen-specific immune receptors: The p-i concept. Curr. Opin. Allergy Clin. Immunol. 2002, 2, 301–305. [Google Scholar] [CrossRef]
- Weltzien, H.U.; Moulon, C.; Martin, S.; Padovan, E.; Hartmann, U.; Kohler, J. T cell immune responses to haptens. Structural models for allergic and autoimmune reactions. Toxicology 1996, 107, 141–151. [Google Scholar] [CrossRef]
- Pieters, R. Detection of autoimmunity by pharmaceuticals. Methods 2007, 41, 112–117. [Google Scholar] [CrossRef]
- Galbiati, V.; Papale, A.; Kummer, E.; Corsini, E. In vitro Models to Evaluate Drug-Induced Hypersensitivity: Potential Test Based on Activation of Dendritic Cells. Front. Pharmacol. 2016, 7, 204. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 442C. In Chemico Skin Sensitisation: Assays Addressing the Adverse Outcome Pathway Key Event on Covalent Binding to Proteins; Organisation for Economic Co-Operation and Development: Paris, France, 2021. [Google Scholar]
- Piroird, C.; Ovigne, J.-M.; Rousset, F.; Martinozzi-Teissier, S.; Gomes, C.; Cotovio, J.; Alépée, N. The Myeloid U937 Skin Sensitization Test (U-SENS) addresses the activation of dendritic cell event in the adverse outcome pathway for skin sensitization. Toxicol. In Vitro 2015, 29, 901–916. [Google Scholar] [CrossRef] [PubMed]
- Ashikaga, T.; Yoshida, Y.; Hirota, M.; Yoneyama, K.; Itagaki, H.; Sakaguchi, H.; Miyazawa, M.; Ito, Y.; Suzuki, H.; Toyoda, H. Development of an in vitro skin sensitization test using human cell lines: The human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol. In Vitro 2006, 20, 767–773. [Google Scholar] [CrossRef]
- Richter, A.; Schmucker, S.S.; Esser, P.R.; Traska, V.; Weber, V.; Dietz, L.; Thierse, H.J.; Pennino, D.; Cavani, A.; Martin, S.F. Human T cell priming assay (hTCPA) for the identification of contact allergens based on naive T cells and DC--IFN-γ and TNF-α readout. Toxicol. In Vitro 2013, 27, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Dietz, L.; Esser, P.R.; Schmucker, S.S.; Goette, I.; Richter, A.; Schnölzer, M.; Martin, S.F.; Thierse, H.J. Tracking human contact allergens: From mass spectrometric identification of peptide-bound reactive small chemicals to chemical-specific naive human T-cell priming. Toxicol. Sci. 2010, 117, 336–347. [Google Scholar] [CrossRef]
- Urbisch, D.; Mehling, A.; Guth, K.; Ramirez, T.; Honarvar, N.; Kolle, S.; Landsiedel, R.; Jaworska, J.; Kern, P.S.; Gerberick, F.; et al. Assessing skin sensitization hazard in mice and men using non-animal test methods. Regul. Toxicol. Pharmacol. 2015, 71, 337–351. [Google Scholar] [CrossRef]
- Takenouchi, O.; Miyazawa, M.; Saito, K.; Ashikaga, T.; Sakaguchi, H. Predictive performance of the human Cell Line Activation Test (h-CLAT) for lipophilic chemicals with high octanol-water partition coefficients. J. Toxicol. Sci. 2013, 38, 599–609. [Google Scholar] [CrossRef]
- Kimura, Y.; Fujimura, C.; Ito, Y.; Takahashi, T.; Nakajima, Y.; Ohmiya, Y.; Aiba, S. Optimization of the IL-8 Luc assay as an in vitro test for skin sensitization. Toxicol. In Vitro 2015, 29, 1816–1830. [Google Scholar] [CrossRef]
- OECD. IL-8 Luciferase (IL-8 Luc) Assay Report of the Peer Review Panel. 2016. Available online: https://www.oecd.org/env/ehs/testing/IL8-Luciferase-Assay-Final-PRP-report-28-April-2016.pdf (accessed on 29 January 2023).
- Mitjans, M.; Viviani, B.; Lucchi, L.; Galli, C.L.; Marinovich, M.; Corsini, E. Role of p38 MAPK in the selective release of IL-8 induced by chemical allergen in naive THp-1 cells. Toxicol. In Vitro 2008, 22, 386–395. [Google Scholar] [CrossRef]
- Mitjans, M.; Galbiati, V.; Lucchi, L.; Viviani, B.; Marinovich, M.; Galli, C.; Corsini, E. Use of IL-8 release and p38 MAPK activation in THP-1 cells to identify allergens and to assess their potency in vitro. Toxicol. In Vitro 2010, 24, 1803–1809. [Google Scholar] [CrossRef] [PubMed]
- Iulini, M.; Maddalon, A.; Galbiati, V.; Corsini, E. The Modified THP-1 Activation Assay for the In Vitro Identification of Drug-Inducing Systemic Hypersensitivity. Front. Toxicol. 2022, 4, 814050. [Google Scholar] [CrossRef] [PubMed]
- Byamba, D.; Kim, T.G.; Kim, D.H.; Je, J.H.; Lee, M.-G. The Roles of Reactive Oxygen Species Produced by Contact Allergens and Irritants in Monocyte-derived Dendritic Cells. Ann. Dermatol. 2010, 22, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Emter, R. Skin Sensitizers Induce Antioxidant Response Element Dependent Genes: Application to the In Vitro Testing of the Sensitization Potential of Chemicals. Toxicol. Sci. 2008, 102, 110–119. [Google Scholar] [CrossRef]
- Mizuashi, M.; Ohtani, T.; Nakagawa, S.; Aiba, S. Redox imbalance induced by contact sensitizers triggers the maturation of dendritic cells. J. Investig. Dermatol. 2005, 124, 579–586. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Aiba, S. Dendritic cells and contact dermatitis. Clin. Rev. Allergy Immunol. 2007, 33, 27–34. [Google Scholar] [CrossRef]
- Natsch, A.; Ryan, C.A.; Foertsch, L.; Emter, R.; Jaworska, J.; Gerberick, F.; Kern, P. A dataset on 145 chemicals tested in alternative assays for skin sensitization undergoing prevalidation. J. Appl. Toxicol. 2013, 33, 1337–1352. [Google Scholar] [CrossRef]
- Corsini, E.; Casula, M.; Tragni, E.; Galbiati, V.; Pallardy, M. Tools to investigate and avoid drug-hypersensitivity in drug development. Expert Opin. Drug Discov. 2018, 13, 425–433. [Google Scholar] [CrossRef]
- Höper, T.; Mussotter, F.; Haase, A.; Luch, A.; Tralau, T. Application of proteomics in the elucidation of chemical-mediated allergic contact dermatitis. Toxicol. Res. 2017, 6, 595–610. [Google Scholar] [CrossRef]
- Emter, R.; Ellis, G.; Natsch, A. Performance of a novel keratinocyte-based reporter cell line to screen skin sensitizers in vitro. Toxicol. Appl. Pharmacol. 2010, 245, 281–290. [Google Scholar] [CrossRef]
- Natsch, A. The Nrf2-Keap1-ARE toxicity pathway as a cellular sensor for skin sensitizers--functional relevance and a hypothesis on innate reactions to skin sensitizers. Toxicol. Sci. 2010, 113, 284–292. [Google Scholar] [CrossRef] [PubMed]
- Kansanen, E.; Kuosmanen, S.M.; Leinonen, H.; Levonen, A.L. The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biol. 2013, 1, 45–49. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 442D: In Vitro Skin Sensitisation: ARE-Nrf2 Luciferase Test Method; Organisation for Economic Co-Operation and Development: Paris, France, 2018. [Google Scholar]
- Roger, I.; Montero, P.; García, A.; Milara, J.; Ribera, P.; Pérez-Fidalgo, J.A.; Cortijo, J. Evaluation of Antineoplastic Delayed-Type Hypersensitivity Skin Reactions In Vitro. Pharmaceuticals 2022, 15, 1111. [Google Scholar] [CrossRef]
- Ahsan, H.; Ayub, M.; Irfan, H.M.; Saleem, M.; Anjum, I.; Haider, I.; Asif, A.; Abbas, S.Q.; ul Hulassan, S.S. Tumor necrosis factor-alpha, prostaglandin-E2 and interleukin-1β targeted anti-arthritic potential of fluvoxamine: Drug repurposing. Environ. Sci. Pollut. Res. Int. 2022, 30, 14580–14591. [Google Scholar] [CrossRef] [PubMed]
- Nukada, Y.; Ashikaga, T.; Miyazawa, M.; Hirota, M.; Sakaguchi, H.; Sasa, H.; Nishiyama, N. Prediction of skin sensitization potency of chemicals by human Cell Line Activation Test (h-CLAT) and an attempt at classifying skin sensitization potency. Toxicol. In Vitro 2012, 26, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Svobodová, L.; Rucki, M.; Vlkova, A.; Kejlova, K.; Jírová, D.; Dvorakova, M.; Kolarova, H.; Kandárová, H.; Pôbiš, P.; Heinonen, T.; et al. Sensitization potential of medical devices detected by in vitro and in vivo methods. ALTEX 2021, 38, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.; Turk, J. Potentiation of T-lymphocyte function by bleomycin. Immunopharmacology 1984, 7, 109–113. [Google Scholar] [CrossRef]
- Gruchalla, R.S. Drug metabolism, danger signals, and drug-induced hypersensitivity. J. Allergy Clin. Immunol. 2001, 108, 475–488. [Google Scholar] [CrossRef]
Hypersensitivity Reaction | Type | Immune Mediators |
---|---|---|
Immediate | Type I | IgE mediated |
Cytotoxic | Type II | IgG/IgM mediated |
Immune complex | Type III | Immune complex mediated |
Delayed type | Type Iva | Th1 cell-mediated macrophage activation |
Type IVb | Th2-cell-mediated eosinophilic inflammation | |
Type IVc | Cytotoxic T cell mediated | |
Type IVd | T-cell-mediated neutrophilic inflammation |
Mechanism of Action | Subgroup | Causative Drug | Clinical Manifestations of DTH | Reference |
---|---|---|---|---|
Alkylating agents | Mustard gas derivates | Chlorambucil | DRESS | [18,28] |
TEN | [29,30,31] | |||
Maculo-papular eruption and erythroderma | [32,33,34] | |||
Metal salts | Carboplatin | Rash and hands/palmar itching | [35] | |
Antitumor antibiotics | Anthracyclines | Doxorubicin | TEN | [36] |
Non-anthracyclines | Bleomycin | SJS | [37,38] | |
Spindle inhibitors | Taxanes | Docetaxel | SJS | [39,40,41,42] |
Paclitaxel | SJS | [43] | ||
Topoisomerases inhibitors | Etoposide | SJS | [44] | |
Topotecan | SS | [45] | ||
Signal transduction inhibitors | Multikinases | Imatinib | Maculopapular eruptions | [46] |
SJS | [47,48,49,50,51] | |||
SS | [25] | |||
DRESS | [52,53,54,55,56,57] | |||
TEN | [58] | |||
Nilotinib | SS | [59] | ||
Dasatinib | SS | [25] | ||
VEGF | Sunitinib | SJS | [60] | |
Maculopapular eruptions | [61] | |||
Sorafenib | SJS | [62,63,64,65,66] | ||
Erythema multiforme | [19,67,68,69,70] | |||
Maculopapular eruptions | [71] | |||
Regorafenib | SJS | [72] | ||
Bevacizumab | Rash | [73] | ||
EGFR | Afatinib | SJS/TEN | [74,75] | |
Erlotinib | SJS/TEN | [76] | ||
Gefitinib | SJS/TEN | [77,78] | ||
Cetuximab | SJS/TEN | [79,80,81,82] | ||
BRAF | Vemurafenib | SJS/TEN | [83,84,85,86,87,88,89,90] | |
DRESS | [83,91,92,93,94,95,96] | |||
SS | [97,98] | |||
Dabrafenib | DRESS | [83] | ||
SS | [99] | |||
MEK1/2 | Cobimetinib | SJS/TEN | [83] | |
Trametinib | SS | [99] | ||
Antimetabolites | Purine analogs | Cladribine | SJS/TEN | [100] |
Flurabine | SJS | [101] | ||
Pyrimidine analogs | Capecitabine | SJS | [102] | |
SS | [103] | |||
Gemcitabine | SJS/TEN | [104,105,106] | ||
SS | [107] | |||
Cytarabne | SJSTEN | [108,109] | ||
Azacitidine | SS | [110,111] |
Test | Cells | Marker | Assay |
---|---|---|---|
T-cell priming assay | Naïve T cells and MoDC | IFN-γ and TNF-α | Flow cytometry |
h-CLAT | THP1 | Cd54 and cd86 expression and viability | Flow cytometry |
MUSST | U937 | CD86 | Flow cytometry |
IL-8 Luc assay | THP-1-derived IL-8 reporter cell line | IL-8 | Luminescence |
THP-1 activation assay | THP1 | IL-8, CD86 and CD54 | Flow cytometry and ELISA |
DPRA | cell-free | protein reactivity | HPLC |
KeratinoSens | KeratinoSensTM cell line (keratinocytes) | Viability and Nrf2 activation | MTT and luminescence |
Type of Preclinical Test | Test | Drugs Tested |
---|---|---|
In vivo | Guinea pig model | Bleomycin [165] |
In vitro | h-CLAT | Docetaxel [161], paclitaxel [161], imatinib [161], nilotinib [161], dasatinib [161], sunitinib [161], sorafenib [161], regorafenib [161], bevacizumab [161] |
DPRA | Docetaxel [161], paclitaxel [161], imatinib [161], nilotinib [161], dasatinib [161], sunitinib [161], sorafenib [161], regorafenib [161], bevacizumab [161] | |
KeratinoSens | Docetaxel [161], paclitaxel [161], imatinib [161], nilotinib [161], dasatinib [161], sunitinib [161], sorafenib [161], regorafenib [161], bevacizumab [161] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roger, I.; Montero, P.; Pérez-Leal, M.; Milara, J.; Cortijo, J. Evaluation of Delayed-Type Hypersensitivity to Antineoplastic Drugs—An Overview. Cancers 2023, 15, 1208. https://doi.org/10.3390/cancers15041208
Roger I, Montero P, Pérez-Leal M, Milara J, Cortijo J. Evaluation of Delayed-Type Hypersensitivity to Antineoplastic Drugs—An Overview. Cancers. 2023; 15(4):1208. https://doi.org/10.3390/cancers15041208
Chicago/Turabian StyleRoger, Inés, Paula Montero, Martín Pérez-Leal, Javier Milara, and Julio Cortijo. 2023. "Evaluation of Delayed-Type Hypersensitivity to Antineoplastic Drugs—An Overview" Cancers 15, no. 4: 1208. https://doi.org/10.3390/cancers15041208
APA StyleRoger, I., Montero, P., Pérez-Leal, M., Milara, J., & Cortijo, J. (2023). Evaluation of Delayed-Type Hypersensitivity to Antineoplastic Drugs—An Overview. Cancers, 15(4), 1208. https://doi.org/10.3390/cancers15041208