Discovery of Novel Bioactive Tanshinones and Carnosol Analogues against Breast Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemistry: General Experimental Procedures
2.2. Synthesis (Scheme 1)
2.2.1. Methyl 11,12-Dioxo-abieta-8,13-dien-18-oate (7)
2.2.2. 11,12-Dioxo-N,N-(phthaloyl)dehydroabietylamine (8)
2.2.3. Methyl 11,12-Dihydroxy-dehydroabietate (9)
2.2.4. 11,12-Dihydroxy-N,N-(phthaloyl)dehydroabietylamine (10)
2.3. Antitumor Assay
2.3.1. Cell Culture and Cell Viability Assays
2.3.2. Cell Morphology
2.3.3. Antioxidant Assay
3. Results
3.1. Chemistry
3.2. Biology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González, M.A. Aromatic abietane diterpenoids: Their biological activity and synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef] [PubMed]
- González, M.A. Synthetic derivatives of aromatic abietane diterpenoids and their biological activities. Eur. J. Med. Chem. 2014, 87, 834–842. [Google Scholar] [CrossRef]
- Faustino, C.; Neto, I.; Fonte, P.; Macedo, A. Cytotoxicity and chemotherapeutic potential of natural rosin abietane diterpenoids and their synthetic derivatives. Curr. Pharm. Des. 2018, 24, 4362–4375. [Google Scholar] [CrossRef]
- Wiemann, J.; Al-Harrasi, A.; Csuk, R. Cytotoxic dehydroabietylamine derived compounds. Anti-Cancer Agents Med. Chem. 2020, 20, 1756–1767. [Google Scholar] [CrossRef]
- Ho, S.-T.; Tung, Y.-T.; Kuo, Y.-H.; Lin, C.; Wu, J.-H. Ferruginol inhibits non-small cell lung cancer growth by inducing caspase-associated apoptosis. Integr. Cancer Ther. 2015, 14, 86–97. [Google Scholar] [CrossRef]
- He, M.; Grkovic, T.; Thornburg, C.C.; Whitt, J.; Akee, R.; Thompson, J.; Britt, J.; Jia, L.; White, J.; Newman, D.; et al. A prototype traditional Chinese medicinal plant library at the National Cancer Institute. Planta Med. 2016, 81, S1–S381. [Google Scholar] [CrossRef]
- Jiang, Z.; Gao, W.; Huang, L. Tanshinones, critical pharmacological components in Salvia miltiorrihiza. Front. Pharmacol. 2019, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Chenghao, Y.; Cheng, P. Anticancer effect of tanshinones on female breast cancer and gynecological cancer. Front. Pharmacol. 2022, 12, 824531. [Google Scholar] [CrossRef]
- Dong, Y.; Morris-Natschke, S.L.; Lee, K.-H. Biosynthesis, total syntheses, and antitumor activity of tanshinones and their analogs as potential therapeutic agents. Nat. Prod. Rep. 2011, 28, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Petiwala, S.M.; Johnson, J.J. Diterpenes from rosemary (Rosmarinus officinalis): Defining their potential for anti-cancer activity. Cancer Lett. 2015, 367, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Alsamri, H.; Alneyadi, A.; Muhammad, K.; Ayoub, M.A.; Eid, A.; Iratni, R. Carnosol induces p38-mediated ER stress response and autophagy in human breast cancer cells. Front. Oncol. 2022, 12, 911615. [Google Scholar] [CrossRef] [PubMed]
- Hamulic, D.; Stadler, M.; Hering, S.; Padrón, J.M.; Bassett, R.; Rivas, F.; Loza-Mejía, M.A.; Dea-Ayuela, M.A.; González-Cardenete, M.A. Synthesis and Biological Studies of (+)-Liquiditerpenoic Acid A (Abietopinoic Acid) and Representative Analogues: SAR Studies. J. Nat. Prod. 2019, 82, 823–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roa-Linares, V.C.; Brand, Y.M.; Agudelo-Gomez, L.S.; Tangarife-Castaño, V.; Betancur-Galvis, L.A.; Gallego-Gomez, J.C.; González, M.A. Anti-herpetic and anti-dengue activity of abietane ferruginol analogues synthesized from (+)-dehydroabietylamine. Eur. J. Med. Chem. 2016, 108, 79–88. [Google Scholar] [CrossRef] [PubMed]
- González-Cardenete, M.A.; Hamulic, D.; Miquel-Leal, F.J.; González-Zapata, N.; Jimenez-Jarava, O.J.; Brand, Y.M.; Restrepo-Mendez, L.C.; Martinez-Gutierrez, M.; Betancur-Galvis, L.A.; Marín, M.L. Antiviral Profiling of C18- or C19-Functionalized Semisynthetic Abietane Diterpenoids. J. Nat. Prod. 2022, 85, 2044–2051. [Google Scholar] [CrossRef]
- Tanramluk, D.; Schreyer, A.; Pitt, W.R.; Blundell, T.L. On the origins of enzyme inhibitor selectivity and promiscuity: A case study of protein kinase binding to staurosporine. Chem. Biol. Drug Des. 2009, 74, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Njus, D.; Kelley, P.M.; Tu, Y.-J.; Schlegel, H.B. Ascorbic acid: The chemistry underlying its antioxidant properties. Free Radic. Biol. Med. 2020, 159, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- González, M.A.; Pérez-Guaita, D. Short syntheses of (+)-ferruginol from (+)-dehydroabietylamine. Tetrahedron 2012, 68, 9612–9615. [Google Scholar] [CrossRef]
- El Had, M.A.; Guardia, J.A.; Ramos, J.M.; Taourirte, M.; Chahboun, R.; Alvarez-Manzaneda, E. Bioinspired synthesis of pygmaeocins and related rearranged abietane diterpenes: Synthesis of viridoquinone. Org. Lett. 2018, 20, 5666–5670. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.; Tran, M.; González, M.A.; Gautam, L.N.; Connelly, M.; Wood, R.K.; Fatima, I.; Miranda-Carboni, G.; Rivas, F. (+)-Dehydroabietylamine derivatives target triple-negative breast cancer. Eur. J. Med. Chem. 2015, 102, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Choi, H.-K.; Moon, J.Y.; Kim, Y.S.; Mosaddik, A.; Cho, S.K. Comparative antioxidant and antiproliferative activities of red and white pitayas and their correlation with flavonoid and polyphenol content. J. Food Sci. 2011, 76, C38–C45. [Google Scholar] [CrossRef] [PubMed]
- Batra, P.; Sharma, A.K. Anti-cancer potential of flavonoids: Recent trends and future perspectives. 3 Biotech 2013, 3, 439–459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, I.S.; Ko, S.H.; Lee, M.E.; Kim, H.M.; Yang, J.E.; Jeong, S.G.; Lee, K.H.; Chang, J.Y.; Kim, J.-C.; Park, H.W. Production, characterization, and antioxidant activities of an exopolysaccharide extracted from spent media wastewater after Leuconostoc mesenteroides WiKim32 fermentation. ACS Omega 2021, 6, 8171–8178. [Google Scholar] [CrossRef]
- Miyajima, Y.; Saito, Y.; Takeya, M.; Goto, M.; Nakagawa-Goto, K. Synthesis of 4-epi-parviflorons A, C, and E: Structure-activity relationship study of antiproliferative abietane derivatives. J. Org. Chem. 2019, 84, 3239–3248. [Google Scholar] [CrossRef]
- Ling, T.; Hadi, V.; Guiguemde, A.; Landfear, S.M.; Rivas, F. Jatropha natural products as potential therapeutic leads. In The Formation, Structure and Activity of Phytochemicals; Recent advances in phytochemistry; Jetter, R., Ed.; Springer: Cham, Switzerland, 2015; Volume 45, pp. 77–98. [Google Scholar] [CrossRef]
- Perillo, B.; Di Donato, M.; Pezone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. Exp. Mol. Med. 2020, 52, 192–203. [Google Scholar] [CrossRef]
- Bahrani, H.M.H.; Ghobeh, M.; Tabrizi, M.H. The anticancer, anti-oxidant, and antibacterial activities of chitosan-lecithin-coated parthenolide/tyrosol hybrid nanoparticles. J. Biomater. Sci. Polym. Ed. 2023, 1–12. [Google Scholar] [CrossRef]
- Haffez, H.; Osman, S.; Ebrahim, H.Y.; Hassan, Z.A. Growth inhibition and apoptotic effect of pine extract and abietic acid on MCF-7 breast cancer cells via alteration of multiple gene expressions using in vitro approach. Molecules 2022, 27, 293. [Google Scholar] [CrossRef]
Compound | SUM149 | MDA-MB231 | T47D | MCF07 | BJ | TI |
---|---|---|---|---|---|---|
1 | >50 | 8.3 ± 1.4 | >100 | 19.0 ± 1.5 | >50 | 1–6 |
2 | 4.4 ± 0.3 | 5.1 ± 0.6 | >50 | 10.0 ± 1.5 | 75.0 ± 6.2 | 1–17 |
6 | 4.4 ± 0.2 | 8.2 ± 0.5 | 29.2 ± 1.5 | 13.0 ± 0.6 | 74.8 ± 5.3 | 2–17 |
7 | 1.3 ± 0.6 | 3.9 ± 0.8 | 14.1 ± 0.5 | 8.3 ± 0.9 | 56.5 ± 6.1 | 4–44 |
8 | 1.5 ± 0.4 | 2.8 ± 0.4 | 18.7 ± 0.3 | 2.3 ± 1.1 | 35.4 ± 5.0 | 1–24 |
9 | >50 | 9.4 ± 0.4 | 14.4 ± 0.6 | >50 | 57.6 ± 3.0 | 1–4 |
10 | 1.8 ± 0.2 | 2.8 ± 0.2 | 8.2 ± 0.4 | 4.6 ± 0.6 | 32.5 ± 5.0 | 4–18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Cardenete, M.A.; González-Zapata, N.; Boyd, L.; Rivas, F. Discovery of Novel Bioactive Tanshinones and Carnosol Analogues against Breast Cancer. Cancers 2023, 15, 1318. https://doi.org/10.3390/cancers15041318
González-Cardenete MA, González-Zapata N, Boyd L, Rivas F. Discovery of Novel Bioactive Tanshinones and Carnosol Analogues against Breast Cancer. Cancers. 2023; 15(4):1318. https://doi.org/10.3390/cancers15041318
Chicago/Turabian StyleGonzález-Cardenete, Miguel A., Natalia González-Zapata, Lucinda Boyd, and Fatima Rivas. 2023. "Discovery of Novel Bioactive Tanshinones and Carnosol Analogues against Breast Cancer" Cancers 15, no. 4: 1318. https://doi.org/10.3390/cancers15041318
APA StyleGonzález-Cardenete, M. A., González-Zapata, N., Boyd, L., & Rivas, F. (2023). Discovery of Novel Bioactive Tanshinones and Carnosol Analogues against Breast Cancer. Cancers, 15(4), 1318. https://doi.org/10.3390/cancers15041318