Dietary Intake of Anthocyanidins and Renal Cancer Risk: A Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Data Collection
2.3. Renal Cancer Ascertainment
2.4. Statistical Analysis
3. Results
3.1. Study Characteristics
3.2. Dietary Anthocyanidin Intakes and Renal Cancer Risk
3.3. Additional Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wallen, E.M.; Pruthi, R.S.; Joyce, G.F.; Wise, M. Kidney cancer. J. Urol. 2007, 177, 2006–2018; discussion 2018–2009. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer 2015, 136, E359–E386. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, N.; Drake, C.G. Kidney Cancer: An Overview of Current Therapeutic Approaches. Urol. Clin. N. Am. 2020, 47, 419–431. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef]
- Goetz, M.E.; Judd, S.E.; Safford, M.M.; Hartman, T.J.; McClellan, W.M.; Vaccarino, V. Dietary flavonoid intake and incident coronary heart disease: The REasons for Geographic and Racial Differences in Stroke (REGARDS) study. Am. J. Clin. Nutr. 2016, 104, 1236–1244. [Google Scholar] [CrossRef] [Green Version]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhu, M.; Wan, H.; Chen, L.; Luo, F. Association between Dietary Anthocyanidins and Risk of Lung Cancer. Nutrients 2022, 14, 2643. [Google Scholar] [CrossRef]
- Sun, L.; Subar, A.F.; Bosire, C.; Dawsey, S.M.; Kahle, L.L.; Zimmerman, T.P.; Abnet, C.C.; Heller, R.; Graubard, B.I.; Cook, M.B.; et al. Dietary Flavonoid Intake Reduces the Risk of Head and Neck but Not Esophageal or Gastric Cancer in US Men and Women. J. Nutr. 2017, 147, 1729–1738. [Google Scholar] [CrossRef]
- Cui, L.; Liu, X.; Tian, Y.; Xie, C.; Li, Q.; Cui, H.; Sun, C. Flavonoids, Flavonoid Subclasses, and Esophageal Cancer Risk: A Meta-Analysis of Epidemiologic Studies. Nutrients 2016, 8, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosetti, C.; Rossi, M.; McLaughlin, J.K.; Negri, E.; Talamini, R.; Lagiou, P.; Montella, M.; Ramazzotti, V.; Franceschi, S.; LaVecchia, C. Flavonoids and the risk of renal cell carcinoma. Cancer Epidemiol. Biomark. Prev. 2007, 16, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prorok, P.C.; Andriole, G.L.; Bresalier, R.S.; Buys, S.S.; Chia, D.; Crawford, E.D.; Fogel, R.; Gelmann, E.P.; Gilbert, F.; Hasson, M.A.; et al. Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin. Trials 2000, 21, 273S–309S. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.S.; Pinsky, P.F.; Kramer, B.S.; Prorok, P.C.; Purdue, M.P.; Berg, C.D.; Gohagan, J.K. The prostate, lung, colorectal, and ovarian cancer screening trial and its associated research resource. J. Natl. Cancer Inst. 2013, 105, 1684–1693. [Google Scholar] [CrossRef] [Green Version]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Subar, A.F.; Midthune, D.; Kulldorff, M.; Brown, C.C.; Thompson, F.E.; Kipnis, V.; Schatzkin, A. Evaluation of alternative approaches to assign nutrient values to food groups in food frequency questionnaires. Am. J. Epidemiol. 2000, 152, 279–286. [Google Scholar] [CrossRef]
- Schoenfeld, D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 1980, 67, 145–153. [Google Scholar] [CrossRef]
- Marrie, R.A.; Dawson, N.V.; Garland, A. Quantile regression and restricted cubic splines are useful for exploring relationships between continuous variables. J. Clin. Epidemiol. 2009, 62, 511–517.e511. [Google Scholar] [CrossRef]
- Panchal, S.K.; John, O.D.; Mathai, M.L.; Brown, L. Anthocyanins in Chronic Diseases: The Power of Purple. Nutrients 2022, 14, 2161. [Google Scholar] [CrossRef]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary Effects of Anthocyanins in Human Health: A Comprehensive Review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef]
- Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals 2021, 14, 806. [Google Scholar] [CrossRef]
- Mehmood, A.; Zhao, L.; Wang, Y.; Pan, F.; Hao, S.; Zhang, H.; Iftikhar, A.; Usman, M. Dietary anthocyanins as potential natural modulators for the prevention and treatment of non-alcoholic fatty liver disease: A comprehensive review. Food Res. Int. 2021, 142, 110180. [Google Scholar] [CrossRef]
- Suresh, S.; Begum, R.F.; Singh, S.A.; Chitra, V. Anthocyanin as a therapeutic in Alzheimer’s disease: A systematic review of preclinical evidences. Ageing Res. Rev. 2022, 76, 101595. [Google Scholar] [CrossRef]
- Chang, H.; Lei, L.; Zhou, Y.; Ye, F.; Zhao, G. Dietary Flavonoids and the Risk of Colorectal Cancer: An Updated Meta-Analysis of Epidemiological Studies. Nutrients 2018, 10, 950. [Google Scholar] [CrossRef] [Green Version]
- Rossi, M.; Bosetti, C.; Negri, E.; Lagiou, P.; La Vecchia, C. Flavonoids, proanthocyanidins, and cancer risk: A network of case-control studies from Italy. Nutr. Cancer 2010, 62, 871–877. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Wu, X.; Han, L.; Bian, J.; He, C.; El-Omar, E.; Gong, L.; Wang, M. The Potential Roles of Dietary Anthocyanins in Inhibiting Vascular Endothelial Cell Senescence and Preventing Cardiovascular Diseases. Nutrients 2022, 14, 2836. [Google Scholar] [CrossRef]
- Khandelwal, N.; Abraham, S.K. Intake of anthocyanidins pelargonidin and cyanidin reduces genotoxic stress in mice induced by diepoxybutane, urethane and endogenous nitrosation. Environ. Toxicol. Pharmacol. 2014, 37, 837–843. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Peng, C.; Zhaojie, L.; Wei, W. Chemopreventive and therapeutic properties of anthocyanins in breast cancer: A comprehensive review. Nutr. Res. 2022, 107, 48–64. [Google Scholar] [CrossRef]
- Farhan, M.; Rizvi, A.; Ali, F.; Ahmad, A.; Aatif, M.; Malik, A.; Alam, M.W.; Muteeb, G.; Ahmad, S.; Noor, A.; et al. Pomegranate juice anthocyanidins induce cell death in human cancer cells by mobilizing intracellular copper ions and producing reactive oxygen species. Front. Oncol. 2022, 12, 998346. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Ramírez, B.A.; Catalán, Ú.; Llauradó, E.; Valls, R.M.; Salamanca, P.; Rubió, L.; Yuste, S.; Solà, R. The health benefits of anthocyanins: An umbrella review of systematic reviews and meta-analyses of observational studies and controlled clinical trials. Nutr. Rev. 2022, 80, 1515–1530. [Google Scholar] [CrossRef] [PubMed]
- Behrens, G.; Leitzmann, M.F. The association between physical activity and renal cancer: Systematic review and meta-analysis. Br. J. Cancer 2013, 108, 798–811. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.C.; Lee, I.M.; Weiderpass, E.; Campbell, P.T.; Sampson, J.N.; Kitahara, C.M.; Keadle, S.K.; Arem, H.; Berrington de Gonzalez, A.; Hartge, P.; et al. Association of Leisure-Time Physical Activity with Risk of 26 Types of Cancer in 1.44 Million Adults. JAMA Intern. Med. 2016, 176, 816–825. [Google Scholar] [CrossRef] [PubMed]
- Taborelli, M.; Toffolutti, F.; Del Zotto, S.; Clagnan, E.; Furian, L.; Piselli, P.; Citterio, F.; Zanier, L.; Boscutti, G.; Serraino, D. Increased cancer risk in patients undergoing dialysis: A population-based cohort study in North-Eastern Italy. BMC Nephrol. 2019, 20, 107. [Google Scholar] [CrossRef]
Variables | Q1 (n = 25,340) | Q2 (n = 25,258) | Q3 (n = 25,269) | Q4 (n = 25,289) | p |
---|---|---|---|---|---|
Age (years), mean (SD) | 61.9 (5.2) | 62.5 (5.3) | 62.6 (5.3) | 62.6 (5.3) | <0.001 |
Sex (n, %) | <0.001 | ||||
Male | 14,499 (57.2%) | 12,854 (50.9%) | 11,712 (46.3%) | 9996 (39.5%) | |
Female | 10,841 (42.8%) | 12,404 (49.1%) | 13,557 (53.7%) | 15,293 (60.5%) | |
Smoking (n, %) | <0.001 | ||||
Never | 10,072 (39.7%) | 12,067 (47.8%) | 12,868 (50.9%) | 13,348 (52.8%) | |
Current | 4101 (16.2%) | 2218 (8.8%) | 1688 (6.7%) | 1309 (5.2%) | |
Former | 11,166 (44.1%) | 10,969 (43.4%) | 10,709 (42.4%) | 10,628 (42.0%) | |
Education (n, %) | <0.001 | ||||
≤High school | 12,229 (48.3%) | 10,844 (42.9%) | 9944 (39.4%) | 9597 (37.9%) | |
≥Some college | 13,064 (51.6%) | 14,366 (56.9%) | 15,273 (60.4%) | 15,643 (61.9%) | |
BMI (n, %) | <0.001 | ||||
<25.0 kg/m2 | 7543 (29.8%) | 8055 (31.9%) | 8814 (34.9%) | 9879 (39.1%) | |
≥25.0 kg/m2 | 17,442 (68.8%) | 16,875 (66.8%) | 16,123 (63.8%) | 15,093 (59.7%) | |
Race (n, %) | <0.001 | ||||
White, Non-Hispanic | 22,592 (89.2%) | 23,174 (91.7%) | 23,305 (92.2%) | 22,949 (90.7%) | |
Other | 2737 (10.8%) | 2075 (8.2%) | 1956 (7.7%) | 2331 (9.2%) | |
Hypertension (n, %) | <0.001 | ||||
Yes | 16,734 (66.4%) | 16,839 (67.0%) | 17,065 (67.9%) | 17,188 (68.3%) | |
No | 8471 (33.6%) | 8307 (33.0%) | 8077 (32.1%) | 7977 (31.7%) | |
Total energy intake (kcal/d), mean ± SD | 1510.0 (678.3) | 1644.9 (663.5) | 1767.4 (673.4) | 1984.6 (712.0) | <0.001 |
Variables (mg/day) | Median (mg/day) | Cohort (n) | Cases (n) | Crude HR (95% CI), p-Value | Adjusted HR * (95% CI), p-Value |
---|---|---|---|---|---|
Q1 (<6.95) | 4.45 | 25,340 | 133 | Reference | Reference |
Q2 (≥ 6.95 to <12.18) | 9.43 | 25,258 | 109 | 0.80 (0.62–1.03), p = 0.083 | 0.85 (0.66–1.10), p = 0.213 |
Q3 (≥ 12.18 to <20.21) | 15.53 | 25,269 | 85 | 0.62 (0.47–0.81), p = 0.001 | 0.68 (0.51–0.90), p = 0.007 |
Q4 (≥20.21) | 28.55 | 25,289 | 82 | 0.59 (0.45–0.78), p < 0.001 | 0.68 (0.51–0.92), p = 0.012 |
p for trend < 0.001 | p for trend = 0.010 |
Variables | Cyanidin | Delphinidin | Malvidin | Pelargonidin | Peonidin | Petunidin |
---|---|---|---|---|---|---|
Q1 | Reference | Reference | Reference | Reference | Reference | Reference |
Q2 | 0.83 (0.63–1.10), p = 0.192 | 0.78 (0.59–1.03), p = 0.075 | 1.02 (0.78–1.34), p = 0.874 | 0.90 (0.69–1.18), p = 0.445 | 0.97 (0.74–1.28), p = 0.852 | 0.99 (0.76–1.29), p = 0.916 |
Q3 | 0.80 (0.60–1.07), p = 0.128 | 0.85 (0.65–1.11), p = 0.225 | 0.98 (0.75–1.30), p = 0.906 | 0.93 (0.70–1.23), p = 0.606 | 1.06 (0.81–1.38), p = 0.686 | 0.92 (0.70–1.22), p = 0.556 |
Q4 | 0.86 (0.65–1.15), p = 0.323 | 0.59 (0.43–0.79), p < 0.001 | 0.75 (0.55–1.02), p = 0.069 | 0.79 (0.58–1.06), p = 0.120 | 0.68 (0.50–0.93), p = 0.016 | 0.69 (0.50–0.94), p = 0.020 |
Variables | Q1 | Q2 | Q3 | Q4 | p for Interaction |
---|---|---|---|---|---|
Sex | > 0.05 | ||||
Male | Reference | 0.95 (0.70–1.29), p = 0.738 | 0.70 (0.49–0.99), p = 0.044 | 0.73 (0.50–1.06), p = 0.094 | |
Female | Reference | 0.66 (0.41–1.06), p = 0.082 | 0.62 (0.39–1.00), p = 0.051 | 0.58 (0.35–0.95), p = 0.031 | |
Smoking | > 0.05 | ||||
Never | Reference | 0.95 (0.62–1.46), p = 0.810 | 0.80 (0.51–1.25), p = 0.328 | 0.70 (0.43–1.13), p = 0.147 | |
Current | Reference | 0.38 (0.17–0.88), p = 0.023 | 0.22 (0.07–0.74), p = 0.014 | 0.38 (0.13–1.11), p = 0.077 | |
Former | Reference | 0.97 (0.67–1.41), p = 0.886 | 0.75 (0.50–1.12), p = 0.159 | 0.82 (0.54–1.24), p = 0.339 | |
BMI (n, %) | > 0.05 | ||||
<25.0 kg/m2 | Reference | 0.72 (0.41–1.28), p = 0.266 | 0.76 (0.43–1.35), p = 0.353 | 0.70 (0.38–1.29), p = 0.253 | |
≥25.0 kg/m2 | Reference | 0.89 (0.66–1.19), p = 0.420 | 0.66 (0.48–0.92), p = 0.013 | 0.69 (0.49–0.97), p = 0.032 | |
Hypertension | 0.002 | ||||
Yes | Reference | 0.55 (0.38–0.81), p = 0.003 | 0.66 (0.46–0.96), p = 0.031 | 0.61 (0.41–0.92), p = 0.017 | |
No | Reference | 1.27 (0.88–1.82), p = 0.196 | 0.70 (0.46–1.08), p = 0.111 | 0.79 (0.51–1.24), p = 0.306 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhu, Y.; Li, S.; Xia, D. Dietary Intake of Anthocyanidins and Renal Cancer Risk: A Prospective Study. Cancers 2023, 15, 1406. https://doi.org/10.3390/cancers15051406
Xu X, Zhu Y, Li S, Xia D. Dietary Intake of Anthocyanidins and Renal Cancer Risk: A Prospective Study. Cancers. 2023; 15(5):1406. https://doi.org/10.3390/cancers15051406
Chicago/Turabian StyleXu, Xin, Yi Zhu, Shiqi Li, and Dan Xia. 2023. "Dietary Intake of Anthocyanidins and Renal Cancer Risk: A Prospective Study" Cancers 15, no. 5: 1406. https://doi.org/10.3390/cancers15051406
APA StyleXu, X., Zhu, Y., Li, S., & Xia, D. (2023). Dietary Intake of Anthocyanidins and Renal Cancer Risk: A Prospective Study. Cancers, 15(5), 1406. https://doi.org/10.3390/cancers15051406