Potential Role of Circulating miRNAs for Breast Cancer Management in the Neoadjuvant Setting: A Road to Pave
Abstract
:Simple Summary
Abstract
1. Introduction
2. Diagnostic Potential of Circulating miRNAs
miRNA | Sample | BC Patients/ Healthy Controls | BC Subtype | Method | Findings | Ref |
---|---|---|---|---|---|---|
10b-3p | Plasma | 30/20 | All | qRT-PCR | higher levels in BC vs. HC | [42] |
10b-5p | Serum | 56/10 | All | qRT-PCR | higher levels in BC vs. HC | [33] |
Serum | 89/29 | All | qRT-PCR | higher levels in advanced BC vs. HC | [34] | |
15a-5p | Serum | 8/20 | TNBC | qRT-PCR | lower levels in TNBC vs. HC | [27] |
17-5p | Serum | 8/20 | TNBC | qRT-PCR | lower levels in TNBC vs. HC | [27] |
18a-5p | Serum | 8/20 | TNBC | qRT-PCR | lower levels in TNBC vs. HC | [27] |
19a-3p | Serum | 118/30 | HER2− | qRT-PCR | higher levels in BC vs. HC | [30] |
19b-3p | Serum | 16/20 | All | qRT-PCR | lower levels in TNBC vs. HC | [27] |
21-3p | Plasma | 30/20 | All | qRT-PCR | higher levels in BC vs. HC | [42] |
21-5p | Serum | 53/8 | Not specified | qRT-PCR | higher levels in BC vs. HC higher levels in advanced BC vs. early BC | [32] |
Serum | 8/20 | All | qRT-PCR | higher levels in TNBC vs. HC | [27] | |
Serum | 127/19 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [28] | |
Plasma | 29/28 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [29] | |
Serum | 118/30 | HER2− | qRT-PCR | higher levels in BC vs. HC | [30] | |
Serum | 75/75 | Not specified | qRT-PCR | higher levels in BC vs. HC | [31] | |
27a-3p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in BC vs. HC lower levels in TBNC vs. HER2 | [43] |
27b-3p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in BC vs. HC lower levels in TBNC vs. HER2 | [43] |
29a-3p | Plasma | 29/28 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [29] |
29c-3p | Serum | 76/52 | All | qRT-PCR | higher levels in BC vs. HC | [51] |
30b-5p | Serum | 16/20 | All | qRT-PCR | lower levels in TNBC vs. HC | [27] |
34a-5p | Serum | 39/10 | All | qRT-PCR | higher levels in BC vs. HC | [37] |
Plasma | 59/20 | All | qRT-PCR | lower levels in BC vs. HC | [39] | |
Serum | 86/20 | HER2− | qRT-PCR | higher levels in BC vs. HC | [38] | |
Serum | 89/29 | All | qRT-PCR | higher levels in advanced BC vs. HC | [34] | |
105-5p | Serum | 53/8 | Not specified | qRT-PCR | higher levels in BC vs. HC | [32] |
122-5p | Plasma | 59/20 | All | qRT-PCR | higher levels in BC vs. HC | [39] |
125b-5p | Serum | 118/30 | HER2− | qRT-PCR | higher levels in BC vs. HC | [30] |
126-3p | Plasma | 29/28 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [29] |
145-3p | Plasma | 30/20 | All | qRT-PCR | lower levels in BC vs. HC | [42] |
155-5p | Serum | 56/10 | All | qRT-PCR | higher levels in BC vs. HC | [33] |
Serum | 118/30 | HER2− | qRT-PCR | higher levels in BC vs. HC | [30] | |
Serum | 89/20 | All | qRT-PCR | higher levels in BC vs. HC | [34] | |
181a-3p | Plasma | 30/20 | All | qRT-PCR | higher levels in BC vs. HC | [42] |
195-5p | Serum | 210/102 | All | qRT-PCR | lower levels in BC vs. HC | [52] |
Blood | 83/63 | Not specified | qRT-PCR | higher levels in BC vs. HC | [36] | |
Serum | 72/72 | All | qRT-PCR | lower levels in BC vs. HC | [35] | |
199a-5p | Serum | 76/52 | All | qRT-PCR | higher levels in BC vs. HC | [51] |
205-5p | Serum | 118/30 | HER2− | qRT-PCR | higher levels in BC vs. HC | [30] |
210-3p | Serum | 127/19 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [28] |
Plasma | 29/28 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [29] | |
221-3p | Plasma | 93/32 | All | qRT-PCR | higher levels in BC vs. HC | [50] |
335-5p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in TNBC vs. HC higher levels in TNBC vs. HER2+ | [43] |
365a-3p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in HER2+ BC vs. HC lower levels in TNBC vs. HER2+ | [43] |
376c-3p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in TNBC vs. HC higher levels in TNBC vs. HER2+ | [43] |
373-3p | Serum | 127/19 | HER2+ | qRT-PCR | higher levels in BC vs. HC | [28] |
Serum | 118/30 | HER2- | qRT-PCR | higher levels in BC vs. HC | [30] | |
382-5p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in TNBC vs. HC higher levels in TNBC vs. HER2+ | [43] |
422a | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | lower levels in HER2+ BC vs. HC higher levels in TNBC vs. HER2+ | [43] |
424-5p | Serum | 76/52 | All | qRT-PCR | higher levels in BC vs. HC | [51] |
433-3p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | higher levels in TNBC vs. HC higher levels in TNBC vs. HER2+ | [43] |
451-5p | Serum | 118/30 | HER2− | qRT-PCR | lower levels in BC vs. HC | [30] |
628-5p | Plasma | 435/20 | HER2+ and TNBC | qRT-PCR | lower levels in HER2+ vs. HC higher levels in TBNC vs. HER2+ | [41] |
let-7a-5p | Serum | 8/20 | TNBC | qRT-PCR | higher levels in TNBC vs. HC | [27] |
Serum | 72/72 | All | qRT-PCR | lower levels in BC vs. HC | [35] | |
Blood | 83/63 | Not specified | qRT-PCR | higher levels in BC vs. HC | [36] | |
let-7a-3p | Plasma | 30/20 | All | qRT-PCR | lower levels in BC vs. HC | [42] |
let-7e-5p | Serum | 8/20 | TNBC | qRT-PCR | higher levels in TNBC vs. HC | [27] |
3. Predictive Potential of Circulating miRNAs
miRNA | Sample | BC Patients | BC Subtype | Method | Predictive Findings | Ref |
---|---|---|---|---|---|---|
21-5p | Whole blood | 114 | All | qRT-PCR | Independent predictor of responseIn HR+, reduced levels in responders vs. non responders | [41] |
Plasma | 72 | HR+ | q-PCR | Independent predictive factor of MP response to neoadjuvant chemotherapyReduced levels in responders vs. non-responders | [44] | |
Serum | 182 | HR+, HER2+ | qRT-PCR | Reduced levels correlated with sensitivity to NACIncreased levels correlated with resistance to NAC | [45] | |
145-5p | Whole blood | 120 | All | qRT-PCR | In HR- HER2+, lower levels predicted achievement of pCR (p = 0.027) | [56] |
Whole blood | 114 | All | qRT-PCR | In HR+, significantly lower levels in responders vs. non-responders (p = 0.033) | [41] | |
205-5p | Serum | 182 | HR+, HER2+ | qRT-PCR | In HR+, increased levels predicted sensitivity to NACIn HER2+, low levels predicted resistance to NAC | [45] |
Serum | 68 | HR+ | RT-PCR | Increased levels predicted resistance to NAC based on epirubicin plus paclitaxel (p = 0.003) | [53] | |
210-3p | Serum | 37 | Luminal B | qRT-PCR | Increased levels in pathological responders vs. non-responders (OR = 0.07, 95% CI = 0.01–0.45, p = 0.01) | [40] |
Plasma | 29 | HER2+ | RT-PCR | Increased levels in residual disease vs. pCR (p = 0.0359) | [29] | |
222-3p | Plasma | 109 | All | qRT-PCR | In HR+ HER2-, upregulation predicted response to NAC (OR = 6.422, p = 0.049) | [26] |
Serum | 65 | HER2+ | qRT-PCR | Reduced levels predictors of pCR (OR = 0.258, p = 0.043) | [59] | |
375-3p | Serum | 37 | Luminal B | qRT-PCR | In HER2-, lower levels predicted in pCR | [40] |
Serum | 182 | HR+, HER2+ | qRT-PCR | In HR+, reduced levels predicted sensitivity to NAC | [45] | |
Serum | 42 | All | qRT-PCR | In HER2+, high levels predicted resistance to NAC | [54] | |
19a-3p | Serum | 68 | HR+ | RT-PCR | Increased levels predicted resistance to NAC-based on epirubicin plus paclitaxel | [53] |
19b-3p | Serum | 8 | TNBC | RT-PCR | In TNBC, higher levels in no cCR to NAC | [27] |
30b-5p | Plasma | 20 | HR+, TNBC | NGS | Upregulation predicted pCR | [57] |
Serum | 8 | TNBC | RT-PCR | In TNBC, higher levels in no cCR to NAC | [27] | |
34a-5p | Plasma | 39 | All | qRT-PCR | Higher levels in PD vs. SD/PR/CR (p = 0.03) | [37] |
423-5p | Plasma | 20 | HR+, TNBC | NGS | Downregulation predicted pCR (p = 0.0005) | [57] |
718 | Serum | 37 | Luminal B | qRT-PCR | Lower levels in clinical responders vs. non responders (p = 0.031) | [40] |
4516 | Serum | 37 | Luminal B | qRT-PCR | Lower levels in clinical responders vs. non responders (p = 0.016) | [40] |
146a-5p | Plasma | 72 | HR+ | q-PCR | Independent predictive factor of MP response to neoadjuvant chemotherapyReduced levels predictors of response | [44] |
26a-5p | Plasma | 72 | HR+ | q-PCR | Independent predictive factor of MP response to neoadjuvant chemotherapyReduced levels predictors of response | [44] |
127-3p | Plasma | 20 | HR+, TNBC | NGS | In TNBC, upregulation strongly predictor factor of pCR | [57] |
195-5p | Whole blood | 114 | All | qRT-PCR | Reduced levels in responders vs. non responders | [41] |
221-3p | Plasma | 93 | All | RT-PCR | Independent factor for chemoresistance | [50] |
328-3p | Plasma | 20 | HR+, TNBC | NGS | Downregulation predicted pCR (p = 0.0019) | [57] |
125b-5p | Serum | 56 | All | qRT-PCR | Higher levels in non-responders vs. responders (p = 0.008) | [33] |
Responders | Non-Responders | |||||
---|---|---|---|---|---|---|
miRNA | BC Subtype | After 1–4 Cycles of NAC | At the End of NAC | After 1–4 Cycles of NAC | At the End of NAC | Ref |
21-5p | HER2+ | ↓ | ↓ | [48] | ||
HER2− | ↓ | ↓ | [30] | |||
145-5p | All | ↓ in HER2+ | [56] | |||
210-3p | HER2+ | ↑ | [29] | |||
222-3p | Not specified | ↑ in HR+/HER2− | [26] | |||
34a-5p | HER2− | ↓ | ↓ | [38] | ||
All | ↓ in HER2+ ↓ in TNBC | ↓ in HER2+ | [26] | |||
let-7a-5p | All | ↑ in HR+ HER2+ ↓ Luminal | [56] |
4. Prognostic Potential of Circulating miRNAs
miRNA | Sample | BC Patients/ Healthy Controls | BC Subtype | Method | Prognostic Findings | Ref |
---|---|---|---|---|---|---|
21-5p | Serum | 127/19 | HER2+ | qRT-PCR | Increased levels of circulating miR-21 before (p = 0.0091) and after (p = 0.037) NAC with trastuzumab and lapatinib showed a significant association with poor OS | [28] |
Serum | 118/30 | HER2− | qRT-PCR | Decreased expression from BL to FEN and from BL to SEN during NAC had better DFS (p < 0.001) | [30] | |
Serum, blood | 83/30 | HER2+ | qRT-PCR | Decreased serum expression from BL to the end of the second cycle and from BL to the end of NAC with trastuzumab correlated with better OS and DFS (p < 0.001) | [48] | |
Serum | 326/223 | Not specified | qRT-PCR | High serum levels correlated with shorter RFS (p = 0.026) and DFS (p = 0.0033) | [62] | |
Serum | 75 | Not specified | qRT-PCR | Increased expression (>nine-fold) was significantly associated with poor survival (p = 0.002) | [31] | |
34a-5p | Serum | 86/20 | HER2− | qRT-PCR | Decreased expression from the end of second cycle and the end of NAC to before NAC correlated with better DFS (p < 0.001) | [38] |
Blood | 20 | HR+, TNBC | NGS | Low level was prognostic for survival (p = 0.19) | [57] | |
125b-5p | Serum | 118/30 | HER2− | qRT-PCR | Lower expression at BL, FEN and SEN correlated with more favorable DFS (p < 0.001) | [30] |
375-3p | Serum | 182 | HR+, HER2+ | qRT-PCR | Low serum level (<0.15) correlated with lower 3-y RFS in luminal B patients | [45] |
222-3p | Serum | 65 | HER2+ | qRT-PCR | Low serum expression correlated with better DFS (p = 0.029) and OS (p = 0.0037) | [59] |
4515p | Serum | 27/36 | Not specified | qRT-PCR | High levels at the time of diagnosis were associated with better DFS (p = 0.046) | [46] |
182-5p | Serum | 182 | HR+, HER2+ | qRT-PCR | High serum level (>5.5) correlated with lower 3-y RFS in luminal A patients | [45] |
5. Methodological Issues in Circulating miRNA Research
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- EUCAN Database. Available online: http://eu-cancer.iarc.fr/EUCAN/Default.aspx1 (accessed on 1 December 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Broeders, M.; Moss, S.; Nyström, L.; Njor, S.; Jonsson, H.; Paap, E.; Massat, N.; Duffy, S.; Lynge, E.; Paci, E.; et al. The impact of mammographic screening on breast cancer mortality in Europe: A review of observational studies. J. Med. Screen. 2012, 19 (Suppl. 1), 14–25. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.M.; Moulder-Thompson, S.L. Neoadjuvant treatment of breast cancer. Ann. Oncol. 2012, 23 (Suppl. 10), x231–x236. [Google Scholar] [CrossRef] [PubMed]
- Ballman, K.V. Biomarker: Predictive or prognostic? J. Clin. Oncol. 2015, 33, 3968–3971. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018, 9, 402. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, S. Posttranscriptional upregulation by microRNAs. Wiley Interdiscip. Rev. RNA 2012, 3, 311–330. [Google Scholar] [CrossRef]
- Medley, J.C.; Panzade, G.; Zinovyeva, A.Y. microRNA strand selection: Unwinding the rules. Wiley Interdiscip. Rev. RNA 2021, 12, e1627. [Google Scholar] [CrossRef]
- Blenkiron, C.; Goldstein, L.D.; Thorne, N.P.; Spiteri, I.; Chin, S.F.; Dunning, M.J.; Barbosa-Morais, N.L.; Teschendorff, A.E.; Green, A.R.; Ellis, I.O.; et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007, 8, R214. [Google Scholar] [CrossRef] [Green Version]
- Croce, C.M. Causes and consequences of microRNA dysregulation in cancer. Nat. Rev. Genet. 2009, 10, 704–714. [Google Scholar] [CrossRef]
- Di Leva, G.; Croce, C.M. miRNA profiling of cancer. Curr. Opin. Genet. Dev. 2013, 23, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Bueso-Ramos, C.; Ferdin, J.; Lopez-Berestein, G.; Sood, A.K.; Calin, G.A. MicroRNAs in body fluids—The mix of hormones and biomarkers. Nat. Rev. Clin. Oncol. 2011, 8, 467–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 2007, 9, 654–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegtel, D.M.; Cosmopoulos, K.; Thorley-Lawson, D.A.; van Eijndhoven, M.A.; Hopmans, E.S.; Lindenberg, J.L.; de Gruijl, T.D.; Würdinger, T.; Middeldorp, J.M. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA 2010, 107, 6328–6333. [Google Scholar] [CrossRef] [Green Version]
- Arroyo, J.D.; Chevillet, J.R.; Kroh, E.M.; Ruf, I.K.; Pritchard, C.C.; Gibson, D.F.; Mitchell, P.S.; Bennett, C.F.; Pogosova-Agadjanyan, E.L.; Stirewalt, D.L.; et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 2011, 108, 5003–5008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Zhang, S.; Weber, J.; Baxter, D.; Galas, D.J. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010, 38, 7248–7259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vickers, K.C.; Remaley, A.T. Lipid-based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol. 2012, 23, 91–97. [Google Scholar] [CrossRef] [Green Version]
- Cortez, M.A.; Calin, G.A. MicroRNA identification in plasma and serum: A new tool to diagnose and monitor diseases. Expert Opin. Biol. Ther. 2009, 9, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, P.S.; Parkin, R.K.; Kroh, E.M.; Fritz, B.R.; Wyman, S.K.; Pogosova-Agadjanyan, E.L.; Peterson, A.; Noteboom, J.; O’Briant, K.C.; Allen, A.; et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc. Natl. Acad. Sci. USA 2008, 105, 10513–10518. [Google Scholar] [CrossRef] [Green Version]
- Tiberio, P.; Callari, M.; Angeloni, V.; Daidone, M.G.; Appierto, V. Challenges in using circulating miRNAs as cancer biomarkers. BioMed Res. Int. 2015, 2015, 731479. [Google Scholar] [CrossRef] [Green Version]
- Joyce, D.P.; Kerin, M.J.; Dwyer, R.M. Exosome-encapsulated microRNAs as circulating biomarkers for breast cancer. Int. J. Cancer. 2016, 139, 1443–1448. [Google Scholar] [CrossRef]
- Mahmodul, H.S. Extracellular/Circulating MicroRNAs: Release Mechanisms, Functions and Challenges. Achiev. Life Sci. 2016, 10, 175–186. [Google Scholar]
- Valihrach, L.; Androvic, P.; Kubista, M. Circulating miRNA analysis for cancer diagnostics and therapy. Mol. Asp. Med. 2020, 72, 100825. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, B.; Tasso, R.; Piccioli, P.; Ciferri, M.C.; Quarto, R.; Del Mastro, L. Circulating miRNAs in Breast Cancer Diagnosis and Prognosis. Cancers 2022, 14, 2317. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.H.N.; Nguyen, T.T.N.; Nguyen, T.T.M.; Nguyen, L.H.M.; Huynh, L.H.; Phan, H.N.; Nguyen, H.T. Panels of circulating microRNAs as potential diagnostic biomarkers for breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2022, 196, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Liu, M.; Fan, Y.; Ma, F.; Xu, N.; Xu, B. Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer. Cancer Med. 2018, 7, 4420–4433. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Hirschfeld, M.; Berner, K.; Rücker, G.; Jäger, M.; Weiss, D.; Medl, M.; Nöthling, C.; Gassner, S.; Asberger, J.; et al. Circulating non-coding RNA-biomarker potential in neoadjuvant chemotherapy of triple negative breast cancer? Int. J. Oncol. 2020, 56, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Müller, V.; Gade, S.; Steinbach, B.; Loibl, S.; von Minckwitz, G.; Untch, M.; Schwedler, K.; Lübbe, K.; Schem, C.; Fasching, P.A. Changes in serum levels of miR-21, miR-210, and miR-373 in HER2-positive breast cancer patients undergoing neoadjuvant therapy: A translational research project within the Geparquinto trial. Breast Cancer Res. Treat. 2014, 147, 61–68. [Google Scholar] [CrossRef]
- Jung, E.J.; Santarpia, L.; Kim, J.; Esteva, F.J.; Moretti, E.; Buzdar, A.U.; Di Leo, A.; Le, X.F.; Bast, R.C., Jr.; Park, S.T.; et al. Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients. Cancer 2012, 118, 2603–2614. [Google Scholar] [CrossRef]
- Liu, B.; Su, F.; Chen, M.; Li, Y.; Qi, X.; Xiao, J.; Li, X.; Liu, X.; Liang, W.; Zhang, Y.; et al. Serum miR-21 and miR-125b as markers predicting neoadjuvant chemotherapy response and prognosis in stage II/III breast cancer. Hum. Pathol. 2017, 64, 44–52. [Google Scholar] [CrossRef]
- Yadav, P.; Mirza, M.; Nandi, K.; Jain, S.K.; Kaza, R.C.; Khurana, N.; Ray, P.C.; Saxena, A. Serum microRNA-21 expression as a prognostic and therapeutic biomarker for breast cancer patients. Tumour Biol. 2016, 37, 15275–15282. [Google Scholar] [CrossRef]
- Rodríguez-Martínez, A.; de Miguel-Pérez, D.; Ortega, F.G.; García-Puche, J.L.; Robles-Fernández, I.; Exposito, J.; Martorell-Marugan, J.; Carmona-Sáez, P.; Garrido-Navas, M.D.C.; Rolfo, C.; et al. Exosomal miRNA profile as complementary tool in the diagnostic and prediction of treatment response in localized breast cancer under neoadjuvant chemotherapy. Breast Cancer Res. 2019, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, G.; Dong, L.; Cheng, L.; Li, K.; Wang, Z.; Luo, H. Circulating MiR-125b as a marker predicting chemoresistance in breast cancer. PLoS ONE 2012, 7, e34210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, C.; Rack, B.; Müller, V.; Janni, W.; Pantel, K.; Schwarzenbach, H. Circulating microRNAs as blood-based markers for patients with primary and metastatic breast cancer. Breast Cancer Res. 2010, 12, R90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marques, M.M.; Evangelista, A.F.; Macedo, T.; Vieira, R.A.D.C.; Scapulatempo-Neto, C.; Reis, R.M.; Carvalho, A.L.; da Silva, I.D.C.G. Expression of tumor suppressors miR-195 and let-7a as potential biomarkers of invasive breast cancer. Clinics 2018, 73, e184. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, H.M.; Miller, N.; Kelly, R.; Newell, J.; Kerin, M.J. Systemic miRNA-195 Differentiates Breast Cancer from Other Malignancies and Is a Potential Biomarker for Detecting Noninvasive and Early Stage Disease. Oncologist 2010, 15, 673–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassem, N.M.; Makar, W.S.; Kassem, H.A.; Talima, S.; Tarek, M.; Hesham, H.; El-Desouky, M.A. Circulating miR-34a and miR-125b as Promising non Invasive Biomarkers in Egyptian Locally Advanced Breast Cancer Patients. Asian Pac. J. Cancer Prev. 2019, 20, 2749–2755. [Google Scholar] [CrossRef]
- Liu, B.; Su, F.; Li, Y.; Qi, X.; Liu, X.; Liang, W.; You, K.; Zhang, Y.; Zhang, J. Changes of serum miR34a expression during neoadjuvant chemotherapy predict the treatment response and prognosis in stage II/III breast cancer. Biomed. Pharmacother. 2017, 88, 911–917. [Google Scholar] [CrossRef]
- Frères, P.; Josse, C.; Bovy, N.; Boukerroucha, M.; Struman, I.; Bours, V.; Jerusalem, G. Neoadjuvant Chemotherapy in Breast Cancer Patients Induces miR-34a and miR-122 Expression. J. Cell. Physiol. 2015, 230, 473–481. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, H.; Li, C.; Xiang, Q.; Xu, L.; Liu, Q.; Pang, X.; Zhang, W.; Zhang, H.; Zhang, S.; et al. Circulating microRNAs as indicators in the prediction of neoadjuvant chemotherapy response in luminal B breast cancer. Thorac. Cancer 2021, 12, 3396–3406. [Google Scholar] [CrossRef]
- McGuire, A.; Casey, M.C.; Waldron, R.M.; Heneghan, H.; Kalinina, O.; Holian, E.; McDermott, A.; Lowery, A.J.; Newell, J.; Dwyer, R.M.; et al. Prospective Assessment of Systemic MicroRNAs as Markers of Response to Neoadjuvant Chemotherapy in Breast Cancer. Cancers 2020, 12, 1820. [Google Scholar] [CrossRef]
- Ibrahim, A.M.; Said, M.M.; Hilal, A.M.; Medhat, A.M.; Abd Elsalam, I.M. Candidate circulating microRNAs as potential diagnostic and predictive biomarkers for the monitoring of locally advanced breast cancer patients. Tumor Biol. 2020, 42, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Stevic, I.; Müller, V.; Weber, K.; Fasching, P.A.; Karn, T.; Marmé, F.; Schem, C.; Stickeler, E.; Denkert, C.; van Mackelenbergh, M.; et al. Specific microRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the GeparSixto trial. BMC Med. 2018, 16, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldasici, O.; Balacescu, L.; Cruceriu, D.; Roman, A.; Lisencu, C.; Fetica, B.; Visan, S.; Cismaru, A.; Jurj, A.; Barbu-Tudoran, L.; et al. Circulating Small EVs miRNAs as Predictors of Pathological Response to Neo-Adjuvant Therapy in Breast Cancer Patients. Int. J. Mol. Sci. 2022, 23, 12625. [Google Scholar] [CrossRef]
- Chekhun, V.F.; Borikun, T.V.; Bazas, V.M.; Andriiv, A.V.; Klyusov, O.M.; Yalovenko, T.M.; Lukianova, N.Y. Association of circulating miR-21, -205, and -182 with response of luminal breast cancers to neoadjuvant FAC and AC treatment. Exp. Oncol. 2020, 42, 162–166. [Google Scholar] [PubMed]
- Al-Khanbashi, M.; Caramuta, S.; Alajmi, A.M.; Al-Haddabi, I.; Al-Riyami, M.; Lui, W.O.; Al-Moundhri, M.S. Tissue and Serum miRNA Profile in Locally Advanced Breast Cancer (LABC) in Response to Neo-Adjuvant Chemotherapy (NAC) Treatment. PLoS ONE 2016, 11, e0152032. [Google Scholar] [CrossRef] [PubMed]
- Gezer, U.; Keskin, S.; Iğci, A.; Tükenmez, M.; Tiryakioğlu, D.; Cetinkaya, M.; Dişci, R.; Dalay, N.; Eralp, Y. Abundant circulating microRNAs in breast cancer patients fluctuate considerably during neoadjuvant chemotherapy. Oncol. Lett. 2014, 8, 845–848. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Su, F.; Lv, X.; Zhang, W.; Shang, X.; Zhang, Y.; Zhang, J. Serum microRNA-21 predicted treatment outcome and survival in HER2-positive breast cancer patients receiving neoadjuvant chemotherapy combined with trastuzumab. Cancer Chemother. Pharmacol. 2019, 84, 1039–1049. [Google Scholar] [CrossRef]
- Niedźwiecki, S.; Piekarski, J.; Szymańska, B.; Pawłowska, Z.; Jeziorski, A. Serum levels of circulating miRNA-21, miRNA-10b and miRNA-200c in triple-negative breast cancer patients. Ginekol. Pol. 2018, 89, 415–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, R.; Wu, J.; Jia, W.; Gong, C.; Yu, F.; Ren, Z.; Chen, K.; He, J.; Su, F. Plasma miR-221 as a predictive biomarker for chemoresistance in breast cancer patients who previously received neoadjuvant chemotherapy. Onkologie 2011, 34, 675–680. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.; Jin, X.; Wang, Z.; Wu, Y.; Zhao, D.; Chen, G.; Li, D.; Wang, X.; Cao, H.; et al. A circulating miRNA signature as a diagnostic biomarker for non-invasive early detection of breast cancer. Breast Cancer Res. Treat. 2015, 154, 423–434. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.L.; Dou, Y.C.; Wang, X.F.; Han, D.C.; Lv, Z.G.; Ge, S.L.; Zhang, Y.K. Serum microRNA-195 is down-regulated in breast cancer: A potential marker for the diagnosis of breast cancer. Mol. Biol. Rep. 2014, 41, 5913–5922. [Google Scholar] [CrossRef]
- Li, Q.; Liu, M.; Ma, F.; Luo, Y.; Cai, R.; Wang, L.; Xu, N.; Xu, B. Circulating miR-19a and miR-205 in serum may predict the sensitivity of luminal A subtype of breast cancer patients to neoadjuvant chemotherapy with epirubicin plus paclitaxel. PLoS ONE 2014, 9, e104870. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Somlo, G.; Yu, Y.; Palomares, M.R.; Li, A.X.; Zhou, W.; Chow, A.; Yen, Y.; Rossi, J.J.; Gao, H.; et al. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer. J. Transl. Med. 2012, 10, 42. [Google Scholar] [CrossRef] [Green Version]
- Cappelletti, V.; Appierto, V.; Tiberio, P.; Fina, E.; Callari, M.; Daidone, M.G. Circulating Biomarkers for Prediction of Treatment Response. J. Natl. Cancer Inst. Monogr. 2015, 2015, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Davey, M.G.; Casey, M.C.; McGuire, A.; Waldron, R.M.; Paganga, M.; Holian, E.; Newell, J.; Heneghan, H.M.; McDermott, A.M.; Keane, M.M.; et al. Evaluating the Role of Circulating MicroRNAs to Aid Therapeutic Decision Making for Neoadjuvant Chemotherapy in Breast Cancer: A Prospective, Multicenter Clinical Trial. Ann. Surg. 2022, 276, 905–912. [Google Scholar] [CrossRef]
- Todorova, V.K.; Byrum, S.D.; Gies, A.J.; Haynie, C.; Smith, H.; Reyna, N.S.; Makhoul, I. Circulating Exosomal microRNAs as Predictive Biomarkers of Neoadjuvant Chemotherapy Response in Breast Cancer. Curr. Oncol. 2022, 29, 613–630. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, C.; Cleator, S.; Kilburn, L.S.; Kim, S.B.; Ahn, S.H.; Beresford, M.; Gong, G.; Mansi, J.; Mallon, E.; Reed, S.; et al. NEOCENT: A randomised feasibility and translational study comparing neoadjuvant endocrine therapy with chemotherapy in ER-rich postmenopausal primary breast cancer. Breast Cancer Res. Treat. 2014, 148, 581–590. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, Y.; Wang, Y.; Peng, J.; Yuan, C.; Zhou, L.; Xu, S.; Lin, Y.; Du, Y.; Yang, F.; et al. Serum miR-222-3p as a Double-Edged Sword in Predicting Efficacy and Trastuzumab-Induced Cardiotoxicity for HER2-Positive Breast Cancer Patients Receiving Neoadjuvant Target Therapy. Front. Oncol. 2020, 10, 631. [Google Scholar] [CrossRef] [PubMed]
- Zografos, E.; Zagouri, F.; Kalapanida, D.; Zakopoulou, R.; Kyriazoglou, A.; Apostolidou, K.; Gazouli, M.; Dimopoulos, M.A. Prognostic role of microRNAs in breast cancer: A systematic review. Oncotarget 2019, 10, 7156–7178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Zhang, H.; Yu, J.; Xu, L.; Pang, X.; Xiang, Q.; Liu, Q.; Cui, Y. miRNAs as therapeutic predictors and prognostic biomarkers of neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2022, 194, 483–505. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, L.; Sun, S.; Wu, J.; Wang, Q. Quantitative measurement of serum microRNA-21 expression in relation to breast cancer metastasis in Chinese females. Ann. Lab. Med. 2015, 35, 226–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, N.; Lockwood, C.M. Pre-analytical variables in miRNA analysis. Clin. Biochem. 2013, 46, 861–868. [Google Scholar] [CrossRef] [PubMed]
- Zampetaki, A.; Mayr, M. Analytical challenges and technical limitations in assessing circulating miRNAs. Thromb. Haemost. 2012, 108, 592–598. [Google Scholar] [PubMed] [Green Version]
- Nelson, P.T.; Wang, W.X.; Wilfred, B.R.; Tang, G. Technical variables in high-throughput miRNA expression profiling: Much work remains to be done. Biochim. Biophys. Acta 2008, 1779, 758–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koshiol, J.; Wang, E.; Zhao, Y.; Marincola, F.; Landi, M.T. Strengths and limitations of laboratory procedures for microRNA detection. Cancer Epidemiol. Biomark. Prev. 2010, 19, 907–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sourvinou, I.S.; Markou, A.; Lianidou, E.S. Quantification of circulating miRNAs in plasma: Effect of preanalytical and analytical parameters on their isolation and stability. J. Mol. Diagn. 2013, 15, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, C.C.; Kroh, E.; Wood, B.; Arroyo, J.D.; Dougherty, K.J.; Miyaji, M.M.; Tait, J.F.; Tewari, M. Blood cell origin of circulating microRNAs: A cautionary note for cancer biomarker studies. Cancer Prev. Res. 2012, 5, 492–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, M.B.; Kao, S.C.; Edelman, J.J.; Armstrong, N.J.; Vallely, M.P.; van Zandwijk, N.; Reid, G. Haemolysis during sample preparation alters microRNA content of plasma. PLoS ONE 2011, 6, e24145. [Google Scholar] [CrossRef]
- Duttagupta, R.; Jiang, R.; Gollub, J.; Getts, R.C.; Jones, K.W. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS ONE 2011, 6, e20769. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.S.; Milosevic, D.; Reddi, H.V.; Grebe, S.K.; Algeciras-Schimnich, A. Analysis of circulating microRNA: Preanalytical and analytical challenges. Clin. Chem. 2011, 57, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Takizawa, S.; Matsuzaki, J.; Ochiya, T. Circulating microRNAs: Challenges with their use as liquid biopsy biomarkers. Cancer Biomark. 2022, 35, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Landoni, E.; Miceli, R.; Callari, M.; Tiberio, P.; Appierto, V.; Angeloni, V.; Mariani, L.; Daidone, M.G. Proposal of supervised data analysis strategy of plasma miRNAs from hybridisation array data with an application to assess hemolysis-related deregulation. BMC Bioinform. 2015, 16, 388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.H.; Yi, H.S.; Kim, Y.; Kroh, E.M.; Chien, J.W.; Eaton, K.D.; Goodman, M.T.; Tait, J.F.; Tewari, M.; Pritchard, C.C. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS ONE 2013, 8, e64795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, W.; Ma, J.; Wang, Y.; Biswal, S. Plasma miRNA as biomarkers for assessment of total-body radiation exposure dosimetry. PLoS ONE 2011, 6, e22988. [Google Scholar] [CrossRef] [PubMed]
- Reid, G.; Kirschner, M.B.; van Zandwijk, N. Circulating microRNAs: Association with disease and potential use as biomarkers. Crit. Rev. Oncol. Hematol. 2011, 80, 193–208. [Google Scholar] [CrossRef]
- Postnikov, P.V.; Efimova, Y.A.; Pronina, I.V. Circulating MicroRNAs as a New Class of Biomarkers of Physiological Reactions of the Organism to the Intake of Dietary Supplements and Drugs. MicroRNA 2022, 11, 25–35. [Google Scholar]
- Mori, M.A.; Ludwig, R.G.; Garcia-Martin, R.; Brandâo, B.B.; Kahn, C.R. Extracellular miRNAs: From biomarkers to mediators of physiology and disease. Cell. Metab. 2019, 30, 656–673. [Google Scholar] [CrossRef]
- Dluzen, D.F.; Noren Hooten, N.; De, S.; Wood, W.H.; Zhang, Y.; Becker, K.G.; Zonderman, A.B.; Tanaka, T.; Ferrucci, L.; Evans, M.K. Extracellular RNA profiles with human age. Aging Cell 2018, 17, e12785. [Google Scholar] [CrossRef]
- Zhao, H.; Shen, J.; Medico, L.; Wang, D.; Ambrosone, C.B.; Liu, S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE 2010, 5, e13735. [Google Scholar] [CrossRef]
- de Boer, H.C.; van Solingen, C.; Prins, J.; Duijs, J.M.; Huisman, M.V.; Rabelink, T.J.; van Zonneveld, A.J. Aspirin treatment hampers the use of plasma microRNA-126 as a biomarker for the progression of vascular disease. Eur. Heart J. 2013, 34, 3451–3457. [Google Scholar] [CrossRef]
- Badrnya, S.; Baumgartner, R.; Assinger, A. Smoking alters circulating plasma microvesicle pattern and microRNA signatures. Thromb. Haemost. 2014, 112, 128–136. [Google Scholar] [CrossRef] [Green Version]
- Witwer, K.W. XenomiRs and miRNA homeostasis in health and disease: Evidence that diet and dietary miRNAs directly and indirectly influence circulating miRNA profiles. RNA Biol. 2012, 9, 1147–1154. [Google Scholar] [CrossRef]
- Aoi, W.; Sakuma, K. Does regulation of skeletal muscle function involve circulating microRNAs? Front. Physiol. 2014, 5, 39. [Google Scholar] [CrossRef] [PubMed]
- Aoi, W.; Ichikawa, H.; Mune, K.; Tanimura, Y.; Mizushima, K.; Naito, Y.; Yoshikawa, T. Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front. Physiol. 2013, 4, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef] [PubMed]
- Prat, A.; Guarneri, V.; Pascual, T.; Brasó-Maristany, F.; Sanfeliu, E.; Paré, L.; Schettini, F.; Martínez, D.; Jares, P.; Griguolo, G.; et al. Development and validation of the new HER2DX assay for predicting pathological response and survival outcome in early-stage HER2-positive breast cancer. EBioMedicine 2022, 75, 103801. [Google Scholar] [CrossRef]
- Puppe, J.; Seifert, T.; Eichler, C.; Pilch, H.; Mallmann, P.; Malter, W. Genomic Signatures in Luminal Breast Cancer. Breast Care 2020, 15, 355–365. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benvenuti, C.; Tiberio, P.; Gaudio, M.; Jacobs, F.; Saltalamacchia, G.; Pindilli, S.; Zambelli, A.; Santoro, A.; De Sanctis, R. Potential Role of Circulating miRNAs for Breast Cancer Management in the Neoadjuvant Setting: A Road to Pave. Cancers 2023, 15, 1410. https://doi.org/10.3390/cancers15051410
Benvenuti C, Tiberio P, Gaudio M, Jacobs F, Saltalamacchia G, Pindilli S, Zambelli A, Santoro A, De Sanctis R. Potential Role of Circulating miRNAs for Breast Cancer Management in the Neoadjuvant Setting: A Road to Pave. Cancers. 2023; 15(5):1410. https://doi.org/10.3390/cancers15051410
Chicago/Turabian StyleBenvenuti, Chiara, Paola Tiberio, Mariangela Gaudio, Flavia Jacobs, Giuseppe Saltalamacchia, Sebastiano Pindilli, Alberto Zambelli, Armando Santoro, and Rita De Sanctis. 2023. "Potential Role of Circulating miRNAs for Breast Cancer Management in the Neoadjuvant Setting: A Road to Pave" Cancers 15, no. 5: 1410. https://doi.org/10.3390/cancers15051410
APA StyleBenvenuti, C., Tiberio, P., Gaudio, M., Jacobs, F., Saltalamacchia, G., Pindilli, S., Zambelli, A., Santoro, A., & De Sanctis, R. (2023). Potential Role of Circulating miRNAs for Breast Cancer Management in the Neoadjuvant Setting: A Road to Pave. Cancers, 15(5), 1410. https://doi.org/10.3390/cancers15051410