Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Bispecific T-Cell Engagers (BiTEs) in Cancer Treatment
2.1. BiTE Design and Mechanism of Action
2.2. Blinatumomab, the First BiTE Construct in Clinical Practice
2.3. BiTE Therapy Safety Considerations: Cytokine Release Syndrome and Neurotoxicity
2.4. Limitations of BiTE Therapies and Innovative Strategies to Enhance Efficacy
3. BiTEs in Solid Tumors
4. BiTEs in Advanced Prostate Cancer
4.1. BiTEs Targeting PSMA
4.1.1. Pasotuxizumab (BAY2010112 or AMG 212)
4.1.2. Acapatamab (AMG-160)
4.1.3. Novel Emerging Constructs Targeting PSMA
4.2. Other Potential TAAs in Prostate Cancer
4.2.1. Prostate Stem Cell Antigen (PSCA)
4.2.2. Six-Transmembrane Epithelial Antigen of the Prostate-1 (STEAP-1)
4.3. Neuroendocrine Prostate Cancer
4.4. Overcoming Hurdles to Successful Implementation of BiTE Therapy within the mCRPC Treatment Paradigm
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kelly, P.N. The Cancer Immunotherapy Revolution. Science 2018, 359, 1344–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldman, A.D.; Fritz, J.M.; Leonardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef] [PubMed]
- Oiseth, S.J.; Aziz, M.S. Cancer immunotherapy: A brief review of the history, possibilities, and challenges ahead. J. Cancer Metastasis Treat 2017, 3, 250–261. [Google Scholar] [CrossRef]
- Rosenberg, S.A. IL-2: The first effective immunotherapy for human cancer. J. Immunol. 2014, 192, 5451–5458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrombolas, D.; Frelinger, J.G. Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy. Expert Rev. Clin. Immunol. 2014, 10, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribas, A.; Wolchok, J.D. Cancer immunotherapy using checkpoint blockade. Science 2018, 359, 1350–1355. [Google Scholar] [CrossRef] [Green Version]
- Robert, C. A decade of immune-checkpoint inhibitors in cancer therapy. Nat. Commun. 2020, 11, 3801. [Google Scholar] [CrossRef]
- Antonarakis, E.S.; Shaukat, F.; Velho, P.I.; Kaur, H.; Shenderov, E.; Pardoll, D.M.; Lotan, T.L. Clinical Features and Therapeutic Outcomes in Men with Advanced Prostate Cancer and DNA Mismatch Repair Gene Mutations. Eur. Urol. 2019, 75, 378–382. [Google Scholar] [CrossRef]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Molina, J.C.; Shah, N.S. CAR T cells better than BiTEs. Blood Adv. 2021, 5, 602–606. [Google Scholar] [CrossRef]
- Subklewe, M. BiTEs better than CAR T cells. Blood Adv. 2021, 5, 607–612. [Google Scholar] [CrossRef]
- Sterner, R.C.; Sterner, R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021, 11, 69. [Google Scholar] [CrossRef]
- Fucà, G.; Spagnoletti, A.; Ambrosini, M.; de Braud, F.; Di Nicola, M. Immune cell engagers in solid tumors: Promises and challenges of the next generation immunotherapy. ESMO Open 2021, 6, 100046. [Google Scholar] [CrossRef] [PubMed]
- Nisonoff, A.; Wissler, F.C.; Lipman, L.N. Properties of the major component of a peptic digest of rabbit antibody. Science 1960, 132, 1770–1771. [Google Scholar] [CrossRef]
- Riethmuller, G. Symmetry breaking: Bispecific antibodies, the beginnings, and 50 years on. Cancer Immun. 2012, 12, 12. [Google Scholar] [PubMed]
- Weiner, G.J. Building better monoclonal antibody-based therapeutics. Nat. Rev. Cancer 2015, 15, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goebeler, M.E.; Bargou, R.C. T cell-engaging therapies—BiTEs and beyond. Nat. Rev. Clin. Oncol. 2020, 17, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Antonarelli, G.; Giugliano, F.; Corti, C.; Repetto, M.; Tarantino, P.; Curigliano, G. Research and Clinical Landscape of Bispecific Antibodies for the Treatment of Solid Malignancies. Pharmaceuticals 2021, 14, 884. [Google Scholar] [CrossRef] [PubMed]
- Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs 2017, 9, 182–212. [Google Scholar] [CrossRef] [Green Version]
- Smith-Garvin, J.E.; Koretzky, G.A.; Jordan, M.S. T cell activation. Annu. Rev. Immunol. 2009, 27, 591–619. [Google Scholar] [CrossRef]
- Huehls, A.M.; Coupet, T.A.; Sentman, C.L. Bispecific T-cell engagers for cancer immunotherapy. Immunol. Cell Biol. 2015, 93, 290–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Einsele, H.; Borghaei, H.; Orlowski, R.Z.; Subklewe, M.; Roboz, G.J.; Zugmaier, G.; Kufer, P.; Iskander, K.; Kantarjian, H.M. The BiTE (bispecific T-cell engager) platform: Development and future potential of a targeted immuno-oncology therapy across tumor types. Cancer 2020, 126, 3192–3201. [Google Scholar] [CrossRef] [PubMed]
- Mack, M.; Riethmüller, G.; Kufer, P. A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc. Natl. Acad. Sci. USA 1995, 92, 7021–7025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, H. Bispecific Antibodies and Antibody-Drug Conjugates for Cancer Therapy: Technological Considerations. Biomolecules 2020, 10, 360. [Google Scholar] [CrossRef] [Green Version]
- Offner, S.; Hofmeister, R.; Romaniuk, A.; Kufer, P.; Baeuerle, P.A. Induction of regular cytolytic T cell synapses by bispecific single-chain antibody constructs on MHC class I-negative tumor cells. Mol. Immunol. 2006, 43, 763–771. [Google Scholar] [CrossRef]
- Bargou, R.; Leo, E.; Zugmaier, G.; Klinger, M.; Goebeler, M.; Knop, S.; Noppeney, R.; Viardot, A.; Hess, G.; Schuler, M.; et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science 2008, 321, 974–977. [Google Scholar] [CrossRef]
- Wolf, E.; Hofmeister, R.; Kufer, P.; Schlereth, B.; Baeuerle, P.A. BiTEs: Bispecific antibody constructs with unique anti-tumor activity. Drug Discov. Today 2005, 10, 1237–1244. [Google Scholar] [CrossRef]
- Ross, S.L.; Sherman, M.; McElroy, P.L.; Lofgren, J.A.; Moody, G.; Baeuerle, P.A.; Coxon, A.; Arvedson, T. Bispecific T cell engager (BiTE®) antibody constructs can mediate bystander tumor cell killing. PLoS ONE 2017, 12, e0183390. [Google Scholar] [CrossRef] [Green Version]
- Slaney, C.Y.; Wang, P.; Darcy, P.K.; Kershaw, M.H. CARs versus BiTEs: A Comparison between T Cell-Redirection Strategies for Cancer Treatment. Cancer Discov. 2018, 8, 924–934. [Google Scholar] [CrossRef] [Green Version]
- EMA Blinatumomab. Available online: https://www.ema.europa.eu/en/documents/product-information/blincyto-epar-product-information_en.pdf (accessed on 15 November 2022).
- FDA Blinatumomab. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125557s013lbl.pdf (accessed on 15 November 2022).
- Kantarjian, H.; Stein, A.; Gökbuget, N.; Fielding, A.K.; Schuh, A.C.; Ribera, J.M.; Wei, A.; Dombret, H.; Foà, R.; Bassan, R.; et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2017, 376, 836–847. [Google Scholar] [CrossRef]
- Martinelli, G.; Boissel, N.; Chevallier, P.; Ottmann, O.; Gökbuget, N.; Rambaldi, A.; Ritchie, E.K.; Papayannidis, C.; Tuglus, C.A.; Morris, J.D.; et al. Long-term follow-up of blinatumomab in patients with relapsed/refractory Philadelphia chromosome-positive B-cell precursor acute lymphoblastic leukaemia: Final analysis of ALCANTARA study. Eur. J. Cancer 2021, 146, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Gökbuget, N.; Dombret, H.; Bonifacio, M.; Reichle, A.; Graux, C.; Faul, C.; Diedrich, H.; Topp, M.S.; Brüggemann, M.; Horst, H.A.; et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018, 131, 1522–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topp, M.S.; Gökbuget, N.; Stein, A.S.; Zugmaier, G.; O’Brien, S.; Bargou, R.C.; Dombret, H.; Fielding, A.K.; Heffner, L.; Larson, R.A.; et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: A multicentre, single-arm, phase 2 study. Lancet Oncol. 2015, 16, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.W.; Gardner, R.; Porter, D.L.; Louis, C.U.; Ahmed, N.; Jensen, M.; Grupp, S.A.; Mackall, C.L. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014, 124, 188–195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimabukuro-Vornhagen, A.; Gödel, P.; Subklewe, M.; Stemmler, H.J.; Schlößer, H.A.; Schlaak, M.; Kochanek, M.; Böll, B.; von Bergwelt-Baildon, M.S. Cytokine release syndrome. J. Immunother. Cancer 2018, 6, 56. [Google Scholar] [CrossRef] [Green Version]
- Maus, M.V.; Alexander, S.; Bishop, M.R.; Brudno, J.N.; Callahan, C.; Davila, M.L.; Diamonte, C.; Dietrich, J.; Fitzgerald, J.C.; Frigault, M.J. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J. Immunother. Cancer 2020, 8, e001511. [Google Scholar] [CrossRef]
- Morris, E.C.; Neelapu, S.S.; Giavridis, T.; Sadelain, M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat. Rev. Immunol. 2022, 22, 85–96. [Google Scholar] [CrossRef]
- Klinger, M.; Zugmaier, G.; Nägele, V.; Goebeler, M.E.; Brandl, C.; Stelljes, M.; Lassmann, H.; von Stackelberg, A.; Bargou, R.C.; Kufer, P. Adhesion of T Cells to Endothelial Cells Facilitates Blinatumomab-Associated Neurologic Adverse Events. Cancer Res. 2020, 80, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.S.; Schiller, G.; Benjamin, R.; Jia, C.; Zhang, A.; Zhu, M.; Zimmerman, Z.; Topp, M.S. Neurologic adverse events in patients with relapsed/refractory acute lymphoblastic leukemia treated with blinatumomab: Management and mitigating factors. Ann. Hematol. 2019, 98, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Er Saw, P.; Song, E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol. Immunol. 2020, 17, 451–461. [Google Scholar] [CrossRef]
- Lorenczewski, G.; Friedrich, M.; Kischel, R.; Dahlhoff, C.; Anlahr, J.; Balazs, M.; Rock, D.; Boyle, M.; Goldstein, R.; Coxon, A.; et al. Generation of a half-life extended anti-CD19 BiTE® antibody construct compatible with once-weekly dosing for treatment of CD19-positive malignancies. Blood 2017, 130, 2815. [Google Scholar] [CrossRef]
- Sánchez, P.M.; Gordon, P.; Schwartz, S.; Rossi, G.; Huguet, F.; Hernández-Rivas, J.M.; Kadu, P.; Wong, H.L.; Markovic, A.; Katlinskaya, Y.; et al. Safety and Efficacy of Subcutaneous (SC) Blinatumomab for the Treatment of Adults with Relapsed or Refractory B Cell Precursor Acute Lymphoblastic Leukemia (R/R B-ALL). Blood 2021, 138 (Suppl. 1), 2303. [Google Scholar] [CrossRef]
- Edeline, J.; Houot, R.; Marabelle, A.; Alcantara, M. CAR-T cells and BiTEs in solid tumors: Challenges and perspectives. J. Hematol. Oncol. 2021, 14, 65. [Google Scholar] [CrossRef]
- Braig, F.; Brandt, A.; Goebeler, M.; Tony, H.P.; Kurze, A.K.; Nollau, P.; Bumm, T.; Böttcher, S.; Bargou, R.C.; Binder, M. Resistance to anti- CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017, 129, 100–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Middelburg, J.; Kemper, K.; Engelberts, P.; Labrijn, A.F.; Schuurman, J.; van Hall, T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers 2021, 13, 287. [Google Scholar] [CrossRef]
- Binnewies, M.; Roberts, E.W.; Kersten, K.; Chan, V.; Fearon, D.F.; Merad, M.; Coussens, L.M.; Gabrilovich, D.I.; Ostrand-Rosenberg, S.; Hedrick, C.C.; et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550. [Google Scholar] [CrossRef]
- Belmontes, B.; Sawant, D.V.; Zhong, W.; Tan, H.; Kaul, A.; Aeffner, F.; O’Brien, S.A.; Chun, M.; Noubade, R.; Eng, J.; et al. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors. Sci. Transl. Med. 2021, 13, eabd1524. [Google Scholar] [CrossRef]
- Arvedson, T.; Bailis, J.M.; Britten, C.D.; Klinger, M.; Nagorsen, N.; Coxon, A.; Egen, J.G.; Martin, F. Targeting Solid Tumors with Bispecific T Cell Engager Immune Therapy. Annu. Rev. Cancer Biol. 2022, 6, 17–34. [Google Scholar] [CrossRef]
- Heiss, M.M.; Murawa, P.; Koralewski, P.; Kutarska, E.; Kolesnik, O.O.; Ivanchenko, V.V.; Dudnichenko, A.S.; Aleknaviciene, B.; Razbadauskas, A.; Gore, M.; et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial. Int. J. Cancer 2010, 127, 2209–2221. [Google Scholar] [CrossRef] [Green Version]
- Chelius, D.; Ruf, P.; Gruber, P.; Plöscher, M.; Liedtke, R.; Gansberger, E.; Hess, J.; Wasiliu, M.; Lindhofer, H. Structural and functional characterization of the trifunctional antibody catumaxomab. MAbs 2010, 2, 309–319. [Google Scholar] [CrossRef] [Green Version]
- Linke, R.; Klein, A.; Seimetz, D. Catumaxomab: Clinical development and future directions. MAbs 2010, 2, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Kebenko, M.; Goebeler, M.E.; Wolf, M.; Hasenburg, A.; Seggewiss-Bernhardt, R.; Ritter, B.; Rautenberg, B.; Atanackovic, D.; Kratzer, A.; Rottman, J.B.; et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology 2018, 7, e1450710. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Melero, I.; Ros, W.; Argiles, G.; Marabelle, A.; Rodriguez-Ruiz, M.E.; Albanell, J.; Calvo, E.; Moreno, V.; Cleary, J.M. Phase Ia and Ib studies of the novel carcinoembryonic antigen (CEA) T-cell bispecific (CEA CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients with metastatic colorectal cancer (mCRC). J. Clin. Oncol. 2017, 35, 3002. [Google Scholar] [CrossRef]
- El-Rayes, B.; Hendifar, A.E.; Pant, S.; Wilky, B.A.; Reilley, M.; Benson, A.B.; Chow, W.A.; Konda, B.; Starr, J.; Ahn, D.H.; et al. Preliminary Safety, Pharmacodynamic, and Antitumor Activity of Tidutamab, an SSTR2 x CD3 Bispecific Antibody, in Subjects with Advanced Neuroendocrine Tumors. In Proceedings of the 2021 NANETS Annual Symposium, Virtual, 3–6 November 2021. Abstract 109. [Google Scholar]
- Pietzner, K.; Vergote, I.; Santoro, A.; Marme, F.; Rosenberg, P.; Friccius-Quecke, H.; Sehouli, J. Results of a phase II clinical trial to evaluate a re-challenge of intraperitoneal catumaxomab for treatment of malignant ascites (MA) due to epithelial cancer (SECIMAS). J. Clin. Oncol. 2013, 31, 5582. [Google Scholar] [CrossRef]
- Berek, J.S.; Edwards, R.P.; Parker, L.P.; DeMars, L.R.; Herzog, T.J.; Lentz, S.S.; Morris, R.T.; Akerley, W.L.; Holloway, R.W.; Method, M.W.; et al. Catumaxomab for the treatment of malignant ascites in patients with chemotherapy-refractory ovarian cancer: A phase II study. Int. J. Gynecol. Cancer 2014, 24, 1583–1589. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.; Oaknin, A.; Arranz, J.A.; García-Martínez, E.; Herrero, A.; Casado, A.; De Juan, A.; Guerra, E.; Polo, S.H.; Santaballa, A.; et al. Phase II trial of intraperitoneal (IP) administration of catumaxomab (C) as consolidation therapy for patients (pts) with relapsed epithelial ovarian cancer (OC) in second or third complete remission: GEICO 1001 study. J. Clin. Oncol. 2014, 32, 5528. [Google Scholar] [CrossRef]
- Baumann, K.; Pfisterer, J.; Wimberger, P.; Burchardi, N.; Kurzeder, C.; du Bois, A.; Loibl, S.; Sehouli, J.; Huober, J.; Schmalfeldt, B.; et al. Intraperitoneal treatment with the trifunctional bispecific antibody Catumaxomab in patients with platinum-resistant epithelial ovarian cancer: A phase IIa study of the AGO Study Group. Gynecol. Oncol. 2011, 123, 27–32. [Google Scholar] [CrossRef]
- Lordick, F.; Kunzmann, V.; Trojan, J.; Daum, S.; Schenk, M.; Kullmann, F.; Schroll, S.; Behringer, D.M.; Stahl, M.; Al-Batran, S.-E.; et al. Intraperitoneal immunotherapy with the bispecific anti-EpCAM x anti-CD3 directed antibody catumaxomab for patients with peritoneal carcinomatosis from gastric cancer: Final results of a randomized phase II AIO trial. J. Clin. Oncol. 2018, 4, 4. [Google Scholar] [CrossRef]
- Pishvaian, M.J.; Morse, M.; McDevitt, J.T.; Ren, S.; Robbie, G.; Ryan, P.C.; Soukharev, S.; Bao, H.; Denlinger, C.S. Phase 1 dose escalation study of MEDI-565, a bispecific T-cell engager that targets human carcinoembryonic antigen (CEA), in patients with advanced gastrointestinal (GI) adenocarcinomas. J. Clin. Oncol. 2016, 34, 320. [Google Scholar] [CrossRef]
- Moek, K.L.; Fiedler, W.M.; von Einem, J.C.; Verheul, H.M.; Seufferlein, T.; de Groot, D.J.; Heinemann, V.; Kebenko, M.; Menke-van der Houven van Oordt, C.M.; Ettrich, T.J.; et al. Phase I study of AMG 211/MEDI-565 administered as continuous intravenous infusion (cIV) for relapsed/refractory gastrointestinal (GI) adenocarcinoma. Ann. Oncol. 2018, 29, VIII139–VIII140. [Google Scholar] [CrossRef]
- Johnson, M.L.; Solomon, B.J.; Awad, M.M.; Cho, B.C.; Gainor, J.F.; Goldberg, S.B.; Keam, B.; Lee, D.H.; Huang, C.; Helms, H.-J.; et al. MORPHEUS: A phase Ib/II multi-trial platform evaluating the safety and efficacy of cancer immunotherapy (CIT)-based combinations in patients (pts) with non-small cell lung cancer (NSCLC). J. Clin. Oncol. 2018, 36, TPS9105. [Google Scholar] [CrossRef]
- Lum, L.G.; Thakur, A.; Choi, M.; Deol, A.; Kondadasula, V.; Schalk, D.; Fields, K.; Dufrense, M.; Philip, P.; Dyson, G.; et al. Clinical and immune responses to anti-CD3 x anti-EGFR bispecific antibody armed activated T cells (EGFR BATs) in pancreatic cancer patients. Oncoimmunology 2020, 9, 1773201. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, M.; Balana, C.; Van Linde, M.E.; Sayehli, C.; Fiedler, W.M.; Wermke, M.; Massard, C.; Ang, A.; Kast, J.; Stienen, S.; et al. Novel anti-EGFRvIII bispecific T cell engager (BiTE) antibody construct in glioblastoma (GBM): Trial in progress of AMG 596 in patients with recurrent or newly diagnosed disease. J. Clin. Oncol. 2019, 37, TPS2071. [Google Scholar] [CrossRef]
- Powderly, J.D.; Hurwitz, H.; Ryan, D.P.; Laheru, D.A.; Pandya, N.B.; Lohr, J.; Moore, P.A.; Bonvini, E.; Wigginton, J.M.; Crocenzi, T.S. A phase 1, first-in-human, open label, dose escalation study of MGD007, a humanized gpA33 x CD3 DART molecule, in patients with relapsed/refractory metastatic colorectal carcinoma. J. Clin. Oncol. 2016, 34, TPS3628. [Google Scholar] [CrossRef]
- Owonikoko, T.K.; Champiat, S.; Johnson, M.L.; Govindan, R.; Hiroki Izumi, H.; Lai, V.W.; Borghaei, H.; Boyer, M.J.; Boosman, R.J.; Hummel, H.-D.; et al. Updated results from a phase 1 study of AMG 757, a half-life extended bispecific T-cell engager (BiTE) immuno-oncology therapy against delta-like ligand 3 (DLL3), in small cell lung cancer (SCLC). J. Clin. Oncol. 2021, 39, 8510. [Google Scholar] [CrossRef]
- Winer, I.S.; Shields, A.F.; Yeku, O.O.; Liu, J.F.; Peterman, M.J.; Yoo, S.Y.; Lowy, I.; Yama-Dang, N.A.; Goncalves, P.H.; Kroog, G. A phase I/II, multicenter, open-label study of REGN5668 (mucin [MUC]16 x CD28 bispecific antibody [bsAb]) with cemiplimab (programmed death [PD]-1 Ab) or REGN4018 (MUC16 x CD3 bsAb) in recurrent ovarian cancer (rOVCA). J. Clin. Oncol. 2021, 39, TPS5602. [Google Scholar] [CrossRef]
- EMA Tebentafusp. Available online: https://www.ema.europa.eu/en/documents/assessment-report/kimmtrak-epar-public-assessment-report_en.pdf (accessed on 26 November 2022).
- FDA Tebentafusp. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2022/761228s000lbl.pdf (accessed on 26 November 2022).
- Nathan, P.; Hassel, J.C.; Rutkowski, P.; Baurain, J.F.; Butler, M.O.; Schlaak, M.; Sullivan, R.J.; Ochsenreither, S.; Dummer, R.; Kirkwood, J.M.; et al. Overall Survival Benefit with Tebentafusp in Metastatic Uveal Melanoma. N. Engl. J. Med. 2021, 385, 1196–1206. [Google Scholar] [CrossRef]
- Madan, R.A.; Antonarakis, E.S.; Drake, C.G.; Fong, L.; Yu, E.Y.; McNeel, D.G.; Lin, D.W.; Chang, N.N.; Sheikh, N.A.; Gulley, J.L. Putting the Pieces Together: Completing the Mechanism of Action Jigsaw for Sipuleucel-T. J. Natl. Cancer Inst. 2020, 112, 562–573. [Google Scholar] [CrossRef] [Green Version]
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold Tumors: A Therapeutic Challenge for Immunotherapy. Front. Immunol. 2019, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Mehra, N.; Seed, G.; Lambros, M.; Sharp, A.; Fontes, M.S.; Crespo, M.; Sumanasuriva, S.; Yuan, W.; Bovsen, G.; Riisnaes, R.; et al. Myeloid-derived suppressor cells (MDSCs) in metastatic castration-resistant prostate cancer (CRPC) patients (PTS). Ann. Oncol. 2016, 27, vi257. [Google Scholar] [CrossRef]
- Kfoury, Y.; Baryawno, N.; Severe, N.; Mei, S.; Gustafsson, K.; Hirz, T.; Brouse, T.; Scadden, E.W.; Igolkina, A.A.; Kokkaliaris, K.; et al. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 2021, 39, 1464–1478. [Google Scholar] [CrossRef]
- Guan, X.; Polesso, F.; Wang, C.; Sehrawat, A.; Hawkins, R.M.; Murray, S.E.; Thomas, G.V.; Caruso, B.; Thompson, R.F.; Wood, M.A.; et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 2022, 606, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Dorff, T.B.; Narayan, V.; Forman, S.J.; Zang, P.D.; Fraietta, J.A.; June, C.H.; Haas, N.B.; Priceman, S.J. Novel Redirected T–Cell Immunotherapies for Advanced Prostate Cancer. Clin. Cancer Res. 2022, 28, 576–584. [Google Scholar] [CrossRef]
- Hummel, H.D.; Kufer, P.; Grüllich, C.; Seggewiss-Bernhardt, R.; Deschler-Baier, B.; Chatterjee, M.; Goebeler, M.E.; Miller, K.; de Santis, M.; Loidl, W.; et al. Pasotuxizumab, a BiTE® immune therapy for castration-resistant prostate cancer: Phase I, dose-escalation study findings. Immunotherapy 2021, 13, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Hummel, H.D.; Kufer, P.; Grullich, C.; Deschler-Baier, B.; Chatterjee, M.; Goebeler, M.E.; Miller, K.; De Santis, M.; Loidl, W.C.; Buck, A.; et al. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T cell Engager (BiTE) immunotherapy for metastatic castration resistant prostate cancer (mCRPC). J. Clin. Oncol. 2019, 37, 5034. [Google Scholar] [CrossRef]
- Paweletz, K.L.; Li, S.; Bailis, J.M.; Juan, G. Combination of AMG 160, a PSMA x CD3 half-life extended bispecific T-cell engager (HLE BiTE) immune therapy, with an anti-PD-1 antibody in prostate cancer (PCa). J. Clin. Oncol. 2020, 38, 155. [Google Scholar] [CrossRef]
- Tran, B.; Horvath, L.; Dorff, T.; Retting, T.; Lolkema, M.P.; Machiels, J.; Rottey, S.; Autio, K.; Greil, R.; Adra, N.; et al. 6090-Results from a phase I study of AMG 160, a half-life extended (HLE), PSMA-targeted, bispecific T-cell engager (BiTE) immune therapy for metastatic castration-resistant prostate cancer (mCRPC). Ann. Oncol. 2020, 31, S507–S549. [Google Scholar] [CrossRef]
- Subudhi, S.K.; Siddiqui, B.A.; Maly, J.J.; Nandagopal, L.; Lam, E.T.; Whang, Y.E.; Minocha, M.; Gupta, V.; Penny, X.; Cooner, F.; et al. Safety and efficacy of AMG 160, a half-life extended BiTE immune therapy targeting prostate-specific membrane antigen (PSMA), and other therapies for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39, TPS5088. [Google Scholar] [CrossRef]
- Hernandez-Hoyos, G.; Sewell, T.; Bader, R.; Bannink, J.; Chenault, R.A.; Daugherty, M.; Dasovich, M.; Fang, H.; Gottschalk, R.; Kumer, J.; et al. MOR209/ES414, a Novel Bispecific Antibody Targeting PSMA for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Mol. Cancer 2016, 15, 2155–2165. [Google Scholar] [CrossRef] [Green Version]
- De Bono, J.S.; Fong, L.; Beer, T.M.; Gao, X.; Geynisman, D.M.; Burris, H.A.; Strauss, J.F.; Courtney, K.D.; Quinn, D.I.; VanderWeele, D.J.; et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39, 5013. [Google Scholar] [CrossRef]
- Lim, E.A.; Schweizer, M.T.; Chi, K.N.; Aggarwal, R.R.; Agarwal, N.; Gulley, J.L.; Attiyeh, E.F.; Greger, J.; Wu, S.; Jaiprasart, P.; et al. Safety and preliminary clinical activity of JNJ-63898081 (JNJ-081), a PSMA and CD3 bispecific antibody, for the treatment of metastatic castrate-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022, 40, 279. [Google Scholar] [CrossRef]
- Heitmann, J.S.; Walz, J.S.; Pflügler, M.; Marconato, M.; Tegeler, C.M.; Reusch, J.; Labrenz, J.; Schlenk, R.; Jung, G.; Salih, H. Abstract CT141: CC-1, a bispecific PSMAxCD3 antibody for treatment of prostate carcinoma: Results of the ongoing phase I dose escalation trial. Cancer Res. 2022, 82, CT141. [Google Scholar] [CrossRef]
- Markowski, M.C.; Kilari, D.; Eisenberger, M.A.; McKay, R.R.; Dreicer, R.; Trikha, M.; Heath, E.I.; Li, J.; Garzone, P.D.; Young, T.S. Phase I study of CCW702, a bispecific small molecule-antibody conjugate targeting PSMA and CD3 in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2021, 39, TPS5094. [Google Scholar] [CrossRef]
- Kelly, W.K.; Thanigaimani, P.; Sun, F.; Seebach, F.A.; Lowy, I.; Sandigursky, S.; Miller, E. A phase 1/2 study of REGN4336, a PSMAxCD3 bispecific antibody, alone and in combination with cemiplimab in patients with metastatic castration-resistant prostate cancer. J. Clin. Oncol. 2022, 40, TPS5105. [Google Scholar] [CrossRef]
- Buelow, B.; Dalvi, P.; Dang, K.; Patel, A.; Johal, K.; Pham, D.; Panchal, S.; Liu, Y.; Fong, L.; Sartor, A.O.; et al. TNB585.001: A multicenter, phase 1, open-label, dose-escalation and expansion study of tnb-585, a bispecific T-cell engager targeting PSMA in subjects with metastatic castrate resistant prostate cancer. J. Clin. Oncol. 2021, 39, TPS5092. [Google Scholar] [CrossRef]
- Danila, D.C.; Waterhouse, D.M.; Appleman, L.J.; Pook, D.W.; Matsubara, N.; Dorff, T.B.; Lee, J.; Armstrong, A.J.; Kim, M.; Horvath, L.; et al. A phase 1 study of AMG 509 in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2022, 40, TPS5101. [Google Scholar] [CrossRef]
- Aggarwal, R.R.; Aparicio, A.; Heidenreich, A.; Sandhu, S.K.; Zhang, Y.; Salvati, M.; Shetty, A.; Sadraei, N.H. Phase 1b study of AMG 757, a half-life extended bispecific T-cell engager (HLE BiTEimmune-oncology therapy) targeting DLL3, in de novo or treatment emergent neuroendocrine prostate cancer (NEPC). J. Clin. Oncol. 2021, 39, TPS5100. [Google Scholar] [CrossRef]
- Patel, M.; Lum, L.G.; Deol, A.; Thakur, A.; Heath, E.I.; Chen, W.; Dobson, K.; Fontana, J.A.; Vaishampayan, U.N. Phase II trial of a novel immunotherapy combination of pembrolizumab and HER2 bi-armed activated T cells (BATs) in metastatic castrate resistant prostate cancer. J. Clin. Oncol. 2020, 38, 97. [Google Scholar] [CrossRef]
- Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res. 1997, 3, 81–85. [Google Scholar]
- Mhawech-Fauceglia, P.; Zhang, S.; Terracciano, L.; Sauter, G.; Chadhuri, A.; Herrmann, F.R.; Penetrante, R. Prostate-specific membrane antigen (PSMA) protein expression in normal and neoplastic tissues and its sensitivity and specificity in prostate adenocarcinoma: An immunohistochemical study using mutiple tumour tissue microarray technique. Histopathology 2007, 50, 472–483. [Google Scholar] [CrossRef]
- Chang, S.S.; Reuter, V.E.; Heston, W.D.; Bander, N.H.; Grauer, L.S.; Gaudin, P.B. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999, 59, 3192–3198. [Google Scholar] [PubMed]
- Van de Wiele, C.; Sathekge, M.; de Spiegeleer, B.; De Jonghe, P.J.; Debruyne, P.R.; Borms, M.; Beels, L.; Maes, A. PSMA expression on neovasculature of solid tumors. Histol. Histopathol. 2020, 35, 919–927. [Google Scholar] [CrossRef]
- Perera, M.; Papa, N.; Christidis, D.; Wetherell, D.; Hofman, M.S.; Murphy, D.G.; Bolton, D.; Lawrentschuk, N. Sensitivity, Specificity, and Predictors of Positive (68) Ga-Prostate-specific Membrane Antigen Positron Emission Tomography in Advanced Prostate Cancer: A Systematic Review and Meta-analysis. Eur. Urol. 2016, 70, 926–937. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Rowe, S.P.; Gorin, M.A.; Saperstein, L.; Pouliot, F.; Josephson, D.; Wong, J.Y.C.; Pantel, A.R.; Cho, S.Y.; Gage, K.L.; et al. Diagnostic Performance of 18F-DCFPyL-PET/CT in Men with Biochemically Recurrent Prostate Cancer: Results from the CONDOR Phase III, Multicenter Study. Clin. Cancer Res. 2021, 27, 3674–3682. [Google Scholar] [CrossRef] [PubMed]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177-PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Buteau, J.P.; Martin, A.J.; Emmett, L.; Iravani, A.; Sandhu, S.; Joshua, A.M.; Francis, R.J.; Zhang, A.Y.; Scott, A.M.; Lee, S.T.; et al. PSMA and FDG-PET as predictive and prognostic biomarkers in patients given [177Lu]Lu-PSMA-617 versus cabazitaxel for metastatic castration-resistant prostate cancer (TheraP): A biomarker analysis from a randomised, open-label, phase 2 trial. Lancet Oncol. 2022, 23, 1389–1397. [Google Scholar] [CrossRef]
- Bailis, J.; Deegen, P.; Thomas, O.; Bogner, P.; Wahl, J.; Liao, M.; Li, S.; Matthes, K.; Nägele, V.; Rau, D.; et al. Preclinical evaluation of AMG 160, a next-generation bispecific T cell engager (BiTE) targeting the prostate-specific membrane antigen PSMA for metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2019, 37, 301. [Google Scholar] [CrossRef]
- Tran, B.; Horvath, L.; Dorff, T.B.; Greil, R.; Machiels, J.-P.H.; Roncolato, F.; Scott, T.; Tagawa, S.T.; Shariat, S.F.; Salvati, M.; et al. Phase I study of AMG 160, a half-life extended bispecific T-cell engager (HLE BiTE) immune therapy targeting prostatespecific membrane antigen (PSMA), in patients with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2020, 38, TPS261. [Google Scholar] [CrossRef]
- Lemon, B.; Aaron, W.; Austin, R.; Baeuerle, P.; Barath, M.; Jones, A.; Jones, S.D.; Kwant, K.; Law, C.L.; Muchnik, A.; et al. Abstract 1773: HPN424, a half-life extended, PSMA/CD3-specific TriTAC for the treatment of metastatic prostate cancer. Cancer Res. 2018, 78, 1773. [Google Scholar] [CrossRef]
- Raff, A.B.; Gray, A.; Kast, W.M. Prostate stem cell antigen: A prospective therapeutic and diagnostic target. Cancer Lett. 2009, 277, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saeki, N.; Gu, J.; Yoshida, T.; Wu, X. Prostate stem cell antigen: A Jekyll and Hyde molecule? Clin. Cancer Res. 2010, 16, 3533–3538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, Z.; Thomas, G.; Yamashiro, J.; Shintaku, I.P.; Dorey, F.; Raitano, A.; Witte, O.N.; Said, J.W.; Loda, M.; Reiter, R.E. Prostate stem cell antigen (PSCA) expression increases with high gleason score, advanced stage and bone metastasis in prostate cancer. Oncogene 2000, 19, 1288–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burnell, S.; Spencer-Harty, S.; Howarth, S.; Bodger, O.; Kynaston, H.; Morgan, C.; Doak, S.H. Utilisation of the STEAP protein family in a diagnostic setting may provide a more comprehensive prognosis of prostate cancer. PLoS ONE 2019, 14, e0220456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaffuto, E.; Pompe, R.; Zanaty, M.; Bondarenko, H.D.; Leyh-Bannurah, S.R.; Moschini, M.; Dell’Oglio, P.; Gandaglia, G.; Fossati, N.; Stabile, A.; et al. Contemporary Incidence and Cancer Control Outcomes of Primary Neuroendocrine Prostate Cancer: A SEER Database Analysis. Clin. Genitourin. Cancer 2017, 15, e793–e800. [Google Scholar] [CrossRef]
- Bluemn, E.G.; Coleman, I.M.; Lucas, J.M.; Coleman, R.T.; Hernandez-Lopez, S.; Tharakan, R.; Bianchi-Frias, D.; Dumpit, R.F.; Kaipainen, A.; Corella, A.N.; et al. Androgen Receptor Pathway-Independent Prostate Cancer Is Sustained through FGF Signaling. Cancer Cell 2017, 32, 474–489.e6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netto, G.J.; Amin, M.B.; Kench, J.G.; Kench, J.G.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Cree, I.A.; Grill, A.J.; Hartmann, A.; et al. Chapter 4: Tumours of the Prostate. In WHO Classification of Tumours, 5th ed.; Srigley, J.R., Amin, M.B., Rubin, M.A., Tsuzuki, T., Eds.; International Agency for Research on Cancer: Lyon, France, 2022; Volume 8, ISBN 978-92-832-4512-4. Available online: https://tumourclassification.iarc.who.int/chapters/36 (accessed on 3 December 2022).
- Kench, J.G.; Amin, M.B.; Berney, D.M.; Compérat, E.M.; Cree, I.A.; Gill, A.J.; Hartmann, A.; Menon, S.; Moch, H.; Netto, G.J.; et al. WHO Classification of Tumours fifth edition: Evolving issues in the classification, diagnosis, and prognostication of prostate cancer. Histopathology 2022, 81, 447–458. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Ci, X.; Choi, S.Y.C.; Crea, F.; Lin, D.; Wang, Y. Molecular events in neuroendocrine prostate cancer development. Nat. Rev. Urol. 2021, 18, 581–596. [Google Scholar] [CrossRef]
- Puca, L.; Gavyert, K.; Sailer, V.; Conteduca, V.; Dardenne, E.; Sigouros, M.; Isse, K.; Kearney, M.; Vosoughi, A.; Fernandez, L.; et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci. Transl. Med. 2019, 11, eaav0891. [Google Scholar] [CrossRef]
- Han, M.; Li, F.; Zhang, Y.; Dai, P.; He, J.; Li, Y.; Zhu, Y.; Zheng, J.; Huang, H.; Bai, F.; et al. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell 2022, 40, 1306–1323.e8. [Google Scholar] [CrossRef]
- Kauer, J.; Hörner, S.; Osburg, L.; Müller, S.; Märklin, M.; Heitmann, J.S.; Zekri, L.; Rammensee, H.G.; Salih, H.R.; Jung, G. Tocilizumab, but not dexamethasone, prevents CRS without affecting antitumor activity of bispecific antibodies. J. Immunother. Cancer 2020, 8, e000621. [Google Scholar] [CrossRef]
- Kamat, N.V.; Yu, E.Y.; Lee, J.K. BiTE-ing into Prostate Cancer with Bispecific T-cell Engagers. Clin. Cancer Res. 2021, 27, 2675–2677. [Google Scholar] [CrossRef] [PubMed]
NCT | Phase | Drug (Format) | Target | Indication | Status | Results | Ref. |
---|---|---|---|---|---|---|---|
EpCAM | |||||||
NCT00836654 | 2/3 | Catumaxomab or Removab® (Triomab®) | EpCAM xCD3 | Malignant ascites and EpCAM-positive tumors | Completed | N = 258 (129 ovarian cancer) Puncture-free survival: 46 vs. 11 days AE: fever (60%); abdominal pain (43%) | [51] |
NCT01065246 | 2 | Catumaxomab | EpCAM xCD3 | Malignant ascites due to epithelial carcinoma | Completed | N = 8 (rechallenge of intraperitoneal catumaxomab) Puncture-free survival: 47.5 days | [57] |
NCT00326885 | 2 | Catumaxomab | EpCAM xCD3 | Malignant ascites ovarian cancer | Completed | N = 32 Puncture-free survival: 29.5 days Ascites symptoms improved | [58] |
NCT01246440 | 2 | Catumaxomab | EpCAM xCD3 | Ovarian cancer | Completed | N = 46 (consolidation therapy) Median duration treatment: 13 days Grade 3–4 AE in 29 pts (74.4%) Treatment interruption in 4 (10.2%) | [59] |
NCT00189345 | 2 | Catumaxomab | EpCAM xCD3 | Platinum refractory ovarian, fallopian tube, and peritoneal neoplasms | Completed | N = 46 (low dose 23 + high dose 22) No difference AE low vs. high Stable disease in 2 pts (low) and 5 pts (high) | [60] |
NCT01815528 | 2 | Catumaxomab | EpCAM xCD3 | Recurrent epithelial ovarian cancer | Completed | Not reported | |
NCT00563836 | 2 | Catumaxomab | EpCAM xCD3 | Ovarian cancer | Completed | Not reported | |
NCT04222114 | 3 | Catumaxomab | EpCAM xCD3 | Gastric cancer | Recruiting | ||
NCT01504256 | 2 | Catumaxomab + FLOT | EpCAM xCD3 | Gastric adenocarcinoma with peritoneal carcinomatosis | Completed | N = 31 (FLOT + catumaxomab 15 pts (A) vs. FLOT alone 16 pts (B)) Complete remission of carcinomatosis: 27% (A) vs. 19% (B) (p = 0.69). Severe AE: fever (23%), abdominal pain (31%), elevated liver enzymes (31%). Median PFS: 6.7 (A) vs. 5.4 months (B) (p = 0.71). | [61] |
NCT00464893 | 2 | Catumaxomab | EpCAM xCD3 | Gastric cancer | Completed | Not reported | |
NCT00352833 | 2 | Catumaxomab | EpCAM xCD3 | Gastric cancer | Completed | Not reported | |
NCT04501744 | 1 | M701 | EpCAM xCD3 | Malignant ascites | Recruiting | ||
NCT00635596 | 1 | Solitomab or MT110 or AMG110 | EpCAM xCD3 | Relapsed/refractory solid tumors | Completed | N = 65 (35 colorectal; 10 ovarian; 8 gastric; 6 NSCLC; 3 SCLC; 3 mCRPC) 95% Grade ≥ 3 AE, mainly diarrhea, elevated liver parameters and lipase | [54] |
CEA | |||||||
NCT02324257 NCT02650713 | 1 | RO6958688 or RG7802 + atezolizumab | CEA xCD3 | CEA-positive tumors | Completed | N = 36 pts in monotherapy + 10 pts in combination Grade ≥ 3 AEs: infusion related reaction (16.3%) and diarrhea (5%) | [55] |
NCT01284231 | 1 | AMG211 or MEDI-565 | CEA xCD3 | Gastrointestinal adenocarcinomas | Completed | N = 39 (28 colorectal, 6 pancreatic, 5 other) Grade ≥ 3 AE in 5 pts (hypoxia n = 2, diarrhea, and CRS) Stable disease in 11 pts (28%) | [62] |
NCT02291614 | 1 | AMG211 or MEDI-565 | CEA xCD3 | Gastrointestinal adenocarcinomas | Completed | Terminated due to high immunogenicity at high doses of >3.2 mg | [63] |
NCT03337698 | 1/2 | RO6958688 + atezolizumab | CEA xCD3 | NSCLC | Recruiting | [64] | |
EGFR | |||||||
NCT02620865 | 1/2 | EGFR Bi-armed activated T-cells (BATs) | EGFR xCD3 | Advanced pancreatic cancer | Completed | N = 7 No dose-limiting toxicities (DLTs), Median time to progression: 7 months | [65] |
NCT03269526 | 1/2 | EGFR BATs | EGFR xCD3 | Advanced pancreatic cancer | Recruiting | ||
NCT03296696 | 1 | AMG596 | EGFRvIII xCD3 | Glioblastoma | Completed | Not reported | [66] |
NCT03344250 | 1 | EGFR BATs + Temozolomide+ RT | EGFR xCD3 | Glioblastoma | Active, not recruiting | ||
gpA33 | |||||||
NCT02248805 | 1 | MGD007 (DART®) | gpA33 xCD3 | Metastatic CRC | Completed | Not reported | [67] |
NCT03531632 | 1/2 | MGD007 + MGA012 | gpA33 xCD3 | Metastatic CRC | Completed | Not reported | |
HER2 | |||||||
NCT04501770 | 1 | M802 | HER2 xCD3 | HER2-positive advanced solid tumors | Not yet recruiting | ||
NCT03448042 | 1 | Runimotamab + trastuzumab + tocilizumab | HER2 xCD3 | Locally advanced or metastatic HER2-expressing solid tumors | Recruiting | ||
NCT03272334 | 1/2 | HER2 BATs + Pembrolizumab | HER2 xCD3 | Metastatic breast cancer | Recruiting | ||
Other | |||||||
NCT03411915 | 1 | Tidutamab (XmAb18087) | SSTR2 xCD3 | NET and GIST | Completed | N = 41 Grade ≥ 3 AE: lymphopenia (29.3%): transaminase and GGT increase (19.5%); hypophosphatemia (9.8%) and lipase increase (7.3%) | [56] |
NCT04590781 | 1/2 | Tidutamab (XmAb18087) + Pembrolizumab | SSTR2 xCD3 | Advanced Merkel cell carcinoma and ES-SCLC | Completed | Not reported | |
NCT04424641 | 1/2 | GEN1044 (DuoBody®) | 5T4 xCD3 | Solid tumors | Completed | Results on submission clinicaltrials.gov (accessed on 1 November 2022) | |
NCT05180474 | 1 | GEN1047 (DuoBody®) | B7H4 xCD3 | Solid tumors | Recruiting | ||
NCT04083599 | 1/2 | GEN1042 | 4-1BB xCD40 | Solid tumors | Recruiting | ||
NCT04496674 | 1 | CC-1 + Tocilizumab | PSMA xCD3 | NSCLC | Recruiting | ||
NCT04260191 | 1 | AMG910 | CLDN18.2 xCD3 | Gastric and gastroesophageal junction adenocarcinoma | Active, not recruiting | ||
NCT03146637 | 2 | Activated CIK | MUC1/CEA/EpCAM/GPC3xCD3 | Advanced liver cancer | Recruiting | ||
NCT03319940 | 1 | AMG757 (HLE) + Pembrolizumab | DLL3 | SCLC | Recruiting | [68] | |
NCT04471727 | 1/2 | HPN328 (TriTAC) | DLL3 | SCLC | Recruiting | ||
NCT04590326 | 1/2 | REGN4018 or REGN5668 + Cemiplimab | MUC16 xCD3 or MUC16 xCD28 | Ovarian cancer, fallopian tube cancer, peritoneal cancer | Recruiting | [69] | |
NCT03564340 | 1/2 | REGN4018 + Cemiplimab | MUC16 xCD3 | Ovarian cancer, fallopian tube cancer, peritoneal cancer | Recruiting | ||
NCT04117958 | 1 | AMG199 (HLE) | MUC17 xCD3 | MUC17-positive solid tumors | Recruiting |
NCT | Phase | Drug (Format) | Target | Indication | Status | Results | Ref. |
---|---|---|---|---|---|---|---|
NCT01723475 | 1 | Pasotuxizumab, BAY2010112 or AMG212 | PSMA xCD3 | mCRPC | Completed | N = 47 (31 sc + 16 iv) AE Grade 3: 53% MTD not reached due to early stop >50% PSA decline in 9 sc + 3 iv pts | [79,80] |
NCT03792841 | 1 | Acapatamab or AMG160 (HLE) + Pembrolizumab | PSMA xCD3 | mCRPC | Active, not recruiting | N = 43 (monotherapy) Grade 3 CRS: 25.6% MTD not yet reached >50% PSA decline in 12/35 (34.3%) | [81,82] |
NCT03792841 | 1 | Acapatamab + Enzalutamide + Abiraterone + AMG 404 | PSMA xCD3 | mCRPC | Active, not recruiting | [83] | |
NCT02262910 | 1 | ES414 or MOR209 or APVO411 (ADAPTIR®) | PSMA xCD3 | mCRPC | Completed | Discontinued due to high immunogenicity of the construct | [84] |
NCT03577028 | 1/2 | HPN424 (TriTAC®) | PSMA xCD3 | mCRPC | Unknown | N = 80 Grade 3 CRS: 4% MTD not yet reached PSA decline in 13/63 pts (21%), including 3 PSA50, 2 PSA30 responses. | [85] |
NCT03926013 | 1 | JNJ-63898081 or JNJ-081 (DuoBody®) | PSMA xCD3 | mCRPC | Completed | N = 39 (27 sc + 12 iv) All pts ≥ 1 treatment-emergent AE No grade ≥ 3 CRS >50% PSA decline in 2 pts | [86] |
NCT04104607 | 1 | CC-1 (IgGsc) | PSMA xCD3 | mCRPC | Recruiting | [87] | |
NCT04077021 | 1 | CCW702 (DUPA) | PSMA xCD3 | mCRPC | Recruiting | [88] | |
NCT05125016 | 1/2 | REGN4336 + cemiplimab | PSMA xCD3 | mCRPC | Recruiting | [89] | |
NCT04740034 | 1 | AMG340 or TNB-585 | PSMA xCD3 | mCRPC | Recruiting | [90] | |
NCT05369000 | 1 | LAVA-1207 (Gammabody®) | PSMA xVγ9Vδ2 | mCRPC | Recruiting | ||
NCT03927573 | 1 | GEM3PSCA | PSCA xCD3 | PC, NSCLC, Renal cancer | Recruiting | ||
NCT04221542 | 1 | AMG 509 (XmAb®) + Enzalutamide + Abiraterone | STEAP1 xCD3 | mCRPC | Recruiting | [91] | |
NCT04702737 | 1b | Tarlatamab or AMG757 (HLE) | DLL3 | NEPC | Recruiting | [92] | |
NCT03406858 | 2 | HER2Bi-armed activated T cells + Pembrolizumab | HER2B xCD3 | mCRPC | Recruiting | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simão, D.C.; Zarrabi, K.K.; Mendes, J.L.; Luz, R.; Garcia, J.A.; Kelly, W.K.; Barata, P.C. Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer. Cancers 2023, 15, 1412. https://doi.org/10.3390/cancers15051412
Simão DC, Zarrabi KK, Mendes JL, Luz R, Garcia JA, Kelly WK, Barata PC. Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer. Cancers. 2023; 15(5):1412. https://doi.org/10.3390/cancers15051412
Chicago/Turabian StyleSimão, Diana C., Kevin K. Zarrabi, José L. Mendes, Ricardo Luz, Jorge A. Garcia, William K. Kelly, and Pedro C. Barata. 2023. "Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer" Cancers 15, no. 5: 1412. https://doi.org/10.3390/cancers15051412
APA StyleSimão, D. C., Zarrabi, K. K., Mendes, J. L., Luz, R., Garcia, J. A., Kelly, W. K., & Barata, P. C. (2023). Bispecific T-Cell Engagers Therapies in Solid Tumors: Focusing on Prostate Cancer. Cancers, 15(5), 1412. https://doi.org/10.3390/cancers15051412