High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Tissue Microarray Construction
2.3. Immunohistochemistry and In Situ Hybridization
2.4. Digitization/Immunohistochemistry Scoring
2.5. Statistics
3. Results
3.1. Patient Characteristics
3.2. Expression of SMAD4, RUNX3, IRS-1, and IRS-2 and Their Correlations with Clinicopathological Variables
3.3. Correlations between Investigated Biomarkers and CD3, CD8, miR-17-5p, miR-20a-5p and miR-126
3.4. Univariate Analyses
3.5. Multivariate Analyses
3.6. Co-Expressions
4. Discussion
5. Future Works
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Selven, H.; Busund, L.T.R.; Andersen, S.; Bremnes, R.M.; Kilvær, T.K. High expression of microRNA-126 relates to favorable prognosis for colon cancer patients. Sci. Rep. 2021, 11, 9592. [Google Scholar] [CrossRef] [PubMed]
- Selven, H.; Andersen, S.; Pedersen, M.I.; Lombardi, A.P.G.; Busund, L.T.R.; Kilvær, T.K. High expression of miR-17-5p and miR-20a-5p predicts favorable disease-specific survival in stage I-III colon cancer. Sci. Rep. 2022, 12, 7080. [Google Scholar] [CrossRef]
- Shaw, L.M. The insulin receptor substrate (IRS) proteins. Cell Cycle 2011, 10, 1750–1756. [Google Scholar] [CrossRef] [PubMed]
- Levanon, D.; Groner, Y. Structure and regulated expression of mammalian RUNX genes. Oncogene 2004, 23, 4211–4219. [Google Scholar] [CrossRef]
- McCarthy, A.J.; Chetty, R. Smad4/DPC4. J. Clin. Pathol. 2018, 71, 661–664. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Feng, X.; Liu, Y.l.; Ye, S.c.; Wang, H.; Tan, W.k.; Tian, T.; Qiu, Y.m.; Luo, H.s. Down-Regulation of miR-126 Is Associated with Colorectal Cancer Cells Proliferation, Migration and Invasion by Targeting IRS-1 via the AKT and ERK1/2 Signaling Pathways. PLoS ONE 2013, 8, e81203. [Google Scholar] [CrossRef]
- Ito, Y.; Miyazono, K. RUNX transcription factors as key targets of TGF-β superfamily signaling. Curr. Opin. Genet. Dev. 2003, 13, 43–47. [Google Scholar] [CrossRef]
- Zhao, M.; Mishra, L.; Deng, C.X. The role of TGF-β/SMAD4 signaling in cancer. Int. J. Biol. Sci. 2018, 14, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Hennige, A.; Lammers, R.; Arlt, D.; Höppner, W.; Strack, V.; Niederfellner, G.; Seif, F.; Häring, H.U.; Kellerer, M. Ret oncogene signal transduction via a IRS-2/PI 3-kinase/PKB and a SHC/Grb-2 dependent pathway: Possible implication for transforming activity in NIH3T3 cells. Mol. Cell. Endocrinol. 2000, 167, 69–76. [Google Scholar] [CrossRef]
- Isaksson-Mettävainio, M.; Palmqvist, R.; Forssell, J.; Stenling, R.; Oberg, A. SMAD4/DPC4 Expression and Prognosis in Human Colorectal Cancer. Anticancer Res. 2006, 26, 507–510. [Google Scholar] [PubMed]
- Mu, W.P.; Wang, J.; Niu, Q.; Shi, N.; Lian, H.F. Clinical significance and association of RUNX3 hypermethylation frequency with colorectal cancer: A meta-analysis. OncoTargets Ther. 2014, 7, 1237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Li, D.; Zhu, Z.; Pei, D. A functional polymorphism within the distal promoter of RUNX3 confers risk of colorectal cancer. Int. J. Biol. Markers 2022, 37, 40–46. [Google Scholar] [CrossRef]
- Sesti, G.; Federici, M.; Hribal, M.L.; Lauro, D.; Sbraccia, P.; Lauro, R. Defects of the insulin receptor substrate (IRS) system in human metabolic disorders. FASEB J. 2001, 15, 2099–2111. [Google Scholar] [CrossRef] [PubMed]
- Dearth, R.K.; Cui, X.; Kim, H.J.; Hadsell, D.L.; Lee, A.V. Oncogenic Transformation by the Signaling Adaptor Proteins Insulin Receptor Substrate (IRS)-1 and IRS-2. Cell Cycle 2007, 6, 705–713. [Google Scholar] [CrossRef]
- Nehrbass, D.; Klimek, F.; Bannasch, P. Overexpression of insulin receptor substrate-1 emerges early in hepatocarcinogenesis and elicits preneoplastic hepatic glycogenosis. Am. J. Pathol. 1998, 152, 341–345. [Google Scholar]
- Boissan, M.; Beurel, E.; Wendum, D.; Rey, C.; Lécluse, Y.; Housset, C.; Lacombe, M.L.; Desbois-Mouthon, C. Overexpression of Insulin Receptor Substrate-2 in Human and Murine Hepatocellular Carcinoma. Am. J. Pathol. 2005, 167, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, U.; Funatomi, H.; Kornmann, M.; Beger, H.G.; Korc, M. Increased Expression of Insulin Receptor Substrate-1 in Human Pancreatic Cancer. Biochem. Biophys. Res. Commun. 1996, 220, 886–890. [Google Scholar] [CrossRef]
- Kornmann, M.; Maruyama, H.; Bergmann, U.; Tangvoranuntakul, P.; Beger, H.G.; White, M.F.; Korc, M. Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res. 1998, 58, 4250–4254. [Google Scholar]
- Chang, Q.; Li, Y.; White, M.F.; Fletcher, J.A.; Xiao, S. Constitutive activation of insulin receptor substrate 1 is a frequent event in human tumors: Therapeutic implications. Cancer Res. 2002, 62, 6035–6038. [Google Scholar]
- Ito, Y. RUNX genes in development and cancer: Regulation of viral gene expression and the discovery of RUNX family genes. Adv. Cancer Res. 2008, 99, 33–76. [Google Scholar]
- Ragnarsson, G.; Eiriksdottir, G.; Johannsdottir, J.T.; Jonasson, J.G.; Egilsson, V.; Ingvarsson, S. Loss of heterozygosity at chromosome 1p in different solid human tumours: Association with survival. Brit. J. Cancer 1999, 79, 1468–1474. [Google Scholar] [CrossRef]
- Soong, R.; Shah, N.; Peh, B.K.; Chong, P.Y.; Ng, S.S.; Zeps, N.; Joseph, D.; Salto-Tellez, M.; Iacopetta, B.; Ito, Y. The expression of RUNX3 in colorectal cancer is associated with disease stage and patient outcome. Brit. J. Cancer 2009, 100, 676–679. [Google Scholar] [CrossRef]
- Seo, W.; Nomura, A.; Taniuchi, I. The Roles of RUNX Proteins in Lymphocyte Function and Anti-Tumor Immunity. Cells 2022, 11, 3116. [Google Scholar] [CrossRef] [PubMed]
- Reis, B.S.; Rogoz, A.; Costa-Pinto, F.A.; Taniuchi, I.; Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nat. Immunol. 2013, 14, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Massagué, J. Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef]
- Javelaud, D.; Mauviel, A. Crosstalk mechanisms between the mitogen-activated protein kinase pathways and Smad signaling downstream of TGF-β: Implications for carcinogenesis. Oncogene 2005, 24, 5742–5750. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.K.; Pardoux, C.; Hall, M.C.; Lee, P.S.; Warburton, D.; Qing, J.; Smith, S.M.; Derynck, R. TGF-β activates Erk MAP kinase signalling through direct phosphorylation of ShcA. EMBO J. 2007, 26, 3957–3967. [Google Scholar] [CrossRef]
- Bakin, A.V.; Tomlinson, A.K.; Bhowmick, N.A.; Moses, H.L.; Arteaga, C.L. Phosphatidylinositol 3-Kinase Function Is Required for Transforming Growth Factor β-mediated Epithelial to Mesenchymal Transition and Cell Migration. J. Biol. Chem. 2000, 275, 36803–36810. [Google Scholar] [CrossRef]
- Hahn, S.A.; Schutte, M.; Shamsul Hoque, A.T.M.; Moskaluk, C.A.; da Costa, L.T.; Rozenblum, E.; Weinstein, C.L.; Fischer, A.; Yeo, C.J.; Hruban, R.H.; et al. DPC4, A Candidate Tumor Suppressor Gene at Human Chromosome 18q21.1. Science 1996, 271, 350–353. [Google Scholar] [CrossRef]
- Xu, X.; Kobayashi, S.; Qiao, W.; Li, C.; Xiao, C.; Radaeva, S.; Stiles, B.; Wang, R.H.; Ohara, N.; Yoshino, T.; et al. Induction of intrahepatic cholangiocellular carcinoma by liver-specific disruption of Smad4 and Pten in mice. J. Clin. Investig. 2006, 116, 1843–1852. [Google Scholar] [CrossRef] [PubMed]
- Miyaki, M.; Kuroki, T. Role of Smad4 (DPC4) inactivation in human cancer. Biochem. Biophys. Res. Commun. 2003, 306, 799–804. [Google Scholar] [CrossRef]
- Bremnes, R.M.; Veve, R.; Gabrielson, E.; Hirsch, F.R.; Baron, A.; Bemis, L.; Gemmill, R.M.; Drabkin, H.A.; Franklin, W.A. High-Throughput Tissue Microarray Analysis Used to Evaluate Biology and Prognostic Significance of the E-Cadherin Pathway in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2002, 20, 2417–2428. [Google Scholar] [CrossRef]
- Bankhead, P.; Loughrey, M.B.; Fernández, J.A.; Dombrowski, Y.; McArt, D.G.; Dunne, P.D.; McQuaid, S.; Gray, R.T.; Murray, L.J.; Coleman, H.G.; et al. QuPath: Open source software for digital pathology image analysis. Sci. Rep. 2017, 7, 16878. [Google Scholar] [CrossRef] [PubMed]
- Graham, S.; Jahanifar, M.; Azam, A.; Nimir, M.; Tsang, Y.W.; Dodd, K.; Hero, E.; Sahota, H.; Tank, A.; Benes, K.; et al. Lizard: A Large-Scale Dataset for Colonic Nuclear Instance Segmentation and Classification. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada, 11–17 October 2021; pp. 684–693. [Google Scholar] [CrossRef]
- Weigert, M.; Schmidt, U. Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist. In Proceedings of the 2022 IEEE International Symposium on Biomedical Imaging Challenges (ISBIC), Kolkata, India, 28–31 March 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Schmidt, U.; Weigert, M.; Broaddus, C.; Myers, G. Cell Detection with Star-Convex Polygons. In Proceedings of the Medical Image Computing and Computer Assisted Intervention—MICCAI 2018, Granada, Spain, 16–20 September 2018; Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G., Eds.; Springer: Cham, Switzerland, 2018; pp. 265–273. [Google Scholar]
- Cheng, D.; Zhao, S.; Tang, H.; Zhang, D.; Sun, H.; Yu, F.; Jiang, W.; Yue, B.; Wang, J.; Zhang, M.; et al. MicroRNA-20a-5p promotes colorectal cancer invasion and metastasis by downregulating Smad4. Oncotarget 2016, 7, 45199–45213. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Liu, Y.; Wang, T.; Li, B.; Zhang, S. MiR-17-5p promotes cellular proliferation and invasiveness by targeting RUNX3 in gastric cancer. Biomed. Pharmacother. 2020, 128, 110246. [Google Scholar] [CrossRef]
- Shin, E.J.; Kim, H.J.; Son, M.W.; Ahn, T.S.; Lee, H.Y.; Lim, D.R.; Bae, S.B.; Jeon, S.; Kim, H.; Jeong, D.; et al. Epigenetic inactivation of RUNX3 in colorectal cancer. Ann. Surg. Treat. Res. 2018, 94, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Ogino, S.; Meyerhardt, J.A.; Kawasaki, T.; Clark, J.W.; Ryan, D.P.; Kulke, M.H.; Enzinger, P.C.; Wolpin, B.M.; Loda, M.; Fuchs, C.S. CpG island methylation, response to combination chemotherapy, and patient survival in advanced microsatellite stable colorectal carcinoma. Virchows Arch. 2007, 450, 529–537. [Google Scholar] [CrossRef]
- Weisenberger, D.J.; Siegmund, K.D.; Campan, M.; Young, J.; Long, T.I.; Faasse, M.A.; Kang, G.H.; Widschwendter, M.; Weener, D.; Buchanan, D.; et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat. Genet. 2006, 38, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Nordgaard, O.; Kørner, H.; Oltedal, S.; Smaaland, R.; Søreide, J.A.; Søreide, K. Molecular Subtypes in Stage II-III Colon Cancer Defined by Genomic Instability: Early Recurrence-Risk Associated with a High Copy-Number Variation and Loss of RUNX3 and CDKN2A. PLoS ONE 2015, 10, e0122391. [Google Scholar] [CrossRef]
- Kim, B.R.; Na, Y.J.; Kim, J.L.; Jeong, Y.A.; Park, S.H.; Jo, M.J.; Jeong, S.; Kang, S.; Oh, S.C.; Lee, D.H. RUNX3 suppresses metastasis and stemness by inhibiting Hedgehog signaling in colorectal cancer. Cell Death Differ. 2019, 27, 676–694. [Google Scholar] [CrossRef]
- Sugai, M.; Aoki, K.; Osato, M.; Nambu, Y.; Ito, K.; Taketo, M.M.; Shimizu, A. Runx3 Is Required for Full Activation of Regulatory T Cells To Prevent Colitis-Associated Tumor Formation. J. Immunol. 2011, 186, 6515–6520. [Google Scholar] [CrossRef] [PubMed]
- Garrity-Park, M.M.; Loftus, E.V.; Bryant, S.C.; Smyrk, T.C. A Biomarker Panel to Detect Synchronous Neoplasm in Non-neoplastic Surveillance Biopsies from Patients with Ulcerative Colitis. Inflamm. Bowel Dis. 2016, 22, 1568–1574. [Google Scholar] [CrossRef]
- Voorneveld, P.W.; Jacobs, R.J.; Kodach, L.L.; Hardwick, J.C. A Meta-Analysis of SMAD4 Immunohistochemistry as a Prognostic Marker in Colorectal Cancer. Transl. Oncol. 2015, 8, 18–24. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Kopetz, S.; Panettieri, E.; Hwang, H.; Wang, X.; Cao, H.S.T.; Tzeng, C.W.D.; Chun, Y.S.; Aloia, T.A.; Vauthey, J.N. Improved Survival over Time After Resection of Colorectal Liver Metastases and Clinical Impact of Multigene Alteration Testing in Patients with Metastatic Colorectal Cancer. J. Gastrointest. Surg. 2021, 26, 583–593. [Google Scholar] [CrossRef]
- Bacman, D.; Merkel, S.; Croner, R.; Papadopoulos, T.; Brueckl, W.; Dimmler, A. TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: A retrospective study. BMC Cancer 2007, 7, 156. [Google Scholar] [CrossRef]
- Mesker, W.E.; Liefers, G.J.; Junggeburt, J.M.C.; van Pelt, G.W.; Alberici, P.; Kuppen, P.J.K.; Miranda, N.F.; van Leeuwen, K.A.M.; Morreau, H.; Szuhai, K.; et al. Presence of a High Amount of Stroma and Downregulation of SMAD4 Predict for Worse Survival for Stage I–II Colon Cancer Patients. Anal. Cell. Pathol. 2009, 31, 169–178. [Google Scholar] [CrossRef]
- Kim, B.G.; Li, C.; Qiao, W.; Mamura, M.; Kasperczak, B.; Anver, M.; Wolfraim, L.; Hong, S.; Mushinski, E.; Potter, M.; et al. Smad4 signalling in T cells is required for suppression of gastrointestinal cancer. Nature 2006, 441, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Slattery, M.L.; Samowitz, W.; Curtin, K.; Ma, K.N.; Hoffman, M.; Caan, B.; Neuhausen, S. Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 2004, 13, 1206–1214. [Google Scholar] [CrossRef]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. JNCI J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef] [PubMed]
Tumor | Stromal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
N(%) | 5 Year | Median | HR(95% CI) | p | N(%) | 5 Year | Median | HR(95% CI) | p | |
C-IRS1 | 0.380 | <0.001 | ||||||||
Low | 212(47) | 76 | NA | 1 | 88(19) | 66 | 182 | 1 | ||
High | 211(47) | 81 | NA | 0.84(0.57–1.24) | 335(74) | 82 | NA | 0.5(0.31–0.82) | ||
Missing | 29(6) | 29(6) | ||||||||
C-IRS2 | 0.068 | 0.220 | ||||||||
Low | 202(45) | 74 | NA | 1 | 203(45) | 74 | NA | 1 | ||
High | 202(45) | 84 | NA | 0.69(0.46–1.03) | 201(44) | 84 | NA | 0.78(0.52–1.16) | ||
Missing | 48(11) | 48(11) | ||||||||
N-SMAD4 | 0.004 | 0.150 | ||||||||
Low | 106(23) | 70 | NA | 1 | 209(46) | 76 | NA | 1 | ||
High | 311(69) | 83 | NA | 0.55(0.35–0.88) | 208(46) | 83 | NA | 0.74(0.5–1.11) | ||
Missing | 35(8) | 35(8) | ||||||||
C-SMAD4 | <0.001 | <0.001 | ||||||||
Low | 100(22) | 67 | NA | 1 | 152(34) | 71 | NA | 1 | ||
High | 317(70) | 83 | NA | 0.48(0.29–0.77) | 265(59) | 85 | NA | 0.49(0.32–0.74) | ||
Missing | 35(8) | 35(8) | ||||||||
N-RUNX3 | 0.002 | <0.001 | ||||||||
Low | 115(25) | 69 | NA | 1 | 268(59) | 74 | NA | 1 | ||
High | 304(67) | 83 | NA | 0.53(0.34–0.83) | 151(33) | 88 | NA | 0.37(0.25–0.56) | ||
Missing | 33(7) | 33(7) | ||||||||
C-RUNX3 | 0.009 | <0.001 | ||||||||
Low | 68(15) | 67 | NA | 1 | 106(23) | 63 | 182 | 1 | ||
High | 351(78) | 81 | NA | 0.55(0.32–0.95) | 313(69) | 84 | NA | 0.36(0.23–0.58) | ||
Missing | 33(7) | 33(7) |
Tumor | Stromal | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T1 | T2 | S1 | S2 | S3 | ||||||
HR(95% CI) | p | HR(95% CI) | p | HR(95% CI) | p | HR(95% CI) | p | HR(95% CI) | p | |
Age | 1.03(1.01–1.05) | 0.005 | 1.02(1–1.05) | 0.0141 | 1.02(1.01–1.04) | 0.013 | 1.02(1–1.04) | 0.020 | 1.02(1–1.05) | 0.018 |
pTNM | ||||||||||
pTNM I | 1 | 1 | 1 | 1 | 1 | |||||
pTNM II | 1.7(0.66–4.42) | 0.274 | 2.32(0.89–6.02) | 0.083 | 1.89(0.73–4.9) | 0.188 | 1.75(0.67–4.54) | 0.252 | 2.17(0.83–5.63) | 0.113 |
pTNM III | 5.24(2.07–13.28) | <0.001 | 6.71(2.65–16.99) | <0.001 | 6.16(2.44–15.56) | <0.001 | 5.39(2.13–13.67) | <0.001 | 5.65(2.23–14.32) | <0.001 |
Margins | ||||||||||
0 mm | 1 | 1 | 1 | 1 | 1 | |||||
<1 mm | 0.58(0.26–1.27) | 0.174 | 0.55(0.25–1.21) | 0.135 | 0.62(0.28–1.38) | 0.238 | 0.7(0.32–1.54) | 0.375 | 0.49(0.22–1.07) | 0.075 |
1–2 mm | 0.17(0.05–0.54) | 0.003 | 0.16(0.05–0.58) | 0.005 | 0.27(0.1–0.78) | 0.015 | 0.24(0.08–0.75) | 0.014 | 0.16(0.05–0.57) | 0.005 |
2–10 mm | 0.33(0.16–0.69) | 0.003 | 0.45(0.22–0.92) | 0.028 | 0.45(0.22–0.92) | 0.028 | 0.43(0.21–0.89) | 0.024 | 0.39(0.19–0.79) | 0.009 |
10–50 mm | 0.44(0.22–0.86) | 0.017 | 0.64(0.33–1.24) | 0.185 | 0.55(0.28–1.07) | 0.080 | 0.58(0.3–1.14) | 0.112 | 0.53(0.28–1.02) | 0.056 |
>50 mm | 0.35(0.14–0.89) | 0.028 | 0.41(0.17–0.99) | 0.049 | 0.41(0.17–1.01) | 0.054 | 0.42(0.17–1.09) | 0.074 | 0.35(0.15–0.86) | 0.022 |
C-IRS1 | ||||||||||
Low | 1 | |||||||||
High | 0.64(0.47–0.87) | 0.005 | ||||||||
N-SMAD4 | ||||||||||
Low | ||||||||||
High | NS | NS | ||||||||
C-SMAD4 | ||||||||||
Low | 1 | 1 | ||||||||
High | 0.58(0.43–0.8) | <0.001 | 0.67(0.5–0.91) | 0.009 | ||||||
N-RUNX3 | ||||||||||
Low | 1 | 1 | ||||||||
High | 0.62(0.45–0.84) | 0.002 | 0.68(0.44–1.03) | 0.068 | ||||||
C-RUNX3 | ||||||||||
Low | 1 | |||||||||
High | NS | 0.62(0.44–0.87) | 0.006 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selven, H.; Busund, L.-T.R.; Andersen, S.; Pedersen, M.I.; Lombardi, A.P.G.; Kilvaer, T.K. High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer. Cancers 2023, 15, 1448. https://doi.org/10.3390/cancers15051448
Selven H, Busund L-TR, Andersen S, Pedersen MI, Lombardi APG, Kilvaer TK. High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer. Cancers. 2023; 15(5):1448. https://doi.org/10.3390/cancers15051448
Chicago/Turabian StyleSelven, Hallgeir, Lill-Tove Rasmussen Busund, Sigve Andersen, Mona Irene Pedersen, Ana Paola Giometti Lombardi, and Thomas Karsten Kilvaer. 2023. "High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer" Cancers 15, no. 5: 1448. https://doi.org/10.3390/cancers15051448
APA StyleSelven, H., Busund, L. -T. R., Andersen, S., Pedersen, M. I., Lombardi, A. P. G., & Kilvaer, T. K. (2023). High Expression of IRS-1, RUNX3 and SMAD4 Are Positive Prognostic Factors in Stage I–III Colon Cancer. Cancers, 15(5), 1448. https://doi.org/10.3390/cancers15051448