Association between the Processed Dietary Pattern and Tumor Staging in Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Patients
2.2. Dietary Data
2.3. Clinical Staging and Cell Differentiation
2.4. Variables
2.5. Statistical Analysis
3. Results
3.1. Sample
3.2. Dietary Patterns
3.3. Association of Dietary Patterns with Tumor Staging and Degree of Cell Differentiation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, D.E.; Burtness, B.; Leemans, C.R.; Lui, V.W.Y.; Bauman, E.; Grandis, J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Prim. 2020, 6, 92. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, T.S.; Gomes, M.C.; Gomes, D.Q.C.; Lima, K.C.; Granville-Garcia, A.F.; Costa, E.M.M.B. Analysis of survival rates and prognostic factors among patients with oral squamous cell carcinoma. J. Public Health 2017, 25, 433–441. [Google Scholar] [CrossRef]
- Chow, L.Q.M. Head and Neck Cancer. N. Engl. J. Med. 2020, 382, 60–72. [Google Scholar] [CrossRef]
- Worsham, M.J. Identifying the risk factors for late stage head and neck cancer. Expert Rev. Anticancer Ther. 2011, 11, 1321–1325. [Google Scholar] [CrossRef] [Green Version]
- Sobin, L.H.; Gospodarowicz, M.K.; Wittekind, C. International Union Against Cancer (UICC). In TNM Classification of Malignant Tumours, 7th ed.; Wiley: New York, NY, USA, 2009. [Google Scholar]
- O’Sullivan, B.; Brierley, J.; Byrd, D.; Bosman, F.; Kehoe, S.; Kossary, C.; Piñeros, M.; Van Eycken, E.; Weir, H.K.; Gospodarowicz, M. The TNM classification of malignant tumours-towards common understanding and reasonable expectations. Lancet Oncol. 2017, 18, 849–851. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.K.S.; Vasconcelos, J.L.A. Histopathological profile of patients diagnosed with malignant tumors assisted in a hospital of reference of Agreste Pernambucano. J. Bras. Patol. Med. Lab. 2019, 55, 87–97. [Google Scholar] [CrossRef]
- Ferraguti, G.; Terracina, S.; Petrella, C.; Greco, A.; Minni, A.; Lucarelli, M.; Agostinelli, E.; Ralli, M.; de Vincentiis, M.; Raponi, G.; et al. Alcohol and head and neck cancer: Updates on the role of oxidative stress, genetic, epigenetics, oral microbiota, antioxidants, and alkylating agents. Antioxidants 2022, 11, 145. [Google Scholar] [CrossRef] [PubMed]
- Gormley, M.; Creaney, G.; Schache, A.; Ingarfield, K.; Conway, D.I. Reviewing the epidemiology of head and neck cancer: Definitions, trends and risk factors. Br. Dent. J. 2022, 233, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Mantzorou, M.; Tolia, M.; Poultsidi, A.; Pavlidou, E.; Papadopoulou, S.K.; Papandreou, D.; Giaginis, C. Can bioelectrical impedance analysis and BMI be a prognostic tool in head and neck cancer patients? A review of the evidence. Cancers 2020, 12, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guller, M.; Herberg, M.; Amin, N.; Alkhatib, H.; Maroun, C.; Wu, E.; Allen, H.; Zheng, Y.; Gourin, C.; Vosler, P.; et al. Nutritional status as a predictive biomarker for immunotherapy outcomes in advanced head and neck cancer. Cancers 2021, 13, 5772. [Google Scholar] [CrossRef] [PubMed]
- De Podestá, O.P.G.; Peres, S.V.; Salaroli, L.B.; Cattafesta, M.; De Podestá, J.R.V.; von Zeidler, S.L.V.; Oliveira, J.C.; Kowalski, L.P.; Ikeda, M.K.; Brennan, P.; et al. Consumption of minimally processed foods as protective factors in the genesis of squamous cell carcinoma of the head and neck in Brazil. PLoS ONE 2019, 14, e0220067. [Google Scholar] [CrossRef] [PubMed]
- Maino Vieytes, C.A.; Rodriguez-Zas, S.L.; Madak-Erdogan, Z.; Smith, R.L.; Zarins, K.R.; Wolf, G.T.; Rozek, L.S.; Mondul, A.M.; Arthur, A.E. Adherence to a priori-defined diet quality indices throughout the early disease course is associated with survival in head and neck cancer survivors: An application involving marginal structural models. Front. Nutr. 2022, 9, 791141. [Google Scholar] [CrossRef]
- Sawabe, M.; Ito, H.; Oze, I.; Hosono, S.; Kawakita, D.; Tanaka, H.; Hasegawa, Y.; Murakami, S.; Matsuo, K. Heterogeneous impact of alcohol consumption according to treatment method on survival in head and neck cancer: A prospective study. Cancer Sci. 2017, 108, 91–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowder, S.L.; Sarma, K.P.; Mondul, A.M.; Tang, Y.C.; Li, Z.; Pepino, M.Y.; Zarins, K.R.; Wolf, G.T.; Rozek, L.S.; Arthur, A.E. Pre-treatment dietary patterns are associated with the presence of nutrition impact symptoms 1-year after diagnosis in patients with head and neck cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1652–1659. [Google Scholar] [CrossRef] [PubMed]
- Arthur, A.E.; Peterson, K.E.; Rozek, L.S.; Taylor, J.M.G.; Light, E.; Chepeha, D.B.; Hébert, J.R.; Terrell, J.E.; Wolf, G.T.; Duffy, S.A. The UM Head and Neck SPORE Program. Pretreatment dietary patterns, weight status, and head and neck squamous cell carcinoma prognosis. Am. J. Clin. Nutr. 2013, 97, 360–368. [Google Scholar] [CrossRef] [Green Version]
- Bradshaw, P.T.; Siega-Riz, A.M.; Campbell, M.; Weissler, M.C.; Funkhouser, W.K.; Olshan, A.F. Associations between dietary patterns and head and neck cancer: The Carolina head and neck cancer epidemiology study. Am. J. Epidemiol. 2012, 175, 1225–1233. [Google Scholar] [CrossRef] [Green Version]
- de Vito, R.; Lee, Y.C.A.; Parpinel, M.; Serraino, D.; Olshan, A.F.; Zevallos, J.P.; Levi, F.; Zhang, Z.F.; Morgenstern, H.; Garavello, W.; et al. Shared and study-specific dietary patterns and head and neck cancer risk in an international consortium. Epidemiology 2019, 30, 93–102. [Google Scholar] [CrossRef]
- Molina, M.D.C.B.; Benseñor, I.M.; Cardoso, L.D.O.; Velasquez-Melendez, G.; Drehmer, M.; Pereira, T.S.P.; de Faria, C.P.; Melere, C.; Manato, L.; Gomes, A.L.C.; et al. Reproducibility and relative validity of the Food Frequency Questionnaire used in the ELSA-Brasil. Cad. Saúde Pública 2013, 29, 379–389. [Google Scholar] [CrossRef]
- Olinto, M.T.A.; Willett, W.C.; Gigante, D.P.; Victora, C.G. Sociodemographic and lifestyle characteristics in relation to dietary patterns among young Brazilian adults. Public Health Nutr. 2011, 14, 150–159. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. A Healthy Lifestyle—WHO Recommendations. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 21 October 2022).
- Lipschitz, D. Screening for nutritional status in the elderly. Prim. Care 1994, 21, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis: With Readings, 4th ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Duffy, S.A.; Ronis, D.L.; McLean, S.; Fowler, K.E.; Gruber, S.B.; Wolf, G.T.; Terrell, J.E. Pretreatment health behaviors predict survival among patients with head and neck squamous cell carcinoma. J. Clin. Oncol. 2009, 27, 1969–1975. [Google Scholar] [CrossRef] [Green Version]
- Nicastro, H.L.; Trujillo, E.B.; Milner, J.A. Nutrigenomics and cancer prevention. Curr. Nutr. Rep. 2012, 1, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Shankar, E.; Kanwal, R.; Candamo, M.; Gupta, S. Dietary phytochemicals as epigenetic modifiers in cancer: Promise and challenges. Semin. Cancer Biol. 2016, 40–41, 82–99. [Google Scholar] [CrossRef] [Green Version]
- Makarem, N.; Bandera, E.V.; Nicholson, J.M.; Parekh, N. Consumption of sugars, sugary foods, and sugary beverages in relation to cancer risk: A systematic review of longitudinal studies. Annu. Rev. Nutr. 2018, 38, 17–39. [Google Scholar] [CrossRef]
- Arthur, A.E.; Goss, A.M.; Demark-Wahnefried, W.; Mondul, A.M.; Fontaine, K.R.; Chen, Y.T.; Carroll, W.R.; Spencer, S.A.; Rogers, L.Q.; Rozek, L.S.; et al. Higher carbohydrate intake is associated with increased risk of all-cause and disease-specific mortality in head and neck cancer patients: Results from a prospective cohort study. Int. J. Cancer 2018, 143, 1105–1113. [Google Scholar] [CrossRef] [Green Version]
- Bouvard, V.; Loomis, D.; Guyton, K.Z.; Grosse, Y.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K.; International Agency for Research on Cancer Monograph Working Group. Carcinogenicity of consumption of red and processed meat. Lancet Oncol. 2015, 16, 1599–1600. [Google Scholar] [CrossRef] [Green Version]
- Lane, M.M.; Davis, J.A.; Beattie, S.; Gómez-Donoso, C.; Loughman, A.; O’Neil, A.; Jacka, F.; Berk, M.; Page, R.; Marx, W.; et al. Ultraprocessed food and chronic noncommunicable diseases: A systematic review and meta-analysis of 43 observational studies. Obes. Rev. 2021, 22, e13146. [Google Scholar] [CrossRef] [PubMed]
Description of the Patients | N (%) |
---|---|
Age (years) | |
<60 | 76 (55.9) |
≥60 | 60 (44.1) |
Sex | |
Male | 107 (78.7) |
Female | 29 (21.3) |
Skin color | |
White | 45 (33.1) |
Brown | 77 (56.6) |
Black | 14 (10.3) |
BMI (kg/m2) | |
Adults (n = 76) | |
Underweight (<18.5) | 22 (28.9) |
Normal weight (18.5–24.9) | 25 (32.9) |
Overweight (25–29.9) | 16 (21.1) |
Obesity (>30) | 6 (7.9) |
NA | 7 (9.2) |
Elderly (n = 60) | |
Malnutrition | 27 (45.0) |
Normal weight | 19 (31.7) |
Overweight | 10 (16.7) |
NA | 4 (6.6) |
Smoking status | |
Current/former | 122 (89.7) |
Never | 14 (10.3) |
Drinking status | |
Current/former | 114 (83.8) |
Never | 21 (15.4) |
NA | 1 (0.8) |
Anatomic site | |
Oral cavity | 46 (33.8) |
Oropharynx | 51 (37.5) |
Larynx | 39 (28.7) |
Tumor staging | |
I–II (initial) | 22 (16.2) |
III (intermediary) | 23 (16.9) |
IV (advanced) | 89 (65.4) |
NA | 2 (1.5) |
Cell differentiation | |
Well-differentiated | 18 (13.2) |
Moderately differentiated | 79 (58.1) |
Poorly differentiated | 26 (19.1) |
NA | 13 (9.6) |
Dietary Patterns | ||||||
---|---|---|---|---|---|---|
Variables | Healthy OR (95% CI) | p-Value | Processed OR (95% CI) | p-Value | Mixed OR (95% CI) | p-Value |
Unadjusted | ||||||
Staging | ||||||
Initial (I/II) | (Base outcome) | |||||
Intermediary (III) | 1.08 (0.70–1.69) | 0.722 | 1.98 (1.25–3.15) | 0.004 | 1.29 (0.81–2.06) | 0.287 |
Advanced (IV) | 1.34 (0.93–1.91) | 0.112 | 1.54 (1.04–2.28) | 0.031 | 1.43 (0.97–2.12) | 0.074 |
Cell differentiation | ||||||
Well-differentiated | (Base outcome) | |||||
Moderately differentiated | 0.96 (0.69–1.35) | 0.829 | 1.05 (0.73–1.51) | 0.797 | 0.95 (0.67–1.36) | 0.788 |
Poorly differentiated | 0.91 (0.61–1.37) | 0.655 | 1.00 (0.65–1.54) | 0.986 | 1.09 (0.73–1.64) | 0.659 |
Adjusted | ||||||
Tumor staging | ||||||
Initial (I/II) | (Base outcome) | |||||
Intermediary (III) | 1.20 (0.73–1.97) | 0.479 | 2.47 (1.43–4.26) | 0.001 | 1.16 (0.71–1.88) | 0.547 |
Advanced (IV) | 1.48 (0.97–2.24) | 0.067 | 1.78 (1.12–2.84) | 0.015 | 1.21 (0.81–1.81) | 0.345 |
Cell differentiation | ||||||
Well-differentiated | (Base outcome) | |||||
Moderately differentiated | 1.00 (0.69–1.45) | 0.983 | 1.06 (0.71–1.59) | 0.775 | 0.87 (0.60–1.28) | 0.495 |
Poorly differentiated | 0.96 (0.62–1.49) | 0.846 | 0.99 (0.63–1.58) | 0.985 | 0.87 (0.56–1.36) | 0.553 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, A.C.d.S.; Ferreira, T.J.; Campos, A.D.d.S.; Matida, L.M.; Castro, M.B.T.; Freitas-Vilela, A.A.; Horst, M.A. Association between the Processed Dietary Pattern and Tumor Staging in Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma. Cancers 2023, 15, 1476. https://doi.org/10.3390/cancers15051476
Lima ACdS, Ferreira TJ, Campos ADdS, Matida LM, Castro MBT, Freitas-Vilela AA, Horst MA. Association between the Processed Dietary Pattern and Tumor Staging in Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma. Cancers. 2023; 15(5):1476. https://doi.org/10.3390/cancers15051476
Chicago/Turabian StyleLima, Ana Carolina da Silva, Tathiany Jéssica Ferreira, Adriana Divina de Souza Campos, Larissa Morinaga Matida, Maria Beatriz Trindade Castro, Ana Amélia Freitas-Vilela, and Maria Aderuza Horst. 2023. "Association between the Processed Dietary Pattern and Tumor Staging in Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma" Cancers 15, no. 5: 1476. https://doi.org/10.3390/cancers15051476
APA StyleLima, A. C. d. S., Ferreira, T. J., Campos, A. D. d. S., Matida, L. M., Castro, M. B. T., Freitas-Vilela, A. A., & Horst, M. A. (2023). Association between the Processed Dietary Pattern and Tumor Staging in Patients Newly Diagnosed with Head and Neck Squamous Cell Carcinoma. Cancers, 15(5), 1476. https://doi.org/10.3390/cancers15051476