Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. CfDNA Collection
2.3. Library Preparation for DNA Sequencing
2.4. OncoBEAMTM EGFR V2 Kit for DNA Exploration
2.5. Targeted Next-Generation Sequencing Plasma-SeqSensei™ SOLID CANCER IVD Kit for DNA Sequencing
2.6. Statistics
3. Results
3.1. Description of the Patient Cohort
3.2. Description of the cfDNA Input
3.3. Comparison of the Three Assays Based on the Somatic Alterations Found
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bade, B.C.; Dela Cruz, C.S. Lung Cancer 2020: Epidemiology, Etiology, and Prevention. Clin. Chest Med. 2020, 41, 1–24. [Google Scholar] [CrossRef]
- Cancer in Australia 2021, Summary. Available online: https://www.aihw.gov.au/reports/cancer/cancer-in-australia-2021/summary (accessed on 29 December 2022).
- Midha, A.; Dearden, S.; McCormack, R. EGFR Mutation Incidence in Non-Small-Cell Lung Cancer of Adenocarcinoma Histology: A Systematic Review and Global Map by Ethnicity (MutMapII). Am. J. Cancer Res. 2015, 5, 2892–2911. [Google Scholar] [PubMed]
- Chatziandreou, I.; Tsioli, P.; Sakellariou, S.; Mourkioti, I.; Giannopoulou, I.; Levidou, G.; Korkolopoulou, P.; Patsouris, E.; Saetta, A.A. Comprehensive Molecular Analysis of NSCLC; Clinicopathological Associations. PLoS ONE 2015, 10, e0133859. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, I.; Ačkar, L.; Mossahebi Mohammadi, P.; Pantel, K. Liquid Biopsies: Potential and Challenges. Int. J. Cancer 2021, 148, 528–545. [Google Scholar] [CrossRef] [PubMed]
- Mosele, F.; Remon, J.; Mateo, J.; Westphalen, C.B.; Barlesi, F.; Lolkema, M.P.; Normanno, N.; Scarpa, A.; Robson, M.; Meric-Bernstam, F.; et al. Recommendations for the Use of Next-Generation Sequencing (NGS) for Patients with Metastatic Cancers: A Report from the ESMO Precision Medicine Working Group. Ann. Oncol. 2020, 31, 1491–1505. [Google Scholar] [CrossRef]
- Cai, X.; Janku, F.; Zhan, Q.; Fan, J.-B. Accessing Genetic Information with Liquid Biopsies. Trends Genet. 2015, 31, 564–575. [Google Scholar] [CrossRef]
- Diehl, F.; Li, M.; Dressman, D.; He, Y.; Shen, D.; Szabo, S.; Diaz, L.A.; Goodman, S.N.; David, K.A.; Juhl, H.; et al. Detection and Quantification of Mutations in the Plasma of Patients with Colorectal Tumors. Proc. Natl. Acad. Sci. USA 2005, 102, 16368–16373. [Google Scholar] [CrossRef] [Green Version]
- Gale, D.; Heider, K.; Ruiz-Valdepenas, A.; Hackinger, S.; Perry, M.; Marsico, G.; Rundell, V.; Wulff, J.; Sharma, G.; Knock, H.; et al. Residual CtDNA after Treatment Predicts Early Relapse in Patients with Early-Stage Non-Small Cell Lung Cancer. Ann. Oncol. 2022, 33, 500–510. [Google Scholar] [CrossRef]
- Zvereva, M.; Roberti, G.; Durand, G.; Voegele, C.; Nguyen, M.D.; Delhomme, T.M.; Chopard, P.; Fabianova, E.; Adamcakova, Z.; Holcatova, I.; et al. Circulating Tumour-Derived KRAS Mutations in Pancreatic Cancer Cases Are Predominantly Carried by Very Short Fragments of Cell-Free DNA. EBioMedicine 2020, 55, 102462. [Google Scholar] [CrossRef]
- Pellini, B.; Chaudhuri, A.A. Circulating Tumor DNA Minimal Residual Disease Detection of Non–Small-Cell Lung Cancer Treated with Curative Intent. J. Clin. Oncol. 2022, 40, 567–575. [Google Scholar] [CrossRef]
- Shields, M.D.; Chen, K.; Dutcher, G.; Patel, I.; Pellini, B. Making the Rounds: Exploring the Role of Circulating Tumor DNA (CtDNA) in Non-Small Cell Lung Cancer. Int. J. Mol. Sci. 2022, 23, 9006. [Google Scholar] [CrossRef]
- Chae, Y.K.; Oh, M.S. Detection of Minimal Residual Disease Using CtDNA in Lung Cancer: Current Evidence and Future Directions. J. Thorac. Oncol. 2019, 14, 16–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Feldman, R.; Wistuba, I.I. Update on EGFR Mutational Testing and the Potential of Noninvasive Liquid Biopsy in Non-Small-Cell Lung Cancer. Clin. Lung Cancer 2018, 19, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Kinde, I.; Wu, J.; Papadopoulos, N.; Kinzler, K.W.; Vogelstein, B. Detection and Quantification of Rare Mutations with Massively Parallel Sequencing. Proc. Natl. Acad. Sci. USA 2011, 108, 9530–9535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frampton, J.E. Osimertinib: A Review in Completely Resected, Early-Stage, EGFR Mutation-Positive NSCLC. Target Oncol. 2022, 17, 369–376. [Google Scholar] [CrossRef]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.W.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An Ultrasensitive Method for Quantitating Circulating Tumor DNA with Broad Patient Coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef]
- Ramirez, J.-M.; Fehm, T.; Orsini, M.; Cayrefourcq, L.; Maudelonde, T.; Pantel, K.; Alix-Panabières, C. Prognostic Relevance of Viable Circulating Tumor Cells Detected by EPISPOT in Metastatic Breast Cancer Patients. Clin. Chem. 2014, 60, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Dusserre, E.; Cheynet, V.; Bringuier, P.P.; Brengle-Pesce, K.; Wozny, A.-S.; Rodriguez-Lafrasse, C.; Freyer, G.; Brevet, M.; Payen, L.; et al. Evaluation of Pre-Analytical Conditions and Comparison of the Performance of Several Digital PCR Assays for the Detection of Major EGFR Mutations in Circulating DNA from Non-Small Cell Lung Cancers: The CIRCAN_0 Study. Oncotarget 2017, 8, 87980–87996. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Gauthier, A.; Lescuyer, G.; Barthelemy, D.; Geiguer, F.; Balandier, J.; Edelstein, D.L.; Jones, F.S.; Holtrup, F.; Duruisseau, M.; et al. Routine Molecular Screening of Patients with Advanced Non-SmallCell Lung Cancer in Circulating Cell-Free DNA at Diagnosis and During Progression Using OncoBEAMTM EGFR V2 and NGS Technologies. Mol. Diagn. Ther. 2021, 25, 239–250. [Google Scholar] [CrossRef]
- Bieler, J.; Pozzorini, C.; Garcia, J.; Tuck, A.C.; Macheret, M.; Willig, A.; Couraud, S.; Xing, X.; Menu, P.; Steinmetz, L.M.; et al. High-Throughput Nucleotide Resolution Predictions of Assay Limitations Increase the Reliability and Concordance of Clinical Tests. JCO Clin. Cancer Inform. 2021, 5, 1085–1095. [Google Scholar] [CrossRef]
- Jennings, L.J.; Arcila, M.E.; Corless, C.; Kamel-Reid, S.; Lubin, I.M.; Pfeifer, J.; Temple-Smolkin, R.L.; Voelkerding, K.V.; Nikiforova, M.N. Guidelines for Validation of Next-Generation Sequencing-Based Oncology Panels: A Joint Consensus Recommendation of the Association for Molecular Pathology and College of American Pathologists. J. Mol. Diagn. 2017, 19, 341–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Mei, J.; Kang, R.; Deng, S.; Chen, Y.; Yang, Y.; Feng, G.; Deng, Y.; Gan, F.; Lin, Y.; et al. Perioperative CtDNA-Based Molecular Residual Disease Detection for Non-Small Cell Lung Cancer: A Prospective Multicenter Cohort Study (LUNGCA-1). Clin. Cancer Res. 2022, 28, 3308–3317. [Google Scholar] [CrossRef] [PubMed]
- Rolfo, C.; Mack, P.; Scagliotti, G.V.; Aggarwal, C.; Arcila, M.E.; Barlesi, F.; Bivona, T.; Diehn, M.; Dive, C.; Dziadziuszko, R.; et al. Liquid Biopsy for Advanced NSCLC: A Consensus Statement from the International Association for the Study of Lung Cancer. J. Thorac. Oncol. 2021, 16, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Waldeck, S.; Mitschke, J.; Wiesemann, S.; Rassner, M.; Andrieux, G.; Deuter, M.; Mutter, J.; Lüchtenborg, A.-M.; Kottmann, D.; Titze, L.; et al. Early Assessment of Circulating Tumor DNA after Curative-Intent Resection Predicts Tumor Recurrence in Early-Stage and Locally Advanced Non-Small-Cell Lung Cancer. Mol. Oncol. 2022, 16, 527–537. [Google Scholar] [CrossRef]
- Sardarabadi, P.; Kojabad, A.A.; Jafari, D.; Liu, C.-H. Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC). Biosensors 2021, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Chin, R.-I.; Chen, K.; Usmani, A.; Chua, C.; Harris, P.K.; Binkley, M.S.; Azad, T.D.; Dudley, J.C.; Chaudhuri, A.A. Detection of Solid Tumor Molecular Residual Disease (MRD) Using Circulating Tumor DNA (CtDNA). Mol. Diagn. Ther. 2019, 23, 311–331. [Google Scholar] [CrossRef]
- Tie, J.; Wang, Y.; Tomasetti, C.; Li, L.; Springer, S.; Kinde, I.; Silliman, N.; Tacey, M.; Wong, H.-L.; Christie, M.; et al. Circulating Tumor DNA Analysis Detects Minimal Residual Disease and Predicts Recurrence in Patients with Stage II Colon Cancer. Sci. Transl. Med. 2016, 8, 346ra92. [Google Scholar] [CrossRef] [Green Version]
- Garcia, J.; Kamps-Hughes, N.; Geiguer, F.; Couraud, S.; Sarver, B.; Payen, L.; Ionescu-Zanetti, C. Sensitivity, Specificity, and Accuracy of a Liquid Biopsy Approach Utilizing Molecular Amplification Pools. Sci. Rep. 2021, 11, 10761. [Google Scholar] [CrossRef]
- Marnell, C.S.; Bick, A.; Natarajan, P. Clonal Hematopoiesis of Indeterminate Potential (CHIP): Linking Somatic Mutations, Hematopoiesis, Chronic Inflammation and Cardiovascular Disease. J. Mol. Cell. Cardiol. 2021, 161, 98–105. [Google Scholar] [CrossRef]
- Bick, A.G.; Weinstock, J.S.; Nandakumar, S.K.; Fulco, C.P.; Bao, E.L.; Zekavat, S.M.; Szeto, M.D.; Liao, X.; Leventhal, M.J.; Nasser, J.; et al. Inherited Causes of Clonal Haematopoiesis in 97,691 Whole Genomes. Nature 2020, 586, 763–768. [Google Scholar] [CrossRef]
- Stengel, A.; Baer, C.; Walter, W.; Meggendorfer, M.; Kern, W.; Haferlach, T.; Haferlach, C. Mutational Patterns and Their Correlation to CHIP-Related Mutations and Age in Hematological Malignancies. Blood Adv. 2021, 5, 4426–4434. [Google Scholar] [CrossRef] [PubMed]
- Sloane, H.; Sathyanarayan, P.; Edelstein, D.; Jones, F.; Preston, J.; Wu, S.; Los, J.; Duchstein, L.; Fredebohm, J.; Wichner, K.; et al. Abstract LB053: Clinical Evaluation of NGS-Based Liquid Biopsy Genotyping in Non-Small Cell Lung Cancer (NSCLC) Patients. Cancer Res. 2021, 81, LB053. [Google Scholar] [CrossRef]
Genes | Somatic Alterations | % |
---|---|---|
Wild-Type (WT) for all assays (no detected alterations) in the sample (n = 89) | ||
EGFR | 116 | 53.85 |
KRAS | 25 | 11.63 |
PIK3CA | 14 | 6.51 |
BRAF | 10 | 4.65 |
Other genes | 50 | 23.26 |
Total = 215 |
Plasma OncoBEAMTM EGFR V2 | Plasma-SeqSensei™ SOLID CANCER IVD Kit | Our Custom Validated NGS Assay | |
---|---|---|---|
DNA Content | DNA Content | DNA Content | |
[ng Input] | [ng Input] | [ng Input] | |
Number of analyzed samples | 130.00 | 212.00 | 209.00 |
Minimum | 2.66 | 2.10 | 8.49 |
25% Percentile | 11.96 | 17.00 | 25.10 |
Median | 22.40 | 33.83 | 41.1 |
75% Percentile | 46.87 | 36.81 | 65.90 |
Maximum | 5165.00 | 85.00 | 150.00 |
Range | 5162.00 | 82.90 | 141.50 |
Mean | 81.84 | 30.56 | 51.34 |
Std. Deviation | 453.10 | 18.23 | 37.46 |
Std. Error of Mean | 39.74 | 1.252 | 2.59 |
| Plasma OncoBEAMTM EGFR V2 NEGATIVE Status | Plasma OncoBEAMTM EGFR V2 POSITIVE Status | |
---|---|---|---|
Plasma-SeqSensei™ SOLID CANCER IVD Kit NEGATIVE status | 72 | 14 | Sensitivity = 0.84 |
Plasma-SeqSensei™ SOLID CANCER IVD Kit POSITIVE status | 4 | 77 | Specificity = 0.94 |
Positive likelihood ratio = Sensitivity/(1 − Specificity) = 16.087 Negative likelihood ratio = (1 − Sensitivity)/Specificity = 0.044 Positive percentage agreement [PPA = 77/(77 + 14) = 84.6%] Positive predictive value [PPV = 77/(7 7+ 4) = 95.06%] | |||
| Our Custom Validated NGS Assay NEGATIVE Status | Our Custom Validated NGS Assay POSITIVE Status | |
Plasma-SeqSensei™ SOLID CANCER IVD Kit NEGATIVE status | 102 | 21 | Sensitivity = 0.83 |
Plasma-SeqSensei™ SOLID CANCER IVD Kit POSITIVE status | 32 | 101 | Specificity = 0.76 |
Positive likelihood ratio = Sensitivity/(1 − Specificity) =3.466 Negative likelihood ratio = (1 − Sensitivity)/Specificity = 0.131 Positive percentage agreement [PPA = 101/(101 + 21) = 82.7%] Positive predictive value [PPV = 101/(101 + 32) = 75.9%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barthelemy, D.; Lescuyer, G.; Geiguer, F.; Grolleau, E.; Gauthier, A.; Balandier, J.; Raffin, M.; Bardel, C.; Bouyssounouse, B.; Rodriguez-Lafrasse, C.; et al. Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays. Cancers 2023, 15, 1574. https://doi.org/10.3390/cancers15051574
Barthelemy D, Lescuyer G, Geiguer F, Grolleau E, Gauthier A, Balandier J, Raffin M, Bardel C, Bouyssounouse B, Rodriguez-Lafrasse C, et al. Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays. Cancers. 2023; 15(5):1574. https://doi.org/10.3390/cancers15051574
Chicago/Turabian StyleBarthelemy, David, Gaelle Lescuyer, Florence Geiguer, Emmanuel Grolleau, Arnaud Gauthier, Julie Balandier, Margaux Raffin, Claire Bardel, Bruno Bouyssounouse, Claire Rodriguez-Lafrasse, and et al. 2023. "Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays" Cancers 15, no. 5: 1574. https://doi.org/10.3390/cancers15051574
APA StyleBarthelemy, D., Lescuyer, G., Geiguer, F., Grolleau, E., Gauthier, A., Balandier, J., Raffin, M., Bardel, C., Bouyssounouse, B., Rodriguez-Lafrasse, C., Couraud, S., Wozny, A. -S., & Payen, L. (2023). Paired Comparison of Routine Molecular Screening of Patient Samples with Advanced Non-Small Cell Lung Cancer in Circulating Cell-Free DNA Using Three Targeted Assays. Cancers, 15(5), 1574. https://doi.org/10.3390/cancers15051574