Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. MR Imaging
2.3. Study Design
2.4. Convolutional Neural Network Architecture
2.5. Metrics
2.6. Time Sparing
3. Results
3.1. External Validation Results
3.2. Time Sparing
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Ethics Statements
References
- Desouza, N.M.; van der Lugt, A.; Deroose, C.M.; Alberich-Bayarri, A.; Bidaut, L.; Fournier, L.; Costaridou, L.; Oprea-Lager, D.E.; Kotter, E.; Smits, M.; et al. Standardised lesion segmentation for imaging biomarker quantitation: A consensus recommendation from ESR and EORTC. Insights Into Imaging 2022, 13, 159. [Google Scholar] [CrossRef]
- Joskowicz, L.; Cohen, D.; Caplan, N.; Sosna, J. Inter-observer variability of manual contour delineation of structures in CT. Eur. Radiol. 2019, 29, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Yip, S.S.F.; Parmar, C.; Blezek, D.; Estepar, R.S.J.; Pieper, S.; Kim, J.; Aerts, H.J.W.L. Application of the 3D slicer chest imaging platform segmentation algorithm for large lung nodule delineation. PLoS ONE 2017, 12, e0178944. [Google Scholar] [CrossRef] [Green Version]
- McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.; et al. International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [Google Scholar] [CrossRef]
- Yasaka, K.; Akai, H.; Abe, O.; Kiryu, S. Deep Learning with Convolutional Neural Network for Differentiation of Liver Masses at Dynamic Contrast-enhanced CT: A Preliminary Study. Radiology 2018, 286, 887–896. [Google Scholar] [CrossRef] [Green Version]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, J.F.; Gassenmaier, T.; Ankenbrand, M.J.; Bley, T.A.; Wech, T. Self-configuring nnU-net pipeline enables fully automatic infarct segmentation in late enhancement MRI after myocardial infarction. Eur. J. Radiol. 2021, 141, 109817. [Google Scholar] [CrossRef] [PubMed]
- Ramspek, C.L.; Jager, K.J.; Dekker, F.W.; Zoccali, C.; van Diepen, M. External validation of prognostic models: What, why, how, when and where? Clin. Kidney J. 2021, 14, 49–58. [Google Scholar] [CrossRef]
- Siontis, G.C.; Tzoulaki, I.; Castaldi, P.J.; Ioannidis, J.P. External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 2015, 68, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Bouget, D.; Eijgelaar, R.S.; Pedersen, A.; Kommers, I.; Ardon, H.; Barkhof, F.; Bello, L.; Berger, M.S.; Nibali, M.C.; Furtner, J.; et al. Glioblastoma Surgery Imaging–Reporting and Data System: Validation and Performance of the Automated Segmentation Task. Cancers 2021, 13, 4674. [Google Scholar] [CrossRef]
- David, B.; Kröll-Seger, J.; Schuch, F.; Wagner, J.; Wellmer, J.; Woermann, F.; Oehl, B.; Van Paesschen, W.; Breyer, T.; Becker, A.; et al. External validation of automated focal cortical dysplasia detection using morphometric analysis. Epilepsia 2021, 62, 1005–1021. [Google Scholar] [CrossRef] [PubMed]
- Yu, A.C.; Mohajer, B.; Eng, J. External Validation of Deep Learning Algorithms for Radiologic Diagnosis: A Systematic Review. Radiol. Artif. Intell. 2022, 4, e210064. [Google Scholar] [CrossRef] [PubMed]
- Alves, N.; Schuurmans, M.; Litjens, G.; Bosma, J.S.; Hermans, J.; Huisman, H. Fully Automatic Deep Learning Framework for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography. Cancers 2022, 14, 376. [Google Scholar] [CrossRef]
- Kim, D.W.; Jang, H.Y.; Kim, K.W.; Shin, Y.; Park, S.H. Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean J. Radiol. 2019, 20, 405–410. [Google Scholar] [CrossRef]
- Martí-Bonmatí, L.; Alberich-Bayarri, Á.; Ladenstein, R.; Blanquer, I.; Segrelles, J.D.; Cerdá-Alberich, L.; Gkontra, P.; Hero, B.; Garcia-Aznar, J.M.; Keim, D.; et al. PRIMAGE project: Predictive in silico multiscale analytics to support childhood cancer personalised evaluation empowered by imaging biomarkers. Eur. Radiol. Exp. 2020, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Veiga-Canuto, D.; Cerdà-Alberich, L.; Nebot, C.S.; Heras, B.M.D.L.; Pötschger, U.; Gabelloni, M.; Sierra, J.M.C.; Taschner-Mandl, S.; Düster, V.; Cañete, A.; et al. Comparative Multicentric Evaluation of Inter-Observer Variability in Manual and Automatic Segmentation of Neuroblastic Tumors in Magnetic Resonance Images. Cancers 2022, 14, 3648. [Google Scholar] [CrossRef]
- Ebner, H.; Hayn, D.; Falgenhauer, M.; Nitzlnader, M.; Schleiermacher, G.; Haupt, R.; Erminio, G.; Defferrari, R.; Mazzocco, K.; Kohler, J.; et al. Piloting the European Unified Patient Identity Management (EUPID) Concept to Facilitate Secondary Use of Neuroblastoma Data from Clinical Trials and Biobanking. Stud. Health Technol. Inform. 2016, 223, 31–38. [Google Scholar]
- Dice, L.R. Measures of the Amount of Ecologic Association Between Species. Ecology 1945, 26, 297–302. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. Metrics for evaluating 3D medical image segmentation: Analysis, selection, and tool. BMC Med. Imaging 2015, 15, 29. [Google Scholar] [CrossRef] [Green Version]
- Zou, K.H.; Warfield, S.; Bharatha, A.; Tempany, C.M.; Kaus, M.R.; Haker, S.J.; Wells, W.M.; Jolesz, F.A.; Kikinis, R. Statistical validation of image segmentation quality based on a spatial overlap index1. Acad. Radiol. 2004, 11, 178–189. [Google Scholar] [CrossRef] [Green Version]
- Jaccard, P. The Distribution of the Flora in the Alpine Zone.1. New Phytol. 1912, 11, 37–50. [Google Scholar] [CrossRef]
- Taha, A.A.; Hanbury, A. An Efficient Algorithm for Calculating the Exact Hausdorff Distance. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 2153–2163. [Google Scholar] [CrossRef] [PubMed]
- Parmar, C.; Velazquez, E.R.; Leijenaar, R.; Jermoumi, M.; Carvalho, S.; Mak, R.H.; Mitra, S.; Shankar, B.U.; Kikinis, R.; Haibe-Kains, B.; et al. Robust Radiomics Feature Quantification Using Semiautomatic Volumetric Segmentation. PLoS ONE 2014, 9, e102107. [Google Scholar] [CrossRef] [PubMed]
- Gassenmaier, S.; Tsiflikas, I.; Fuchs, J.; Grimm, R.; Urla, C.; Esser, M.; Maennlin, S.; Ebinger, M.; Warmann, S.W.; Schäfer, J.F. Feasibility and possible value of quantitative semi-automated diffusion weighted imaging volumetry of neuroblastic tumors. Cancer Imaging 2020, 20, 89. [Google Scholar] [CrossRef]
- Rangayyan, R.; Banik, S.; Boag, G.S. Landmarking and segmentation of computed tomographic images of pediatric patients with neuroblastoma. Int. J. Comput. Assist. Radiol. Surg. 2009, 4, 245–262. [Google Scholar] [CrossRef]
- Kim, H.; Shin, K.; Kim, H.; Lee, E.-S.; Chung, S.W.; Koh, K.H.; Kim, N. Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears? PLoS ONE 2022, 17, e0274075. [Google Scholar] [CrossRef] [PubMed]
- Rudie, J.D.; Calabrese, E.; Saluja, R.; Weiss, D.; Colby, J.B.; Cha, S.; Hess, C.P.; Rauschecker, A.M.; Sugrue, L.P.; Villanueva-Meyer, J.E. Longitudinal Assessment of Posttreatment Diffuse Glioma Tissue Volumes with 3D Convolutional Neural Networks. Radiol. Artif. Intell. 2022, 4, e210243. [Google Scholar] [CrossRef]
- Jimenez-Pastor, A.; Alberich-Bayarri, A.; Lopez-Gonzalez, R.; Marti-Aguado, D.; França, M.; Bachmann, R.S.M.; Mazzucco, J.; Marti-Bonmati, L. Precise whole liver automatic segmentation and quantification of PDFF and R2* on MR images. Eur. Radiol. 2021, 31, 7876–7887. [Google Scholar] [CrossRef]
- Han, X.; Wu, X.; Wang, S.; Xu, L.; Xu, H.; Zheng, D.; Yu, N.; Hong, Y.; Yu, Z.; Yang, D.; et al. Automated segmentation of liver segment on portal venous phase MR images using a 3D convolutional neural network. Insights Into Imaging 2022, 13, 26. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, T.; Teng, Y.; Yu, Y.; Shu, X.; Zhang, L.; Zhao, F.; Xu, J. Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network. Eur. Radiol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Defeudis, A.; Mazzetti, S.; Panic, J.; Micilotta, M.; Vassallo, L.; Giannetto, G.; Gatti, M.; Faletti, R.; Cirillo, S.; Regge, D.; et al. MRI-based radiomics to predict response in locally advanced rectal cancer: Comparison of manual and automatic segmentation on external validation in a multicentre study. Eur. Radiol. Exp. 2022, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Bourbonne, V.; Fournier, G.; Vallières, M.; Lucia, F.; Doucet, L.; Tissot, V.; Cuvelier, G.; Hue, S.; Du, H.L.P.; Perdriel, L.; et al. External Validation of an MRI-Derived Radiomics Model to Predict Biochemical Recurrence after Surgery for High-Risk Prostate Cancer. Cancers 2020, 12, 814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordron, A.; Rio, E.; Badic, B.; Miranda, O.; Pradier, O.; Hatt, M.; Visvikis, D.; Lucia, F.; Schick, U.; Bourbonne, V. External Validation of a Radiomics Model for the Prediction of Complete Response to Neoadjuvant Chemoradiotherapy in Rectal Cancer. Cancers 2022, 14, 1079. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.P.B.; Aboagye, E.; Adams, J.E.; Aerts, H.J.W.L.; Barrington, S.F.; Beer, A.J.; Boellaard, R.; Bohndiek, S.; Brady, M.; Brown, G.; et al. Imaging biomarker roadmap for cancer studies. Nat. Rev. Clin. Oncol. 2017, 14, 169–186. [Google Scholar] [CrossRef]
- Roblot, V.; Giret, Y.; Mezghani, S.; Auclin, E.; Arnoux, A.; Oudard, S.; Duron, L.; Fournier, L. Validation of a deep learning segmentation algorithm to quantify the skeletal muscle index and sarcopenia in metastatic renal carcinoma. Eur. Radiol. 2022, 32, 4728–4737. [Google Scholar] [CrossRef]
- Bagatell, R.; McHugh, K.; Naranjo, A.; Van Ryn, C.; Kirby, C.; Brock, P.; Lyons, K.A.; States, L.J.; Rojas, Y.; Miller, A.; et al. Assessment of Primary Site Response in Children With High-Risk Neuroblastoma: An International Multicenter Study. J. Clin. Oncol. 2016, 34, 740–746. [Google Scholar] [CrossRef]
- Park, J.R.; Bagatell, R.; Cohn, S.; Pearson, A.D.; Villablanca, J.G.; Berthold, F.; Burchill, S.; Boubaker, A.; McHugh, K.; Nuchtern, J.G.; et al. Revisions to the International Neuroblastoma Response Criteria: A Consensus Statement From the National Cancer Institute Clinical Trials Planning Meeting. J. Clin. Oncol. 2017, 35, 2580–2587. [Google Scholar] [CrossRef]
- Nasief, H.; Zheng, C.; Schott, D.; Hall, W.; Tsai, S.; Erickson, B.; Li, X.A. A machine learning based delta-radiomics process for early prediction of treatment response of pancreatic cancer. NPJ Precis. Oncol. 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
DSC | JAC | HD | AUC ROC | 1-FPRm | 1-FNR | |
---|---|---|---|---|---|---|
Median | 0.997 | 0.996 | 0.000 | 0.999 | 1.000 | 1.000 |
IQR | 0.944–1.000 | 0.894–1.000 | 0.000–3.000 | 0.973–1.000 | 0.996–1.000 | 0.969–1.000 |
Mean | 0.887 | 0.862 | 7.081 | 0.930 | 0.847 | 0.917 |
SD | 0.262 | 0.279 | 19.999 | 0.191 | 1.123 | 0.215 |
DSC | JAC | HD | AUC ROC | 1-FPRm | 1-FNR | |
---|---|---|---|---|---|---|
Tumor at diagnosis (n = 486) | ||||||
Median | 0.999 | 0.997 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.964–1.000 | 0.930–1.000 | 0.000–2.207 | 0.978–1.000 | 0.997–1.000 | 0.976–1.000 |
Mean | 0.901 | 0.879 | 7.115 | 0.931 | 0.853 | 0.923 |
SD | 0.250 | 0.266 | 20.720 | 0.196 | 1.112 | 0.208 |
Tumor after chemotherapy (n = 49) | ||||||
Median | 0.902 | 0.821 | 2.803 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.755–0.220 | 0.607–0.360 | 0.000–6.000 | 0.910–0.148 | 0.968–0.102 | 0.821–0-295 |
Mean | 0.752 | 0.691 | 6.737 | 0.926 | 0.785 | 0.854 |
SD | 0.334 | 0.344 | 10.553 | 0.137 | 1.245 | 0.275 |
Cervicothoracic (n = 105) | ||||||
Median | 0.999 | 0.999 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.975–1.000 | 0.951–1.000 | 0.000–2.000 | 0.998–1.000 | 0.979–1.000 | 0.999–1.000 |
Mean | 0.960 | 0.938 | 3.933 | 0.994 | 0.928 | 0.988 |
SD | 0.109 | 0.145 | 11.712 | 0.023 | 0.212 | 0.046 |
Abdominopelvic (n = 430) | ||||||
Median | 0.997 | 0.995 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.929–1.000 | 0.868–1.000 | 0.000–3.527 | 0.973–1.000 | 0.996–1.000 | 0.975–1.000 |
Mean | 0.869 | 0.843 | 7.849 | 0.923 | 0.814 | 0.916 |
SD | 0.284 | 0.300 | 21.484 | 0.208 | 1.251 | 0.222 |
1.5T (n = 434) | ||||||
Median | 0.998 | 0.996 | 0.000 | 1.000 | 1.000 | 1.000 |
Q1–Q3 | 0.945–1.000 | 0.896–1.000 | 0.000–2.979 | 0.968–1.000 | 0.996–1.000 | 0.961–1.000 |
Mean | 0.879 | 0.855 | 7.372 | 0.925 | 0.841 | 0.911 |
SD | 0.275 | 0.291 | 20.622 | 0.197 | 1.174 | 0.223 |
3T (n = 101) | ||||||
Median | 0.995 | 0.990 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.943–1.000 | 0.892–1.000 | 0.000–3.000 | 0.989–1.000 | 0.997–1.000 | 0.982–1.000 |
Mean | 0.918 | 0.888 | 5.944 | 0.951 | 0.871 | 0.942 |
SD | 0.196 | 0.220 | 17.251 | 0.163 | 0.884 | 0.177 |
T2 SE (n = 307) | ||||||
Median | 0.997 | 0.994 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.951–1.000 | 0.906–1.000 | 0.000–2.855 | 0.971–1.000 | 0.995–1.000 | 0.951–1.000 |
Mean | 0.904 | 0.877 | 6.078 | 0.938 | 0.873 | 0.907 |
SD | 0.232 | 0.253 | 17.649 | 0.170 | 0.828 | 0.249 |
T2 SE FS (n = 176) | ||||||
Median | 0.998 | 0.997 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.928–1.000 | 0.865–1.000 | 0.000–3.577 | 0.973–1.000 | 0.997–1.000 | 0.983–1.000 |
Mean | 0.849 | 0.827 | 9.737 | 0.907 | 0.769 | 0.917 |
SD | 0.317 | 0.327 | 24.984 | 0.239 | 1.618 | 0.226 |
STIR (n = 41) | ||||||
Median | 0.999 | 0.999 | 0.000 | 0.999 | 1.000 | 1.000 |
Q1–Q3 | 0.933–1.000 | 0.875–1.000 | 0.000–2.207 | 0.991–1.000 | 0.999–1.000 | 0.983–1.000 |
Mean | 0.911 | 0.881 | 3.393 | 0.976 | 0.991 | 0.952 |
SD | 0.210 | 0.241 | 8.908 | 0.081 | 0.026 | 0.162 |
T2 GE FS (n = 11) | ||||||
Median | 0.996 | 0.992 | 0.000 | 0.998 | 1.000 | 1.000 |
Q1–Q3 | 0.993–1.000 | 0.986–1.000 | 0.000–0.433 | 0.957–1.000 | 0.872–1.000 | 0.921–1.000 |
Mean | 0.929 | 0.901 | 7.499 | 0.943 | 0.792 | 0.888 |
SD | 0.176 | 0.229 | 18.535 | 0.109 | 0.480 | 0.217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veiga-Canuto, D.; Cerdà-Alberich, L.; Jiménez-Pastor, A.; Carot Sierra, J.M.; Gomis-Maya, A.; Sangüesa-Nebot, C.; Fernández-Patón, M.; Martínez de las Heras, B.; Taschner-Mandl, S.; Düster, V.; et al. Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images. Cancers 2023, 15, 1622. https://doi.org/10.3390/cancers15051622
Veiga-Canuto D, Cerdà-Alberich L, Jiménez-Pastor A, Carot Sierra JM, Gomis-Maya A, Sangüesa-Nebot C, Fernández-Patón M, Martínez de las Heras B, Taschner-Mandl S, Düster V, et al. Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images. Cancers. 2023; 15(5):1622. https://doi.org/10.3390/cancers15051622
Chicago/Turabian StyleVeiga-Canuto, Diana, Leonor Cerdà-Alberich, Ana Jiménez-Pastor, José Miguel Carot Sierra, Armando Gomis-Maya, Cinta Sangüesa-Nebot, Matías Fernández-Patón, Blanca Martínez de las Heras, Sabine Taschner-Mandl, Vanessa Düster, and et al. 2023. "Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images" Cancers 15, no. 5: 1622. https://doi.org/10.3390/cancers15051622
APA StyleVeiga-Canuto, D., Cerdà-Alberich, L., Jiménez-Pastor, A., Carot Sierra, J. M., Gomis-Maya, A., Sangüesa-Nebot, C., Fernández-Patón, M., Martínez de las Heras, B., Taschner-Mandl, S., Düster, V., Pötschger, U., Simon, T., Neri, E., Alberich-Bayarri, Á., Cañete, A., Hero, B., Ladenstein, R., & Martí-Bonmatí, L. (2023). Independent Validation of a Deep Learning nnU-Net Tool for Neuroblastoma Detection and Segmentation in MR Images. Cancers, 15(5), 1622. https://doi.org/10.3390/cancers15051622