Immunotherapy for Soft Tissue Sarcomas: Anti-PD1/PDL1 and Beyond
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immune Checkpoint Inhibitors in STS: Therapeutic Options
2.1. ICI Trials (Mono or Dual Blockade)
2.2. Combination with Tyrosine Kinase Inhibitors
2.3. Combination with Chemotherapy
2.4. Combination with Radiation Therapy
3. Immune Checkpoint Inhibitors in STS: Challenge of Patient Selection and Stratification
3.1. PD1/PD-L1 Expression
3.2. Tumor-Infiltrating Lymphocytes (TILs)
3.3. Tumor Mutational Burden (TMB)/MicroSatellite Instability (MSI)
3.4. Tertiary Lymphoid Structure (TLS)
4. Adoptive Cellular Therapies: A New Opening Door in Sarcomas
4.1. Engineered T Cell Receptor Therapy
4.2. CAR T Cell Therapy
4.3. TIL Therapy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cormier, J.N.; Pollock, R.E. Soft Tissue Sarcomas. CA Cancer J. Clin. 2004, 54, 94–109. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer Statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef] [PubMed]
- de Pinieux, G.; Karanian, M.; Le Loarer, F.; Le Guellec, S.; Chabaud, S.; Terrier, P.; Bouvier, C.; Batistella, M.; Neuville, A.; Robin, Y.-M.; et al. Nationwide Incidence of Sarcomas and Connective Tissue Tumors of Intermediate Malignancy over Four Years Using an Expert Pathology Review Network. PLoS ONE 2021, 16, e0246958. [Google Scholar] [CrossRef] [PubMed]
- WHO Classification of Tumours Editorial Board. Soft Tissue and Bone Tumours; WHO: Geneva, Switzerland, 2020; ISBN 978-92-832-4502-5.
- Gronchi, A.; Miah, A.B.; Dei Tos, A.P.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; et al. Soft Tissue and Visceral Sarcomas: ESMO-EURACAN-GENTURIS Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up☆. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2021, 32, 1348–1365. [Google Scholar] [CrossRef]
- Tap, W.D.; Wagner, A.J.; Schöffski, P.; Martin-Broto, J.; Krarup-Hansen, A.; Ganjoo, K.N.; Yen, C.-C.; Abdul Razak, A.R.; Spira, A.; Kawai, A.; et al. Effect of Doxorubicin Plus Olaratumab vs Doxorubicin Plus Placebo on Survival in Patients with Advanced Soft Tissue Sarcomas: The ANNOUNCE Randomized Clinical Trial. JAMA 2020, 323, 1266–1276. [Google Scholar] [CrossRef]
- van der Graaf, W.T.A.; Blay, J.-Y.; Chawla, S.P.; Kim, D.-W.; Bui-Nguyen, B.; Casali, P.G.; Schöffski, P.; Aglietta, M.; Staddon, A.P.; Beppu, Y.; et al. Pazopanib for Metastatic Soft-Tissue Sarcoma (PALETTE): A Randomised, Double-Blind, Placebo-Controlled Phase 3 Trial. Lancet Lond. Engl. 2012, 379, 1879–1886. [Google Scholar] [CrossRef]
- Judson, I.; Verweij, J.; Gelderblom, H.; Hartmann, J.T.; Schöffski, P.; Blay, J.-Y.; Kerst, J.M.; Sufliarsky, J.; Whelan, J.; Hohenberger, P.; et al. Doxorubicin Alone versus Intensified Doxorubicin plus Ifosfamide for First-Line Treatment of Advanced or Metastatic Soft-Tissue Sarcoma: A Randomised Controlled Phase 3 Trial. Lancet Oncol. 2014, 15, 415–423. [Google Scholar] [CrossRef]
- Couzin-Frankel, J. Breakthrough of the Year 2013. Cancer Immunotherapy. Science 2013, 342, 1432–1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarthy, E.F. The Toxins of William B. Coley and the Treatment of Bone and Soft-Tissue Sarcomas. Iowa Orthop. J. 2006, 26, 154–158. [Google Scholar]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- A Pilot Study of Anti-CTLA4 Antibody Ipilimumab in Patients with Synovial Sarcoma-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/23554566/ (accessed on 1 March 2023).
- Toulmonde, M.; Penel, N.; Adam, J.; Chevreau, C.; Blay, J.-Y.; Le Cesne, A.; Bompas, E.; Piperno-Neumann, S.; Cousin, S.; Grellety, T.; et al. Use of PD-1 Targeting, Macrophage Infiltration, and IDO Pathway Activation in Sarcomas: A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Tawbi, H.A.; Burgess, M.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Hu, J.; D’Angelo, S.; Attia, S.; Riedel, R.F.; Priebat, D.A.; et al. Pembrolizumab in Advanced Soft-Tissue Sarcoma and Bone Sarcoma (SARC028): A Multicentre, Two-Cohort, Single-Arm, Open-Label, Phase 2 Trial. Lancet Oncol. 2017, 18, 1493–1501. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, S.P.; Mahoney, M.R.; Van Tine, B.A.; Atkins, J.; Milhem, M.M.; Jahagirdar, B.N.; Antonescu, C.R.; Horvath, E.; Tap, W.D.; Schwartz, G.K.; et al. Nivolumab with or without Ipilimumab Treatment for Metastatic Sarcoma (Alliance A091401): Two Open-Label, Non-Comparative, Randomised, Phase 2 Trials. Lancet Oncol. 2018, 19, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.L.; Mahoney, M.R.; George, S.; Antonescu, C.R.; Liebner, D.A.; Van Tine, B.A.; Milhem, M.M.; Tap, W.D.; Streicher, H.; Schwartz, G.K.; et al. A Multicenter Phase II Study of Nivolumab +/- Ipilimumab for Patients with Metastatic Sarcoma (Alliance A091401): Results of Expansion Cohorts. J. Clin. Oncol. 2020, 38, 11511. [Google Scholar] [CrossRef]
- Stacchiotti, S.; Frezza, A.M.; Blay, J.-Y.; Baldini, E.H.; Bonvalot, S.; Bovée, J.V.M.G.; Callegaro, D.; Casali, P.G.; Chiang, R.C.-J.; Demetri, G.D.; et al. Ultra-Rare Sarcomas: A Consensus Paper from the Connective Tissue Oncology Society Community of Experts on the Incidence Threshold and the List of Entities. Cancer 2021, 127, 2934–2942. [Google Scholar] [CrossRef]
- Brahmi, M.; Vanacker, H.; Dufresne, A. Novel Therapeutic Options for Alveolar Soft Part Sarcoma: Antiangiogenic Therapy, Immunotherapy and Beyond. Curr. Opin. Oncol. 2020, 32, 295–300. [Google Scholar] [CrossRef]
- Lazar, A.J.F.; Das, P.; Tuvin, D.; Korchin, B.; Zhu, Q.; Jin, Z.; Warneke, C.L.; Zhang, P.S.; Hernandez, V.; Lopez-Terrada, D.; et al. Angiogenesis-Promoting Gene Patterns in Alveolar Soft Part Sarcoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2007, 13, 7314–7321. [Google Scholar] [CrossRef] [Green Version]
- Huan, C.; Kelly, M.L.; Steele, R.; Shapira, I.; Gottesman, S.R.S.; Roman, C.A.J. Transcription Factors TFE3 and TFEB Are Critical for CD40 Ligand Expression and Thymus-Dependent Humoral Immunity. Nat. Immunol. 2006, 7, 1082–1091. [Google Scholar] [CrossRef] [Green Version]
- Naqash, A.R.; O’Sullivan Coyne, G.H.; Moore, N.; Sharon, E.; Takebe, N.; Fino, K.K.; Ferry-Galow, K.V.; Hu, J.S.; Van Tine, B.A.; Burgess, M.A.; et al. Phase II Study of Atezolizumab in Advanced Alveolar Soft Part Sarcoma (ASPS). J. Clin. Oncol. 2021, 39, 11519. [Google Scholar] [CrossRef]
- Wilky, B.A.; Trucco, M.M.; Subhawong, T.K.; Florou, V.; Park, W.; Kwon, D.; Wieder, E.D.; Kolonias, D.; Rosenberg, A.E.; Kerr, D.A.; et al. Axitinib plus Pembrolizumab in Patients with Advanced Sarcomas Including Alveolar Soft-Part Sarcoma: A Single-Centre, Single-Arm, Phase 2 Trial. Lancet Oncol. 2019, 20, 837–848. [Google Scholar] [CrossRef]
- Shi, Y.; Cai, Q.; Jiang, Y.; Huang, G.; Bi, M.; Wang, B.; Zhou, Y.; Wang, G.; Ying, H.; Tao, Z.; et al. Activity and Safety of Geptanolimab (GB226) for Patients with Unresectable, Recurrent, or Metastatic Alveolar Soft Part Sarcoma: A Phase II, Single-Arm Study. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 6445–6452. [Google Scholar] [CrossRef] [PubMed]
- Florou, V.; Rosenberg, A.E.; Wieder, E.; Komanduri, K.V.; Kolonias, D.; Uduman, M.; Castle, J.C.; Buell, J.S.; Trent, J.C.; Wilky, B.A. Angiosarcoma Patients Treated with Immune Checkpoint Inhibitors: A Case Series of Seven Patients from a Single Institution. J. Immunother. Cancer 2019, 7, 213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sindhu, S.; Gimber, L.H.; Cranmer, L.; McBride, A.; Kraft, A.S. Angiosarcoma Treated Successfully with Anti-PD-1 Therapy-a Case Report. J. Immunother. Cancer 2017, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wang, K.; Gu, W.; Nie, X.; Zhang, H.; Tang, C.; Lin, L.; Liang, J. Case Report: Complete Remission with Anti−PD−1 and Anti−VEGF Combined Therapy of a Patient with Metastatic Primary Splenic Angiosarcoma. Front. Oncol. 2022, 12, 809068. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Haimes, B.; Klug, D. Immunotherapy and Chemotherapy for Cutaneous Angiosarcoma: A Systematic Review. Int. J. Womens Dermatol. 2019, 5, 201. [Google Scholar] [CrossRef]
- Tomassen, T.; Weidema, M.E.; Hillebrandt-Roeffen, M.H.S.; van der Horst, C.; Desar, I.M.E.; Flucke, U.E.; Versleijen-Jonkers, Y.M.H.; PALGA group*. Analysis of PD-1, PD-L1, and T-Cell Infiltration in Angiosarcoma Pathogenetic Subgroups. Immunol. Res. 2022, 70, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.J.; Othus, M.; Patel, S.P.; Ryan, C.; Sangal, A.; Powers, B.; Budd, G.T.; Victor, A.I.; Hsueh, C.-T.; Chugh, R.; et al. Multicenter Phase II Trial (SWOG S1609, Cohort 51) of Ipilimumab and Nivolumab in Metastatic or Unresectable Angiosarcoma: A Substudy of Dual Anti-CTLA-4 and Anti-PD-1 Blockade in Rare Tumors (DART). J. Immunother. Cancer 2021, 9, e002990. [Google Scholar] [CrossRef] [PubMed]
- Blay, J.-Y.; Penel, N.; Ray-Coquard, I.L.; Schott, R.; Saada-Bouzid, E.; Bertucci, F.; Chevreau, C.M.; Bompas, E.; Coquan, E.; Cousin, S.; et al. High Clinical Benefit Rates of Pembrolizumab in Very Rare Sarcoma Histotypes: First Results of the AcSé Pembrolizumab Study. Ann. Oncol. 2019, 30, v517. [Google Scholar] [CrossRef]
- Martin-Broto, J.; Hindi, N.; Grignani, G.; Martinez-Trufero, J.; Redondo, A.; Valverde, C.; Stacchiotti, S.; Lopez-Pousa, A.; D’Ambrosio, L.; Gutierrez, A.; et al. Nivolumab and Sunitinib Combination in Advanced Soft Tissue Sarcomas: A Multicenter, Single-Arm, Phase Ib/II Trial. J. Immunother. Cancer 2020, 8, e001561. [Google Scholar] [CrossRef]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with Chemotherapy in the Era of Immune Checkpoint Inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
- Pollack, S.M.; Redman, M.W.; Baker, K.K.; Wagner, M.J.; Schroeder, B.A.; Loggers, E.T.; Trieselmann, K.; Copeland, V.C.; Zhang, S.; Black, G.; et al. Assessment of Doxorubicin and Pembrolizumab in Patients With Advanced Anthracycline-Naive Sarcoma: A Phase 1/2 Nonrandomized Clinical Trial. JAMA Oncol. 2020, 6, 1778–1782. [Google Scholar] [CrossRef]
- Livingston, M.B.; Jagosky, M.H.; Robinson, M.M.; Ahrens, W.A.; Benbow, J.H.; Farhangfar, C.J.; Foureau, D.M.; Maxwell, D.M.; Baldrige, E.A.; Begic, X.; et al. Phase II Study of Pembrolizumab in Combination with Doxorubicin in Metastatic and Unresectable Soft-Tissue Sarcoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2021, 27, 6424–6431. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.W.; Dvorkin, M.; Chen, Y.; Reinmuth, N.; Hotta, K.; Trukhin, D.; Statsenko, G.; Hochmair, M.J.; Özgüroğlu, M.; Ji, J.H.; et al. Durvalumab, with or without Tremelimumab, plus Platinum-Etoposide versus Platinum-Etoposide Alone in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): Updated Results from a Randomised, Controlled, Open-Label, Phase 3 Trial. Lancet Oncol. 2021, 22, 51–65. [Google Scholar] [CrossRef] [PubMed]
- Högner, A.; Moehler, M. Immunotherapy in Gastric Cancer. Curr. Oncol. 2022, 29, 1559–1574. [Google Scholar] [CrossRef] [PubMed]
- Cortes, J.; Rugo, H.S.; Cescon, D.W.; Im, S.-A.; Yusof, M.M.; Gallardo, C.; Lipatov, O.; Barrios, C.H.; Perez-Garcia, J.; Iwata, H.; et al. Pembrolizumab plus Chemotherapy in Advanced Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 387, 217–226. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, M.; Zhang, J.; Yin, Y.; Fan, X.; Zhang, Y.; Qin, S.; Zhang, H.; Yu, F. Immunogenic Cell Death Induction by Ionizing Radiation. Front. Immunol. 2021, 12, 705361. [Google Scholar] [CrossRef]
- STING-Dependent Cytosolic DNA Sensing Promotes Radiation-Induced Type I Interferon-Dependent Antitumor Immunity in Immunogenic Tumors-PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/25517616/ (accessed on 1 March 2023).
- Hallahan, D.; Kuchibhotla, J.; Wyble, C. Cell Adhesion Molecules Mediate Radiation-Induced Leukocyte Adhesion to the Vascular Endothelium. Cancer Res. 1996, 56, 5150–5155. [Google Scholar]
- Formenti, S.C.; Demaria, S. Combining Radiotherapy and Cancer Immunotherapy: A Paradigm Shift. J. Natl. Cancer Inst. 2013, 105, 256–265. [Google Scholar] [CrossRef] [Green Version]
- Saif, A.; Verbus, E.A.; Sarvestani, A.L.; Teke, M.E.; Lambdin, J.; Hernandez, J.M.; Kirsch, D.G. A Randomized Trial of Pembrolizumab & Radiotherapy Versus Radiotherapy in High-Risk Soft Tissue Sarcoma of the Extremity (SU2C-SARC032). Ann. Surg. Oncol. 2023, 30, 683–685. [Google Scholar] [CrossRef]
- Lugade, A.A.; Moran, J.P.; Gerber, S.A.; Rose, R.C.; Frelinger, J.G.; Lord, E.M. Local Radiation Therapy of B16 Melanoma Tumors Increases the Generation of Tumor Antigen-Specific Effector Cells That Traffic to the Tumor. J. Immunol. Baltim. Md. 1950 2005, 174, 7516–7523. [Google Scholar] [CrossRef] [Green Version]
- Faivre-Finn, C.; Vicente, D.; Kurata, T.; Planchard, D.; Paz-Ares, L.; Vansteenkiste, J.F.; Spigel, D.R.; Garassino, M.C.; Reck, M.; Senan, S.; et al. Four-Year Survival with Durvalumab After Chemoradiotherapy in Stage III NSCLC-an Update from the PACIFIC Trial. J. Thorac. Oncol. Off. Publ. Int. Assoc. Study Lung Cancer 2021, 16, 860–867. [Google Scholar] [CrossRef] [PubMed]
- Sajjadi, E.; Venetis, K.; Scatena, C.; Fusco, N. Biomarkers for Precision Immunotherapy in the Metastatic Setting: Hope or Reality? Ecancermedicalscience 2020, 14, 1150. [Google Scholar] [CrossRef]
- Zheng, C.; You, W.; Wan, P.; Jiang, X.; Chen, J.; Zheng, Y.; Li, W.; Tan, J.; Zhang, S. Clinicopathological and Prognostic Significance of PD-L1 Expression in Sarcoma: A Systematic Review and Meta-Analysis. Medicine 2018, 97, e11004. [Google Scholar] [CrossRef]
- Italiano, A.; Bellera, C.; D’Angelo, S. PD1/PD-L1 Targeting in Advanced Soft-Tissue Sarcomas: A Pooled Analysis of Phase II Trials. J. Hematol. Oncol. 2020, 13, 55. [Google Scholar] [CrossRef]
- Zhu, M.M.T.; Shenasa, E.; Nielsen, T.O. Sarcomas: Immune Biomarker Expression and Checkpoint Inhibitor Trials. Cancer Treat. Rev. 2020, 91, 102115. [Google Scholar] [CrossRef] [PubMed]
- Keung, E.Z.; Burgess, M.; Salazar, R.; Parra, E.R.; Rodrigues-Canales, J.; Bolejack, V.; Van Tine, B.A.; Schuetze, S.M.; Attia, S.; Riedel, R.F.; et al. Correlative Analyses of the SARC028 Trial Reveal an Association between Sarcoma-Associated Immune Infiltrate and Response to Pembrolizumab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020, 26, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Electronic address: [email protected]; Cancer Genome Atlas Research Network Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas. Cell 2017, 171, 950–965.e28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical Sequencing of Soft Tissue and Bone Sarcomas Delineates Diverse Genomic Landscapes and Potential Therapeutic Targets | Nature Communications. Available online: https://www.nature.com/articles/s41467-022-30453-x (accessed on 1 March 2023).
- Campbell, B.B.; Light, N.; Fabrizio, D.; Zatzman, M.; Fuligni, F.; de Borja, R.; Davidson, S.; Edwards, M.; Elvin, J.A.; Hodel, K.P.; et al. Comprehensive Analysis of Hypermutation in Human Cancer. Cell 2017, 171, 1042–1056.e10. [Google Scholar] [CrossRef] [Green Version]
- Painter, C.A.; Jain, E.; Tomson, B.N.; Dunphy, M.; Stoddard, R.E.; Thomas, B.S.; Damon, A.L.; Shah, S.; Kim, D.; Gómez Tejeda Zañudo, J.; et al. The Angiosarcoma Project: Enabling Genomic and Clinical Discoveries in a Rare Cancer through Patient-Partnered Research. Nat. Med. 2020, 26, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Petitprez, F.; de Reyniès, A.; Keung, E.Z.; Chen, T.W.-W.; Sun, C.-M.; Calderaro, J.; Jeng, Y.-M.; Hsiao, L.-P.; Lacroix, L.; Bougoüin, A.; et al. B Cells Are Associated with Survival and Immunotherapy Response in Sarcoma. Nature 2020, 577, 556–560. [Google Scholar] [CrossRef]
- Italiano, A.; Bessede, A.; Pulido, M.; Bompas, E.; Piperno-Neumann, S.; Chevreau, C.; Penel, N.; Bertucci, F.; Toulmonde, M.; Bellera, C.; et al. Pembrolizumab in Soft-Tissue Sarcomas with Tertiary Lymphoid Structures: A Phase 2 PEMBROSARC Trial Cohort. Nat. Med. 2022, 28, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Burgess, M.; Bolejack, V.; Schuetze, S.; Tine, B.; Attia, S.; Riedel, R.; Hu, J.; Davis, L.; Okuno, S.; Priebat, D.; et al. Clinical Activity of Pembrolizumab (P) in Undifferentiated Pleomorphic Sarcoma (UPS) and Dedifferentiated/Pleomorphic Liposarcoma (LPS): Final Results of SARC028 Expansion Cohorts. J. Clin. Oncol. 2019, 37, 11015. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, Y.J. Engineered T Cell Therapy for Cancer in the Clinic. Front. Immunol. 2019, 10, 2250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.; Li, X.; He, Y.; Zhu, W.; Gao, L.; Liu, Y.; Gao, L.; Wen, Q.; Zhong, J.F.; Zhang, C.; et al. Recent Advances in CAR-T Cell Engineering. J. Hematol. Oncol. 2020, 13, 86. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, M.; Kageyama, S.; Miyahara, Y.; Ishikawa, T.; Ueda, S.; Soga, N.; Naota, H.; Mukai, K.; Harada, N.; Ikeda, H.; et al. MAGE-A4, NY-ESO-1 and SAGE MRNA Expression Rates and Co-Expression Relationships in Solid Tumours. BMC Cancer 2020, 20, 606. [Google Scholar] [CrossRef]
- Kakimoto, T.; Matsumine, A.; Kageyama, S.; Asanuma, K.; Matsubara, T.; Nakamura, T.; Iino, T.; Ikeda, H.; Shiku, H.; Sudo, A. Immunohistochemical Expression and Clinicopathological Assessment of the Cancer Testis Antigens NY-ESO-1 and MAGE-A4 in High-Grade Soft-Tissue Sarcoma. Oncol. Lett. 2019, 17, 3937–3943. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, S.P.; Van Tine, B.A.; Attia, S.; Blay, J.-Y.; Strauss, S.J.; Valverde Morales, C.M.; Abdul Razak, A.R.; Van Winkle, E.; Trivedi, T.; Biswas, S.; et al. SPEARHEAD-1: A Phase 2 Trial of Afamitresgene Autoleucel (Formerly ADP-A2M4) in Patients with Advanced Synovial Sarcoma or Myxoid/Round Cell Liposarcoma. J. Clin. Oncol. 2021, 39, 11504. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Attia, S.; Blay, J.-Y.; Strauss, S.J.; Valverde Morales, C.M.; Abdul Razak, A.R.; Van Winkle, E.; Annareddy, T.; Sattigari, C.; Diamantopoulos, E.; et al. Identification of Response Stratification Factors from Pooled Efficacy Analyses of Afamitresgene Autoleucel (“Afami-Cel” [Formerly ADP-A2M4]) in Metastatic Synovial Sarcoma and Myxoid/Round Cell Liposarcoma Phase 1 and Phase 2 Trials. J. Clin. Oncol. 2022, 40, 11562. [Google Scholar] [CrossRef]
- D’Angelo, S.; Demetri, G.; Tine, B.V.; Druta, M.; Glod, J.; Chow, W.; Pandya, N.; Hasan, A.; Chiou, V.; Tress, J.; et al. 298 Final Analysis of the Phase 1 Trial of NY-ESO-1–Specific T-Cell Receptor (TCR) T-Cell Therapy (Letetresgene Autoleucel; GSK3377794) in Patients with Advanced Synovial Sarcoma (SS). J. Immunother. Cancer 2020, 8, A325. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Druta, M.; Van Tine, B.A.; Liebner, D.A.; Schuetze, S.; Nathenson, M.; Holmes, A.P.; D’Souza, J.; Kapoor, G.S.; Zajic, S.; et al. Primary Efficacy and Safety of Letetresgene Autoleucel (Lete-Cel; GSK3377794) Pilot Study in Patients with Advanced and Metastatic Myxoid/Round Cell Liposarcoma (MRCLS). J. Clin. Oncol. 2022, 40, 11500. [Google Scholar] [CrossRef]
- D’Angelo, S.P.; Noujaim, J.C.; Thistlethwaite, F.; Abdul Razak, A.R.; Stacchiotti, S.; Chow, W.A.; Haanen, J.B.A.G.; Chalmers, A.W.; Robinson, S.I.; Van Tine, B.A.; et al. IGNYTE-ESO: A Master Protocol to Assess Safety and Activity of Letetresgene Autoleucel (Lete-Cel; GSK3377794) in HLA-A*02+ Patients with Synovial Sarcoma or Myxoid/Round Cell Liposarcoma (Substudies 1 and 2). J. Clin. Oncol. 2021, 39, TPS1158. [Google Scholar] [CrossRef]
- Roskoski, R. The ErbB/HER Family of Protein-Tyrosine Kinases and Cancer. Pharmacol. Res. 2014, 79, 34–74. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Brawley, V.S.; Hegde, M.; Robertson, C.; Ghazi, A.; Gerken, C.; Liu, E.; Dakhova, O.; Ashoori, A.; Corder, A.; et al. Human Epidermal Growth Factor Receptor 2 (HER2) -Specific Chimeric Antigen Receptor-Modified T Cells for the Immunotherapy of HER2-Positive Sarcoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2015, 33, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Navai, S.A.; Derenzo, C.; Joseph, S.; Sanber, K.; Byrd, T.; Zhang, H.; Mata, M.; Gerken, C.; Shree, A.; Mathew, P.R.; et al. Abstract LB-147: Administration of HER2-CAR T Cells after Lymphodepletion Safely Improves T Cell Expansion and Induces Clinical Responses in Patients with Advanced Sarcomas. Cancer Res. 2019, 79, LB-147. [Google Scholar] [CrossRef]
- Topalian, S.L.; Muul, L.M.; Solomon, D.; Rosenberg, S.A. Expansion of Human Tumor Infiltrating Lymphocytes for Use in Immunotherapy Trials. J. Immunol. Methods 1987, 102, 127–141. [Google Scholar] [CrossRef] [PubMed]
- Besser, M.J.; Shapira-Frommer, R.; Itzhaki, O.; Treves, A.J.; Zippel, D.B.; Levy, D.; Kubi, A.; Shoshani, N.; Zikich, D.; Ohayon, Y.; et al. Adoptive Transfer of Tumor-Infiltrating Lymphocytes in Patients with Metastatic Melanoma: Intent-to-Treat Analysis and Efficacy after Failure to Prior Immunotherapies. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2013, 19, 4792–4800. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, S.A.; Yannelli, J.R.; Yang, J.C.; Topalian, S.L.; Schwartzentruber, D.J.; Weber, J.S.; Parkinson, D.R.; Seipp, C.A.; Einhorn, J.H.; White, D.E. Treatment of Patients with Metastatic Melanoma with Autologous Tumor-Infiltrating Lymphocytes and Interleukin 2. J. Natl. Cancer Inst. 1994, 86, 1159–1166. [Google Scholar] [CrossRef]
- Yang, J.C. Toxicities Associated with Adoptive T-Cell Transfer for Cancer. Cancer J. Sudbury Mass 2015, 21, 506–509. [Google Scholar] [CrossRef] [Green Version]
- Andersen, R.S.; Thrue, C.A.; Junker, N.; Lyngaa, R.; Donia, M.; Ellebæk, E.; Svane, I.M.; Schumacher, T.N.; Thor Straten, P.; Hadrup, S.R. Dissection of T-Cell Antigen Specificity in Human Melanoma. Cancer Res. 2012, 72, 1642–1650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullinax, J.E.; Hall, M.; Beatty, M.; Weber, A.M.; Sannasardo, Z.; Svrdlin, T.; Hensel, J.; Bui, M.; Richards, A.; Gonzalez, R.J.; et al. Expanded Tumor-Infiltrating Lymphocytes From Soft Tissue Sarcoma Have Tumor-Specific Function. J. Immunother. Hagerstown Md. 1997 2021, 44, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.; Monberg, T.; Albieri, B.; Sundvold, V.; Rekdal, O.; Junker, N.; Svane, I.M. LTX-315 and Adoptive Cell Therapy Using Tumor-Infiltrating Lymphocytes in Patients with Metastatic Soft Tissue Sarcoma. J. Clin. Oncol. 2022, 40, 11567. [Google Scholar] [CrossRef]
- Kerrison, W.G.J.; Lee, A.T.J.; Thway, K.; Jones, R.L.; Huang, P.H. Current Status and Future Directions of Immunotherapies in Soft Tissue Sarcomas. Biomedicines 2022, 10, 573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kohli, K.; Black, R.G.; Yao, L.; Spadinger, S.M.; He, Q.; Pillarisetty, V.G.; Cranmer, L.D.; Van Tine, B.A.; Yee, C.; et al. Systemic Interferon-γ Increases MHC Class I Expression and T-Cell Infiltration in Cold Tumors: Results of a Phase 0 Clinical Trial. Cancer Immunol. Res. 2019, 7, 1237–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial | Target | ICI | Combination Drug | ORR | Median PFS (Months) [95% CI] | |
---|---|---|---|---|---|---|
PEMBROSARC Toulmonde et al. [12] | 57 STS 1 | Pembrolizumab | Cyclophosphamide | 2% | 1.4 [1.2–1.4] | |
SARC028 Tawbi et al. [13] | 40 BS 2/40 STS 1 | Pembrolizumab | None | BS 2 | 5% | 2 [1.8–2.3] |
STS 1 | 18% | 4.5 [2–5.3] | ||||
SARC028 (expansion cohorts) | 39 DDLPS 3 and 40 UPS 4 | Pembrolizumab | None | DDLPS 3 | 10% | 2 [2,3,4] |
UPS 4 | 23% | 3 [2,3,4,5] | ||||
Alliance A091401 D’Angelo et al. [14] | 43 and 42 all sarcoma | Nivolumab +/− ipilimumab | None | Nivo | 5% | 1.7 [1.4–4.3] |
Nivo + ipi | 16% | 4.1 [2.6–4.7] | ||||
DART Wagner et al. [27] | 16 AS 5 | Nivolumab + ipilimumab | None | 25% | NA | |
Wilky et al. [21] | 33 STS 1 | Pembrolizumab | Axitinib | 25% | 4.7 [3.0–9.4] | |
Martin-Broto et al. [29] | 58 STS 1 | Nivolumab | Sunitinib | 21% | 5.6 [3.0–8.1] | |
Pollack et al. [31] | 37 all sarcoma | Pembrolizumab | Doxorubicin | 19% | 8.1 [7.6–10.8] | |
Livingston et al. [32] | 30 STS 1 | Pembrolizumab | Doxorubicin | 36.7% | 5.7 [4.1–8.9] | |
Somaiah et al. | 57 all sarcoma | Durvalumab + tremelimumab | None | 14.3% | 4.5 [2.8–6.9] |
Trial | ICI | ORR | |
---|---|---|---|
SARC028 [14,54,56] | Pembrolizumab | Overall population (N = 47) | 21.2% |
SIC-E Class (N = 10) | 50% (with 1 CR) | ||
PEMBROSARC [13,55] | Pembrolizumab | Unselected population (N = 50) | 2% |
TLS+ STS (N = 35) | 30% |
Drug | Trial | Target | ORR 7 | Tolerance |
---|---|---|---|---|
Afami-cel | SPEARHEAD-1 NCT04044768 | N = 32 28 MAGE-A4+ SS + 4 MAGE-A4+ MLPS | 40% (2 CR 3, 8 PR 4, 11 SD 5, 4 PD 6) | 59% CRS 8 with 95% ≤ Grade 2 and 0% ICANS 9 |
Pooled analyses from phase 1 NCT03132922 and SPEARHEAD-1 (NCT04044768) | N = 69 | 36.2% | Not applicable | |
59 MAGE-A4+ SS 1 | 40.7% | |||
10 MAGE-A4+ MLPS 2 | 10.0% | |||
Lete-cel | NCT0134043 | N = 45 NY-ESO1+ SS 1 | 33% (15/45) | 44% CRS 8 with 80% ≤ Grade 2 |
Cohort 1: high NY-ESO1 expression with cyclophosphamide + fludarabine lymphodepletion | 50% (6/12) (1 CR 3, 5 PR 4, 5 SD 5, 1 PD 6) | |||
Cohort 2: low NY-ESO1 expression with cyclophosphamide + fludarabine lymphodepletion | 31% (4/13) (0 CR 3, 4 PR 4, 7 SD 5, 1 PD 6) | |||
Cohort 3: high NY-ESO1 expression with cyclophosphamide only | 20% (1/5) (0 CR 3, 1 PR 4, 3 SD 5, 0 PD 6) | |||
Cohort 4: low NY-ESO1 expression with cyclophosphamide only | 27% (4/15) (0 CR 3, 4 PR 4, 10 SD 5, 1 PD 6) | |||
NCT02992743 | N = 20 NY-ESO1+ MLPS 2 | 80% CRS 8, with 75% ≤ Grade 2 and 0% ICANS 9 | ||
Cohort 1: reduced-dose lymphodepletion | 20% (2/10) (2 PR 4, 8 SD 5, 0 PD 6) | |||
Cohort 2: standard-dose lymphodepletion | 40% (4/10) (4 PR 4, 5 SD 5, 1 PD 6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fazel, M.; Dufresne, A.; Vanacker, H.; Waissi, W.; Blay, J.-Y.; Brahmi, M. Immunotherapy for Soft Tissue Sarcomas: Anti-PD1/PDL1 and Beyond. Cancers 2023, 15, 1643. https://doi.org/10.3390/cancers15061643
Fazel M, Dufresne A, Vanacker H, Waissi W, Blay J-Y, Brahmi M. Immunotherapy for Soft Tissue Sarcomas: Anti-PD1/PDL1 and Beyond. Cancers. 2023; 15(6):1643. https://doi.org/10.3390/cancers15061643
Chicago/Turabian StyleFazel, Mina, Armelle Dufresne, Hélène Vanacker, Waisse Waissi, Jean-Yves Blay, and Mehdi Brahmi. 2023. "Immunotherapy for Soft Tissue Sarcomas: Anti-PD1/PDL1 and Beyond" Cancers 15, no. 6: 1643. https://doi.org/10.3390/cancers15061643
APA StyleFazel, M., Dufresne, A., Vanacker, H., Waissi, W., Blay, J. -Y., & Brahmi, M. (2023). Immunotherapy for Soft Tissue Sarcomas: Anti-PD1/PDL1 and Beyond. Cancers, 15(6), 1643. https://doi.org/10.3390/cancers15061643