Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feature Extraction Using Pre-Trained Deep Models
2.2. Feature Selection Mechanism
2.3. Machine Learning-Based Classification
2.4. Evaluation Metrics
3. Software and Tools
4. Dataset
5. Results
5.1. Normal vs. Cancer
5.2. NMIBC vs. MIBC
5.3. Post-Treatment Changes (PTC) vs. MIBC
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Kim, L.H.; Patel, M.I. Transurethral resection of bladder tumour (TURBT). Transl. Androl. Urol. 2020, 9, 3056. [Google Scholar] [CrossRef]
- Furuse, H.; Ozono, S. Transurethral resection of the bladder tumour (TURBT) for non-muscle invasive bladder cancer: Basic skills. Int. J. Urol. 2010, 17, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Richterstetter, M.; Wullich, B.; Amann, K.; Haeberle, L.; Engehausen, D.G.; Goebell, P.J.; Krause, F.S. The value of extended transurethral resection of bladder tumour (TURBT) in the treatment of bladder cancer. BJU Int. 2012, 110, E76–E79. [Google Scholar] [CrossRef] [PubMed]
- Sanli, O.; Dobruch, J.; Knowles, M.A.; Burger, M.; Alemozaffar, M.; Nielsen, M.E.; Lotan, Y. Bladder cancer. Nat. Rev. Dis. Primers 2017, 3, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Bostrom, P.J.; Van Rhijn, B.W.; Fleshner, N.; Finelli, A.; Jewett, M.; Thoms, J.; Hanna, S.; Kuk, C.; Zlotta, A.R. Staging and staging errors in bladder cancer. Eur. Urol. Suppl. 2010, 9, 2–9. [Google Scholar] [CrossRef]
- Colombel, M.; Soloway, M.; Akaza, H.; Böhle, A.; Palou, J.; Buckley, R.; Lamm, D.; Brausi, M.; Witjes, J.A.; Persad, R. Epidemiology, staging, grading, and risk stratification of bladder cancer. Eur. Urol. Suppl. 2008, 7, 618–626. [Google Scholar] [CrossRef]
- Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder cancer. Lancet 2009, 374, 239–249. [Google Scholar] [CrossRef]
- Kirkali, Z.; Chan, T.; Manoharan, M.; Algaba, F.; Busch, C.; Cheng, L.; Kiemeney, L.; Kriegmair, M.; Montironi, R.; Murphy, W.M.; et al. Bladder cancer: Epidemiology, staging and grading, and diagnosis. Urology 2005, 66, 4–34. [Google Scholar] [CrossRef]
- Sharma, S.; Ksheersagar, P.; Sharma, P. Diagnosis and treatment of bladder cancer. Am. Fam. Physician 2009, 80, 717–723. [Google Scholar]
- Gofrit, O.; Shapiro, A.; Pode, D.; Sidi, A.; Nativ, O.; Leib, Z.; Witjes, J.; Van Der Heijden, A.; Naspro, R.; Colombo, R. Combined local bladder hyperthermia and intravesical chemotherapy for the treatment of high-grade superficial bladder cancer. Urology 2004, 63, 466–471. [Google Scholar] [CrossRef]
- Sun, M.; Trinh, Q.D. Diagnosis and staging of bladder cancer. Hematol./Oncol. Clin. 2015, 29, 205–218. [Google Scholar] [CrossRef]
- Hammouda, K.; Khalifa, F.; Soliman, A.; Ghazal, M.; Abou El-Ghar, M.; Badawy, M.A.; Darwish, H.E.; Khelifi, A.; El-Baz, A. A multiparametric MRI-based CAD system for accurate diagnosis of bladder cancer staging. Comput. Med. Imaging Graph. 2021, 90, 101911. [Google Scholar] [CrossRef]
- Xu, X.; Liu, Y.; Zhang, X.; Tian, Q.; Wu, Y.; Zhang, G.; Meng, J.; Yang, Z.; Lu, H. Preoperative prediction of muscular invasiveness of bladder cancer with radiomic features on conventional MRI and its high-order derivative maps. Abdom. Radiol. 2017, 42, 1896–1905. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, C.; Udupa, J.K.; Tong, Y.; Chen, J.; Venigalla, S.; Odhner, D.; Guzzo, T.J.; Christodouleas, J.; Torigian, D.A. Urinary bladder cancer T-staging from T2-weighted MR images using an optimal biomarker approach. In Medical Imaging 2018: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2018; Volume 10575, pp. 526–531. [Google Scholar]
- Urdal, J.; Engan, K.; Kvikstad, V.; Janssen, E.A. Prognostic prediction of histopathological images by local binary patterns and RUSBoost. In Proceedings of the 2017 25th European Signal Processing Conference (EUSIPCO), Kos Island, Greece, 28 August–2 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 2349–2353. [Google Scholar]
- Tong, Y.; Udupa, J.K.; Wang, C.; Chen, J.; Venigalla, S.; Guzzo, T.J.; Mamtani, R.; Baumann, B.C.; Christodouleas, J.P.; Torigian, D.A. Radiomics-guided therapy for bladder cancer: Using an optimal biomarker approach to determine extent of bladder cancer invasion from t2-weighted magnetic resonance images. Adv. Radiat. Oncol. 2018, 3, 331–338. [Google Scholar] [CrossRef]
- Lin, P.; Wen, D.Y.; Chen, L.; Li, X.; Li, S.h.; Yan, H.B.; He, R.Q.; Chen, G.; He, Y.; Yang, H. A radiogenomics signature for predicting the clinical outcome of bladder urothelial carcinoma. Eur. Radiol. 2020, 30, 547–557. [Google Scholar] [CrossRef]
- Çinar, U.; Çetin, Y.Y.; Çetin-Atalay, R.; Çetin, E. Classification of human carcinoma cells using multispectral imagery. In Medical Imaging 2016: Digital Pathology; SPIE: Bellingham, WA, USA, 2016; Volume 9791, pp. 341–346. [Google Scholar]
- Lingley-Papadopoulos, C.A.; Loew, M.H.; Manyak, M.J.; Zara, J.M. Computer recognition of cancer in the urinary bladder using optical coherence tomography and texture analysis. J. Biomed. Opt. 2008, 13, 024003. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, X.; Tian, Q.; Li, B.; Wu, Y.; Yang, Z.; Liang, Z.; Liu, Y.; Cui, G.; Lu, H. Radiomics assessment of bladder cancer grade using texture features from diffusion-weighted imaging. J. Magn. Reson. Imaging 2017, 46, 1281–1288. [Google Scholar] [CrossRef]
- Yang, Y.; Zou, X.; Wang, Y.; Ma, X. Application of deep learning as a noninvasive tool to differentiate muscle-invasive bladder cancer and non–muscle-invasive bladder cancer with CT. Eur. J. Radiol. 2021, 139, 109666. [Google Scholar] [CrossRef]
- Chapman-Sung, D.H.; Hadjiiski, L.; Gandikota, D.; Chan, H.P.; Samala, R.; Caoili, E.M.; Cohan, R.H.; Weizer, A.; Alva, A.; Zhou, C. Convolutional neural network-based decision support system for bladder cancer staging in CT urography: Decision threshold estimation and validation. In Medical Imaging 2020: Computer-Aided Diagnosis; SPIE: Bellingham, WA, USA, 2020; Volume 11314, pp. 424–429. [Google Scholar]
- Zhang, G.; Xu, L.; Zhao, L.; Mao, L.; Li, X.; Jin, Z.; Sun, H. CT-based radiomics to predict the pathological grade of bladder cancer. Eur. Radiol. 2020, 30, 6749–6756. [Google Scholar] [CrossRef]
- Yin, P.N.; Kc, K.; Wei, S.; Yu, Q.; Li, R.; Haake, A.R.; Miyamoto, H.; Cui, F. Histopathological distinction of non-invasive and invasive bladder cancers using machine learning approaches. BMC Med. Inform. Decis. Mak. 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. ImageNet: A Large-Scale Hierarchical Image Database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar]
- Magers, M.J.; Lopez-Beltran, A.; Montironi, R.; Williamson, S.R.; Kaimakliotis, H.Z.; Cheng, L. Staging of bladder cancer. Histopathology 2019, 74, 112–134. [Google Scholar] [CrossRef] [PubMed]
- Tritschler, S.; Mosler, C.; Straub, J.; Buchner, A.; Karl, A.; Graser, A.; Stief, C.; Tilki, D. Staging of muscle-invasive bladder cancer: Can computerized tomography help us to decide on local treatment? World J. Urol. 2012, 30, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Bochner, B.H.; Chou, R.; Dreicer, R.; Kamat, A.M.; Lerner, S.P.; Lotan, Y.; Meeks, J.J.; Michalski, J.M.; Morgan, T.M.; et al. Treatment of non-metastatic muscle-invasive bladder cancer: AUA/ASCO/ASTRO/SUO guideline. J. Urol. 2017, 198, 552–559. [Google Scholar] [CrossRef]
- Chang, S.S.; Boorjian, S.A.; Chou, R.; Clark, P.E.; Daneshmand, S.; Konety, B.R.; Pruthi, R.; Quale, D.Z.; Ritch, C.R.; Seigne, J.D.; et al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol. 2016, 196, 1021–1029. [Google Scholar] [CrossRef]
- Brierley, J.D.; Gospodarowicz, M.K.; Wittekind, C. TNM Classification of Malignant Tumours; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Yang, R.; Du, Y.; Weng, X.; Chen, Z.; Wang, S.; Liu, X. Automatic recognition of bladder tumours using deep learning technology and its clinical application. Int. J. Med. Robot. Comput. Assist. Surg. 2021, 17, e2194. [Google Scholar] [CrossRef] [PubMed]
Pre-Trained Model | Total No. of Layers in the Network | Last Pooling Layer | Layer No. of the Last Pooling Layer | Feature Vector Length |
---|---|---|---|---|
AlexNet | 25 | Max Pooling | 16 | 9216 |
GoogleNet | 144 | Global Average Pooling | 140 | 1024 |
InceptionV3 | 315 | Global Average Pooling | 312 | 2048 |
ResNet-50 | 177 | Global Average Pooling | 174 | 2048 |
XceptionNet | 170 | Global Average Pooling | 167 | 2048 |
6 | 9 | 35 | 9 | 13 | 24 | 4 |
Feature Extractor | Classifier | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|---|
AlexNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
GoogleNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
InceptionV3 | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
ResNet50 | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
XceptionNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT |
Feature Extractor | Classifier | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|---|
AlexNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
GoogleNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
InceptionV3 | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
ResNet50 | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
XceptionNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT |
Feature Extractor | Classifier | Accuracy | Sensitivity | Specificity | Precision | F1-Score |
---|---|---|---|---|---|---|
AlexNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
GoogleNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
InceptionV3 | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
ResNet50 | NB | |||||
SVM | ||||||
LDA | ||||||
DT | ||||||
XceptionNet | NB | |||||
SVM | ||||||
LDA | ||||||
DT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkar, S.; Min, K.; Ikram, W.; Tatton, R.W.; Riaz, I.B.; Silva, A.C.; Bryce, A.H.; Moore, C.; Ho, T.H.; Sonpavde, G.; et al. Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach. Cancers 2023, 15, 1673. https://doi.org/10.3390/cancers15061673
Sarkar S, Min K, Ikram W, Tatton RW, Riaz IB, Silva AC, Bryce AH, Moore C, Ho TH, Sonpavde G, et al. Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach. Cancers. 2023; 15(6):1673. https://doi.org/10.3390/cancers15061673
Chicago/Turabian StyleSarkar, Suryadipto, Kong Min, Waleed Ikram, Ryan W. Tatton, Irbaz B. Riaz, Alvin C. Silva, Alan H. Bryce, Cassandra Moore, Thai H. Ho, Guru Sonpavde, and et al. 2023. "Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach" Cancers 15, no. 6: 1673. https://doi.org/10.3390/cancers15061673
APA StyleSarkar, S., Min, K., Ikram, W., Tatton, R. W., Riaz, I. B., Silva, A. C., Bryce, A. H., Moore, C., Ho, T. H., Sonpavde, G., Abdul-Muhsin, H. M., Singh, P., & Wu, T. (2023). Performing Automatic Identification and Staging of Urothelial Carcinoma in Bladder Cancer Patients Using a Hybrid Deep-Machine Learning Approach. Cancers, 15(6), 1673. https://doi.org/10.3390/cancers15061673