Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer or Suspected Related Hereditary Syndromes: Historical Prospective Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Next-Generation Sequencing
2.3. Bioinformatic Analyses and Variant Characterization
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, W.; Chawla, A.; O’Reilly, E.M. Pancreatic Cancer: A Review. JAMA 2021, 326, 851–862. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- GBD 2017 Pancreatic Cancer Collaborators. The global, regional, and national burden of pancreatic cancer and its attributable risk factors in 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2019, 4, 934–947. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Rainone, M.; Singh, I.; Salo-Mullen, E.; Stadler, Z.K.; O’Reilly, E.M. An Emerging Paradigm for Germline Testing in Pancreatic Ductal Adenocarcinoma and Immediate Implications for Clinical Practice A Review. JAMA Oncol. 2020, 6, 764–771. [Google Scholar] [CrossRef]
- Matsubayashi, H. Familial pancreatic cancer and hereditary syndromes: Screening strategy for high-risk individuals. J. Gastroenterol. 2011, 46, 1249–1259. [Google Scholar] [CrossRef]
- Paiella, S.; Capurso, G.; Cavestro, G.M.; Butturini, G.; Pezzilli, R.; Salvia, R.; Signoretti, M.; Crippa, S.; Carrara, S.; Frigerio, I.; et al. Results of First-Round of Surveillance in Individuals at High-Risk of Pancreatic Cancer from the AISP (Italian Association for the Study of the Pancreas) Registry. Am. J. Gastroenterol. 2019, 114, 665–670. [Google Scholar] [CrossRef]
- Brand, R.; Borazanci, E.; Speare, V.; Dudley, B.; Karloski, E.; Peters, M.L.B.; Stobie, L.; Bahary, N.; Zeh, H.; Zureikat, A.; et al. Prospective study of germline genetic testing in incident cases of pancreatic adenocarcinoma. Cancer 2018, 124, 3520–3527. [Google Scholar] [CrossRef]
- Yurgelun, M.B.; Chittenden, A.B.; Morales-Oyarvide, V.; Rubinson, D.A.; Dunne, R.F.; Kozak, M.M.; Rong Qian, Z.; Welch, M.W.; Brais, L.K.; Da Silva, A.; et al. Germline cancer susceptibility gene variants, somatic second hits, and survival outcomes in patients with resected pancreatic cancer. Genet. Med. 2019, 21, 213–223. [Google Scholar] [CrossRef]
- Huang, K.L.; Mashl, R.J.; Wu, Y.; Ritter, D.I.; Wang, J.; Oh, C.; Paczkowska, M.; Reynolds, S.; Wyczalkowski, M.A.; Oak, N.; et al. Pathogenic Germline Variants in 10,389 Adult Cancers. Cell 2018, 173, 355–370.e14. [Google Scholar] [CrossRef]
- Mavaddat, N.; Peock, S.; Frost, D.; Ellis, S.; Platte, R.; Fineberg, E.; Evans, G.D.; Izatt, L.; Eeles, R.A.; Adlard, J.; et al. Cancer risks for BRCA1 and BRCA2 mutation carriers: Results from prospective analysis of EMBRACE. J. Natl. Cancer Inst. 2013, 105, 812–822. [Google Scholar] [CrossRef]
- Vietri, M.T.; D’Elia, G.; Caliendo, G.; Albanese, A.; Signorello, G.; Napoli, C.; Molinari, A.M. Pancreatic Cancer with Mutation in BRCA1/2, MLH1, and APC Genes: Phenotype Correlation and Detection of a Novel Germline BRCA2 Mutation. Genes 2022, 13, 321. [Google Scholar] [CrossRef] [PubMed]
- Ghiorzo, P.; Fornarini, G.; Sciallero, S.; Battistuzzi, L.; Belli, F.; Bernard, L.; Bonelli, L.; Borgonovo, G.; Bruno, W.; De Cian, F.; et al. CDKN2A is the main susceptibility gene in Italian pancreatic cancer families. J. Med. Genet. 2012, 49, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Roberts, N.J.; Jiao, Y.; Yu, J.; Kopelovich, L.; Petersen, G.M.; Bondy, M.L.; Gallinger, S.; Schwartz, A.G.; Syngal, S.; Cote, M.L.; et al. ATM mutations in patients with hereditary pancreatic cancer. Cancer Discov. 2012, 2, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zhen, D.B.; Rabe, K.G.; Gallinger, S.; Syngal, S.; Schwartz, A.G.; Goggins, M.G.; Hruban, R.H.; Cote, M.L.; McWilliams, R.R.; Roberts, N.J.; et al. BRCA1, BRCA2, PALB2, and CDKN2A mutations in familial pancreatic cancer: A PACGENE study. Genet. Med. 2015, 17, 569–577. [Google Scholar] [CrossRef] [PubMed]
- Zhan, W.; Shelton, C.A.; Greer, P.J.; Brand, R.E.; Whitcomb, D.C. Germline Variants and Risk for Pancreatic Cancer: A Systematic Review and Emerging Concepts. Pancreas. 2018, 47, 924–936. [Google Scholar] [CrossRef]
- Daly, M.B.; Pilarski, R.; Yurgelun, M.; Berry, M.P.; Buys, S.S.; Dickson, P.; Domchek, S.M.; Elkhanany, A.; Friedman, S.; Garber, J.E.; et al. NCCN Guidelines Insights: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 1.2020. J. Natl. Compr. Canc. Netw. 2022, 18, 380–391. Available online: https://www.nccn.org/guidelines/guidelines-detail?category=2&id=1503 (accessed on 3 October 2022).
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.; Hochhauser, D.; Arnold, D.; Oh, D.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
- Slade, D. PARP and PARG inhibitors in cancer treatment. Genes. Dev. 2020, 34, 360–394. [Google Scholar] [CrossRef]
- Eso, Y.; Shimizu, T.; Takeda, H.; Takai, A.; Marusawa, H. Microsatellite instability and immune checkpoint inhibitors: Toward precision medicine against gastrointestinal and hepatobiliary cancers. J. Gastroenterol. 2020, 55, 15–26. [Google Scholar] [CrossRef]
- Russo, A.; Incorvaia, L.; Capoluongo, E.; Tagliaferri, P.; Gori, S.; Cortesi, L.; Genuardi, M.; Turchetti, D.; De Giorgi, U.; Di Maio, M.; et al. Implementation of preventive and predictive BRCA testing in patients with breast, ovarian, pancreatic, and prostate cancer: A position paper of Italian Scientific Societies. ESMO Open 2022, 7, 100459. [Google Scholar] [CrossRef]
- Silvestris, N.; Brunetti, O.; Bittoni, A.; Cataldo, I.; Corsi, D.; Crippa, S.; D’Onofrio, M.; Fiore, M.; Giommoni, E.; Milella, M.; et al. Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up of Exocrine Pancreatic Ductal Adenocarcinoma: Evidence Evaluation and Recommendations by the Italian Association of Medical Oncology (AIOM). Cancers 2020, 12, 1681. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Kitago, M.; Kitagawa, Y.; Hirasawa, A. Hereditary pancreatic cancer. Int. J. Clin. Oncol. 2021, 26, 1784–1792. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hedge, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wei, C.; Cui, X.; Li, Y.; Gu, Y.; Gu, B.; Li, Q.; Whang, Z. Impacts of NF1 Gene Mutations and Genetic Modifiers in Neurofibromatosis Type 1. Front. Neurol. 2021, 12, 704639. [Google Scholar] [CrossRef]
- Puccini, A.; Ponzano, M.; Dalmasso, B. Clinical Significance of Germline Pathogenic Variants among 51 Cancer Predisposition Genes in an Unselected Cohort of Italian Pancreatic Cancer Patients. Cancers 2022, 14, 4447. [Google Scholar] [CrossRef]
- Astiazaran-Symonds, E.; Goldstein, A.M. A Systematic Review of the Prevalence of Germline Pathogenic Variants in Patients with Pancreatic Cancer. J. Gastroenterol. 2021, 56, 713–721. [Google Scholar] [CrossRef]
- Grant, R.C.; Selander, I.; Connor, A.A.; Selvarajah, S.; Borgida, A.; Briollais, L.; Petersen, G.M.; Lerner-Ellis, J.; Holter, S.; Gallinger, S. Prevalence of germline mutations in cancer predisposition genes in patients with pancreatic cancer. Gastroenterology 2015, 148, 556–564. [Google Scholar] [CrossRef]
- Chaffee, K.G.; Oberg, A.L.; McWilliams, R.R.; Majithia, N.; Allen, B.A.; Kidd, J.; Singh, N.; Hartman, A.R.; Wenstrup, R.J.; Petersen, G.M. Prevalence of germ-line mutations in cancer genes among pancreatic cancer patients with a positive family history. Genet. Med. 2018, 20, 119–127. [Google Scholar] [CrossRef]
- Salo-Mullen, E.E.; O’Reilly, E.M.; Kelsen, D.P.; Ashraf, A.M.; Lowery, M.A.; Yu, K.H.; Reidy, D.L.; Epstein, A.S.; Lincoln, A.; Saldia, A.; et al. Identification of germline genetic mutations in patients with pancreatic cancer. Cancer 2015, 121, 4382–4388. [Google Scholar] [CrossRef]
- Singhi, A.D.; Koay, E.J.; Chari, S.T.; Maitra, A. Early Detection of Pancreatic Cancer: Opportunities and Challenges. Gastroenterology 2019, 156, 2024–2040. [Google Scholar] [CrossRef]
- Furniss, C.S.; Yurgelun, M.B.; Ukaegbu, C.; Constantinou, P.E.; Lafferty, C.C.; Talcove-Berko, E.R.; Schwartz, A.N.; Stopfer, J.E.; Underhill-Blazey, M.; Kenner, B.; et al. Novel Models of Genetic Education and Testing for Pancreatic Cancer Interception: Preliminary Results from the GENERATE Study. Cancer Prev. Res. 2021, 14, 1021–1032. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Golesworthy, B.; Cuggia, A.; Domecq, C.; Chaudhury, P.; Barkun, J.; Metrakos, P.; Asselah, J.; Bouganim, N.; Gao, Z.H.; et al. Oncology clinic-based germline genetic testing for exocrine pancreatic cancer enables timely return of results and unveils low uptake of cascade testing. J. Med. Genet. 2022, 59, 793–800. [Google Scholar] [CrossRef]
- Murali, K.; Dwarte, T.M.; Nikfarjam, M.; Tucker, K.M.; Vaughan, R.B.; Efthymiou, M.; Collins, A.; Spigelman, A.D.; Salmon, L.; Johns, A.L.; et al. Significant detection of new germline pathogenic variants in Australian Pancreatic Cancer Screening Program participants. Hered. Cancer Clin. Pract. 2021, 19, 33. [Google Scholar] [CrossRef]
- Saldia, A.; Olson, S.H.; Nunes, P.; Liang, X.; Samson, M.L.; Salo-Mullen, E.; Marcell, V.; Stadler, Z.K.; Allen, P.J.; Offit, K.; et al. Outcome of Pancreatic Cancer Surveillance Among High-Risk Individuals Tested for Germline Mutations in BRCA1 and BRCA2. Cancer Prev Res. 2019, 12, 599–608. [Google Scholar] [CrossRef]
- Goggins, M.; Overbeek, K.A.; Brand, R.; Syngal, S.; Del Chiaro, M.; Bartsch, D.K.; Bassi, C.; Carrato, A.; Farrell, J.; Fishman, E.K.; et al. International Cancer of the Pancreas Screening (CAPS) consortium. Management of patients with increased risk for familial pancreatic cancer: Updated recommendations from the International Cancer of the Pancreas Screening (CAPS) Consortium. Gut 2020, 69, 7–17. [Google Scholar] [CrossRef]
- Vasen, H.; Ibrahim, I.; Ponce, C.G.; Slater, E.P.; Matthäi, E.; Carrato, A.; Earl, J.; Robbers, K.; van Mil, A.M.; Potjer, T.; et al. Benefit of Surveillance for Pancreatic Cancer in High-Risk Individuals: Outcome of Long-Term Prospective Follow-Up Studies From Three European Expert Centers. J. Clin. Oncol. 2016, 34, 2010–2019. [Google Scholar] [CrossRef] [PubMed]
- Overbeek, K.A.; Levink, I.J.M.; Koopmann, B.D.M.; Harinck, F.; Konings, I.C.A.W.; Ausems, M.G.E.M.; Wagner, A.; Fockens, P.; van Eijck, C.H.; Groot Koerkamp, B.; et al. Dutch Familial Pancreatic Cancer Surveillance Study Group. Long-term yield of pancreatic cancer surveillance in high-risk individuals. Gut 2022, 71, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- de Mestier, L.; Muller, M.; Cros, J.; Vullierme, M.P.; Vernerey, D.; Maire, F.; Dokmak, S.; Rebours, V.; Sauvanet, A.; Lévy, P.; et al. Appropriateness of pancreatic resection in high-risk individuals for familial pancreatic ductal adenocarcinoma: A patient-level meta-analysis and proposition of the Beaujon score. United Eur. Gastroenterol. J. 2019, 7, 358–368. [Google Scholar] [CrossRef]
- Capurso, G.; Paiella, S.; Carrara, S.; Butturini, G.; Sacchettin, E.; Frullon, L.; Zerbi, A.; Falconi, M. Italian registry of families at risk of pancreatic cancer: AISP Familial Pancreatic Cancer Study Group. Dig. Liver Dis. 2020, 52, 1126–1130. [Google Scholar] [CrossRef]
- Aslanian, H.; Lee, J.; Canto, M. AGA Clinical Practice Update on Pancreas Cancer Screening in High-Risk Individuals: Expert Review. Gastroenterology 2020, 159, 358–362. [Google Scholar] [CrossRef]
- Lesueur, F.; Easton, D.F.; Renault, A.L.; Tavtigian, S.V.; Bernstein, J.L.; Kote-Jarai, Z.; Eeles, R.A.; Plaseska-Karanfia, D.; Feliubadaló, L.; Arun, B.; et al. First international workshop of the ATM and cancer risk group (4–5 December 2019). Fam. Cancer. 2022, 21, 211–227. [Google Scholar] [CrossRef] [PubMed]
Syndrome | Gene | Cancer Type and Risk |
---|---|---|
Breast and ovarian cancer syndrome (HBOC) | BRCA1/2 | PDAC: relative risk of 2–10%, lifelong risk 3–10%. High risk of breast, ovarian, and prostate cancer. |
Lynch syndrome (LS) | MLH1 MSH2 MSH6 PMS2 EPCAM | PDAC: for MLH1 relative risk of ~7%, lifelong risk ~6%. Colorectal, gastric, and endometrial cancer. Phenotype depends on the specific gene and mutation. |
Familial atypical multiple mole melanoma syndrome (FAMM) | CDKN2A | PDAC: relative risk of 13–39%, lifelong risk ~17%. High risk of malignant melanoma. |
Peutz–Jeghers syndrome | STK11 | PDAC: relative risk of 70–75%, lifelong risk > 25%. Gastrointestinal polyposis. |
Li–Fraumeni syndrome | TP53 | PDAC: ~7% of lifelong risk. High risk of hematopoietic malignancies, breast cancer, central nervous system tumors, osteosarcomas, and soft-tissue sarcomas. |
Others | PALB2 ATM BMPR1A SMAD4 | PDAC: relative risk ~2.5%, lifelong risk ~5%. Female breast and ovarian cancer. |
Patients’ Features | n = 113 n, (%) | PVs Carrier n (%) | p-Value |
---|---|---|---|
Sex (female) | 82 (72.6) | ||
Indication for genetic testing
| 31 (27.4) 15 (13.3) 55 (48.6) 26 (23.0) 28 (24.8) 1 (0.9) 12 (10.6) | 3/31 (9.7) * 2/15 (13.3) # 16/55 (29.1) 7/26 (26.9) ç 9/28 (32.1) ° 0/1 (0.0) 2/12 (16.7) & | 0.06 ∇ 0.05 ∇ |
Genetic Variant Details | n = 113 n (%) |
---|---|
Total mutations PVs (class 5) VUS | 58 (51.3) 23 (20.1) 35 (31.0) |
PVs BRCA2 CDKN2A ATM BRCA1 Others * | n = 24 9 (37.5) 6 (25.0) 3 (12.5) 2 (8.3) |
VUS Lynch genes † ATM BRCA ½ PALB2 APC Others ‡ | n = 39 16 (41.0) 9 (23.1) 6 (15.4) 2 (5.1) 2 (5.1) 4 (10.2) |
Patient | Indication for Genetic Testing | Clinical Features | Gene | Nomenclature | Protein Change | Variant Interpretation |
---|---|---|---|---|---|---|
1 | Ssyn | Unaffected; two first-degree relatives affected by melanomas and two first-degree relatives affected by PDAC | CDKN2A | c.142C>A | p.Pro48Thr | Class 5 |
2 | Ssyn | Affected by metastatic PDAC and metachronous breast cancer | MITF | c.1255G>A | p.Glu419Lys | Class 5 |
3 | FH | Unaffected; two first-degree and one second-degree relatives affected by PDAC | BRCA2 | c.6469C>T | p.Gln2157Ter | Class 5 |
4 | Ssyn | Affected by PDAC and metachronous melanoma, one first-degree relative affected by PDAC | CDKN2A | c.71G>C | p.Arg24Pro | Class 5 |
5 | Ssyn | Affected by PDAC and metachronous melanoma, one first-degree relative affected by PDAC | CDKN2A | c.(?_-1)_(*1_?)del | p.0? | Class 5 |
6 | Ssyn | Affected by PDAC with ≥2 first-degree relatives affected by PDAC | BRCA2 | c.4229dupC | p.Ala1411Cysfs*3 | Class 5 |
7 | Ssyn | Affected by PDAC with ≥2 first-degree relatives affected by breast cancer | BRCA2 | c.5073dupA | p.Trp1692MetfsTer3 | Class 5 |
8 | FH | Unaffected; two first-degree and one second-degree relatives affected by PDAC | CDKN2A | c.377T>A | p.Val126Asp | Class 5 |
9 | Ssyn | Affected by breast cancer with ≥2 first-degree relatives affected by PDAC | ATM | c.217_218delGA | p.Glu73MetfsTer26 | Class 5 |
10 | Ssyn | Affected by breast cancer with ≥2 first-degree relatives affected by PDAC | CHEK2 | c.660delA | p.Gly221GlufsTer6 | Class 5 |
11 | Ssyn | Affected by PDAC and metachronous breast cancer | BRCA2 | c.1238delT | p.Leu413Hisfs*17 | Class 5 |
12 | jPDAC | Affected by PDAC before 50 years of age | BRCA2 | c.3744_3747delTGAG | p.Ser1248Argfs*10 | Class 5 |
13 | Ssyn | Affected by PDAC with ≥2 first-degree relatives affected by breast cancer or PDAC | CDKN2A | c.301G>T | p.Gly101Trp | Class 5 |
14 | mPDAC | Affected by metastatic PDAC | BRCA2 | c.3028A>T | p.Arg1010Ter | Class 5 |
15 | Ssyn | Affected by PDAC and metachronous breast cancer | BRCA2 | c.2094delA | p.Gln699SerfsTer31 | Class 5 |
16 | mPDAC | Affected by metastatic PDAC with one first-degree relative affected by breast cancer (bilateral) | ATM | c.8147T>C | p.Val2716Ala | Class 5 |
17 | Ssyn | Affected by PDAC and metachronous melanoma, one first-degree relative affected by melanoma | CDKN2A | c.301G>T | p.Gly101Trp | Class 5 |
18 | Ssyn | Affected by breast cancer with ≥2 first-degree relatives affected by breast cancer or PDAC | BRCA2 | c.7060C>T | p.Gln2354* | Class 5 |
19 | Ssyn | Affected by PDAC and metachronous melanoma and breast cancer | ATM | c.5592delA | p.His1865MetfsTer52 | Class 5 |
20 | Ssyn | Affected by PDAC and metachronous breast cancer | FANCM | c.5101C>T | p.Gln1701Ter | Class 5 |
21 | jPDAC | Affected by PDAC before 50 years of age | BRCA1 | c.3756_3759delGTCT | p.Ser1253ArgfsTer10 | Class 5 |
22 | Ssyn | Affected by PDAC and metachronous bilateral breast cancer | BRCA1 BRCA2 | c.181T>G c.755_758del | p.Cys61Gly p.Asp252ValfsTer24 | Class 5 Class 5 |
23 | mPDAC | Affected by metastatic PDAC with one second-degree relative affected by breast cancer | PALB2 | c.1266del | p.Val423Ter | Class 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dal Buono, A.; Poliani, L.; Greco, L.; Bianchi, P.; Barile, M.; Giatti, V.; Bonifacio, C.; Carrara, S.; Malesci, A.; Laghi, L. Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer or Suspected Related Hereditary Syndromes: Historical Prospective Analysis. Cancers 2023, 15, 1852. https://doi.org/10.3390/cancers15061852
Dal Buono A, Poliani L, Greco L, Bianchi P, Barile M, Giatti V, Bonifacio C, Carrara S, Malesci A, Laghi L. Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer or Suspected Related Hereditary Syndromes: Historical Prospective Analysis. Cancers. 2023; 15(6):1852. https://doi.org/10.3390/cancers15061852
Chicago/Turabian StyleDal Buono, Arianna, Laura Poliani, Luana Greco, Paolo Bianchi, Monica Barile, Valentina Giatti, Cristiana Bonifacio, Silvia Carrara, Alberto Malesci, and Luigi Laghi. 2023. "Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer or Suspected Related Hereditary Syndromes: Historical Prospective Analysis" Cancers 15, no. 6: 1852. https://doi.org/10.3390/cancers15061852
APA StyleDal Buono, A., Poliani, L., Greco, L., Bianchi, P., Barile, M., Giatti, V., Bonifacio, C., Carrara, S., Malesci, A., & Laghi, L. (2023). Prevalence of Germline Mutations in Cancer Predisposition Genes in Patients with Pancreatic Cancer or Suspected Related Hereditary Syndromes: Historical Prospective Analysis. Cancers, 15(6), 1852. https://doi.org/10.3390/cancers15061852