The Role of Transthoracic Echocardiography for Assessment of Mortality in Patients with Carcinoid Heart Disease Undergoing Valve Replacement
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Echocardiography
2.2. Cardiac Catheterisation
2.3. Data Collection
2.4. Ethics
2.5. Statistical Methods
3. Results
3.1. Demographics
3.2. Associations between Preoperative Variables and Postoperative Survival
3.3. Changes from Pre- to Early Postoperative Echocardiography
3.4. Associations between Postoperative TTE Parameters and Survival
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taal, B.G.; Visser, O. Epidemiology of neuroendocrine tumours. Neuroendocrinology 2004, 80 (Suppl. S1), 3–7. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; Dasari, A. Epidemiology, Incidence, and Prevalence of Neuroendocrine Neoplasms: Are There Global Differences? Curr. Oncol. Rep. 2021, 23, 1–13. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B.; Chen, J.; Su, Z.; Sun, S. The incidence, prevalence, and survival analysis of pancreatic neuroendocrine tumors in the United States. J. Endocrinol. Investig. 2022; epub ahead of print. [Google Scholar]
- Halperin, D.M.; Shen, C.; Dasari, A.; Xu, Y.; Chu, Y.; Zhou, S.; Shih, Y.-C.T.; Yao, J.C. Frequency of carcinoid syndrome at neuroendocrine tumour diagnosis: A population-based study. Lancet Oncol. 2017, 18, 525–534. [Google Scholar] [CrossRef]
- Rubin de Celis Ferrari, A.C.; Glasberg, J.; Riechelmann, R.P. Carcinoid syndrome: Update on the pathophysiology and treatment. Clinics 2018, 73, e490s. [Google Scholar] [CrossRef] [PubMed]
- Clement, D.; Ramage, J.; Srirajaskanthan, R. Update on Pathophysiology, Treatment and Complications of Carcinoid Syndrome. J. Oncol. 2020, 2020, 8341426. [Google Scholar] [CrossRef]
- Pellikka, P.A.; Tajik, A.J.; Khandheria, B.K.; Seward, J.B.; Callahan, J.A.; Pitot, H.C.; Kvols, L.K. Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients. Circulation 1993, 87, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Grozinsky-Glasberg, S.; Davar, J.; Hofland, J.; Dobson, R.; Prasad, V.; Pascher, A.; Denecke, T.; Tesselaar, M.E.T.; Panzuto, F.; Albåge, A.; et al. European Neuroendocrine Tumor Society (ENETS) 2022 Guidance Paper for Carcinoid Syndrome and Carcinoid Heart Disease. J. Neuroendocrinol. 2022, 34, e13146. [Google Scholar] [CrossRef]
- Moller, J.E.; Pellikka, P.A.; Bernheim, A.M.; Schaff, H.V.; Rubin, J.; Connolly, H.M. Prognosis of carcinoid heart disease: Analysis of 200 cases over two decades. Circulation 2005, 112, 3320–3327. [Google Scholar] [CrossRef] [Green Version]
- Moller, J.E.; Connolly, H.M.; Rubin, J.; Seward, J.B.; Modesto, K.; Pellikka, P.A. Factors associated with progression of carcinoid heart disease. N. Engl. J. Med. 2003, 348, 1005–1015. [Google Scholar] [CrossRef]
- O’Malley, T.J.; Jimenez, D.C.; Saxena, A.; Weber, M.P.; Samuels, L.E.; Entwistle, J.W.; Guy, T.S.; Massey, H.T.; Morris, R.J.; Tchantchaleishvili, V. Outcomes of surgical treatment for carcinoid heart disease: A systematic review and meta-analysis. Surgery 2021, 170, 390–396. [Google Scholar] [CrossRef]
- Edwards, N.C.; Yuan, M.; Nolan, O.; Pawade, T.A.; Oelofse, T.; Singh, H.; Mehrzad, H.; Zia, Z.; Geh, J.I.; Palmer, D.H.; et al. Effect of Valvular Surgery in Carcinoid Heart Disease: An Observational Cohort Study. J. Clin. Endocrinol. Metab. 2016, 101, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Komoda, S.; Komoda, T.; Pavel, M.E.; Morawietz, L.; Wiedenmann, B.; Hetzer, R.; Lehmkuhl, H.B. Cardiac surgery for carcinoid heart disease in 12 cases. Gen. Thorac. Cardiovasc. Surg. 2011, 59, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Raja, S.G.; Toumpanakis, C.; Caplin, M.E.; Dreyfus, G.D.; Davar, J. Outcomes, risks and complications of cardiac surgery for carcinoid heart disease. Eur. J. Cardiothorac. Surg. 2011, 40, 168–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuntze, T.; Owais, T.; Secknus, M.A.; Kaemmerer, D.; Baum, R.; Girdauskas, E. Results of Contemporary Valve Surgery in Patients with Carcinoid Heart Disease. J. Heart Valve Dis. 2016, 25, 356–363. [Google Scholar] [PubMed]
- Mortelmans, P.; Herregods, M.C.; Rega, F.; Timmermans, P. The path to surgery in carcinoid heart disease: A retrospective study and a multidisciplinary proposal of a new algorithm. Acta Cardiol. 2019, 74, 207–214. [Google Scholar] [CrossRef]
- Nguyen, A.; Schaff, H.V.; Abel, M.D.; Luis, S.A.; Lahr, B.D.; Halfdanarson, T.R.; Connolly, H.M. Improving outcome of valve replacement for carcinoid heart disease. J. Thorac. Cardiovasc. Surg. 2019, 158, 99–107. [Google Scholar] [CrossRef]
- Mokhles, P.; Van Herwerden, L.A.; De Jong, P.L.; De Herder, W.W.; Siregar, S.; Constantinescu, A.A.; Van Domburg, R.T.; Roos-Hesselink, J.W. Carcinoid heart disease: Outcomes after surgical valve replacement. Eur. J. Cardiothorac. Surg. 2012, 41, 1278–1283. [Google Scholar] [CrossRef] [Green Version]
- Yong, M.S.; Kong, G.; Ludhani, P.; Michael, M.; Morgan, J.; Hofman, M.S.; Hicks, R.J.; Larobina, M. Early Outcomes of Surgery for Carcinoid Heart Disease. Heart Lung. Circ. 2020, 29, 742–747. [Google Scholar] [CrossRef]
- Korach, A.; Grozinsky-Glasberg, S.; Atlan, J.; Dabah, A.; Atlan, K.; Rudis, E.; Elami, A.; Gross, D.J.; Reardon, M.J.; Shapira, O.M. Valve Replacement in Patients with Carcinoid Heart Disease: Choosing the Right Valve at the Right Time. J. Heart Valve Dis. 2016, 25, 349–355. [Google Scholar]
- Robiolio, P.A.; Rigolin, V.H.; Harrison, J.K.; Lowe, J.E.; Moore, J.O.; Bashore, T.M.; Feldman, J.M. Predictors of outcome of tricuspid valve replacement in carcinoid heart disease. Am. J. Cardiol. 1995, 75, 485–488. [Google Scholar] [CrossRef]
- Davar, J.; Connolly, H.M.; Caplin, M.E.; Pavel, M.; Zacks, J.; Bhattacharyya, S.; Cuthbertson, D.J.; Dobson, R.; Grozinsky-Glasberg, S.; Steeds, R.P.; et al. Diagnosing and Managing Carcinoid Heart Disease in Patients With Neuroendocrine Tumors: An Expert Statement. J. Am. Coll. Cardiol. 2017, 69, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
- Steeds, R.; Sagar, V.; Shetty, S.; Oelofse, T.; Singh, H.; Ahmad, R.; Bradley, E.; Moore, R.; Vickrage, S.; Smith, S.; et al. Multidisciplinary team management of carcinoid heart disease. Endocr. Connect. 2019, 8, R184–R199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wharton, G.; Steeds, R.; Allen, J.; Phillips, H.; Jones, R.; Kanagala, P.; Lloyd, G.; Masani, N.; Mathew, T.; Oxborough, D.; et al. A minimum dataset for a standard adult transthoracic echocardiogram: A guideline protocol from the British Society of Echocardiography. Echo. Res. Pract. 2015, 2, G9–G24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancellotti, P.; Tribouilloy, C.; Hagendorff, A.; Popescu, B.A.; Edvardsen, T.; Pierard, L.A.; Badano, L.; Zamorano, J.L. Recommendations for the echocardiographic assessment of native valvular regurgitation: An executive summary from the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 611–644. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr. 2015, 16, 233–271. [Google Scholar]
- Wheeler, R.; Steeds, R.; Rana, B.; Wharton, G.; Smith, N.; Allen, J.; Chambers, J.; Jones, R.; Lloyd, G.; O’Gallagher, K.; et al. A minimum dataset for a standard transoesphageal echocardiogram: A guideline protocol from the British Society of Echocardiography. Echo. Res. Pract. 2015, 2, G29–G45. [Google Scholar] [CrossRef] [Green Version]
- Trevelyan, J.; Steeds, R.P. Comparison of transthoracic echocardiography with harmonic imaging with transoesophageal echocardiography for the diagnosis of patent foramen ovale. Postgrad. Med. J. 2006, 82, 613–614. [Google Scholar] [CrossRef] [Green Version]
- Dandel, M.; Hetzer, R. Echocardiographic assessment of the right ventricle: Impact of the distinctly load dependency of its size, geometry and performance. Int. J. Cardiol. 2016, 221, 1132–1142. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 77, e25–e197. [Google Scholar]
- Dobson, R.; Valle, J.W.; Burgess, M.I.; Poston, G.J.; Cuthbertson, D.J. Variation in Cardiac Screening and Management of Carcinoid Heart Disease in the UK and Republic of Ireland. Clin. Oncol. (R. Coll. Radiol.) 2015, 27, 741–746. [Google Scholar] [CrossRef]
- Genovese, D.; Mor-Avi, V.; Palermo, C.; Muraru, D.; Volpato, V.; Kruse, E.; Yamat, M.; Aruta, P.; Addetia, K.; Badano, L.P.; et al. Comparison Between Four-Chamber and Right Ventricular-Focused Views for the Quantitative Evaluation of Right Ventricular Size and Function. J. Am. Soc. Echocardiogr. 2019, 32, 484–494. [Google Scholar] [CrossRef] [PubMed]
Overall | One-Year Postoperative Mortality | ||||||
---|---|---|---|---|---|---|---|
No | Yes | p-Value | |||||
N | Statistic | N | Statistic | N | Statistic | ||
Preoperative Factors | |||||||
Age at Assessment (Years) | 49 | 64.4 ± 7.6 | 30 | 64.7 ± 7.8 | 19 | 64.1 ± 7.5 | 0.629 |
Gender (% Female) | 49 | 22 (45%) | 30 | 15 (50%) | 19 | 7 (37%) | 0.395 |
BMI (kg/m2) | 49 | 23.6 (21.9–26.9) | 30 | 23.7 (22.2–26.3) | 19 | 23.6 (20.0–29.9) | 0.886 |
Active Weight Loss | 27 | 12 (44%) | 16 | 7 (44%) | 11 | 5 (45%) | 1.000 |
Diabetes | 40 | 6 (15%) | 25 | 3 (12%) | 15 | 3 (20%) | 0.645 |
Hypertension | 40 | 23 (58%) | 25 | 14 (56%) | 15 | 9 (60%) | 1.000 |
Smoking Status | 40 | 25 | 15 | 1.000 | |||
Non- | 34 (85%) | 21 (84%) | 13 (87%) | ||||
Ex- | 4 (10%) | 3 (12%) | 1 (7%) | ||||
Current | 2 (5%) | 1 (4%) | 1 (7%) | ||||
NYHA Class | 41 | 26 | 15 | 0.468 * | |||
I | 5 (12%) | 2 (8%) | 3 (20%) | ||||
II | 20 (49%) | 13 (50%) | 7 (47%) | ||||
III | 15 (37%) | 11 (42%) | 4 (27%) | ||||
IV | 1 (2%) | 0 (0%) | 1 (7%) | ||||
5HIAA Excretion (u/mol/24 h) | 35 | 719 (341–1222) | 22 | 748 (389–1222) | 13 | 719 (199–1200) | 0.585 |
EuroScore II | 49 | 2.43 (1.41–3.16) | 30 | 2.62 (1.41–3.12) | 19 | 2.25 (1.30–4.83) | 0.829 |
Peri-/Postoperative Factors | |||||||
CABG | 46 | 5 (11%) | 29 | 3 (10%) | 17 | 2 (12%) | 1.000 |
PFO Closure | 46 | 12 (26%) | 29 | 7 (24%) | 17 | 5 (29%) | 0.737 |
PPM Inserted | 48 | 23 (48%) | 30 | 15 (50%) | 18 | 8 (44%) | 0.772 |
Pulmonary Valve Replacement | 49 | 39 (80%) | 30 | 25 (83%) | 19 | 14 (74%) | 0.414 |
Postoperative Length of Stay (Days) | 47 | 14 (10–18) | 29 | 14 (9–17) | 18 | 15 (12–20) | 0.398 |
Overall | One-Year Postoperative Mortality | ||||||
---|---|---|---|---|---|---|---|
No | Yes | p-Value | |||||
N | Statistic | N | Statistic | N | Statistic | ||
TTE to Surgery (Days) | 48 | 78 (46–130) | 29 | 87 (47–132) | 19 | 67 (45–127) | 0.689 |
RV Base Diameter (cm) | 44 | 4.5 ± 0.9 | 26 | 4.4 ± 0.9 | 18 | 4.7 ± 0.9 | 0.075 |
RV Size | 49 | 30 | 19 | 0.039 * | |||
Normal | 6 (12%) | 4 (13%) | 2 (11%) | ||||
Mild Dilation | 11 (22%) | 9 (30%) | 2 (11%) | ||||
Moderate Dilation | 9 (18%) | 7 (23%) | 2 (11%) | ||||
Severe Dilation | 23 (47%) | 10 (33%) | 13 (68%) | ||||
RV Function | 49 | 30 | 19 | 0.840 * | |||
Normal | 42 (86%) | 26 (87%) | 16 (84%) | ||||
Mild Impairment | 4 (8%) | 2 (7%) | 2 (11%) | ||||
Moderate Impairment | 3 (6%) | 2 (7%) | 1 (5%) | ||||
Severe Impairment | 0 (0%) | 0 (0%) | 0 (0%) | ||||
TAPSE (cm) | 42 | 2.4 (2.0–2.7) | 24 | 2.3 (2.1–2.8) | 18 | 2.4 (2.0–2.6) | 0.779 |
RV FAC (%) | 34 | 52 (42–55) | 19 | 53 (49–56) | 15 | 45 (37–53) | 0.165 |
RV-PA Coupling (mm/mmHG) | 37 | 0.74 (0.59–0.94) | 21 | 0.76 (0.63–0.96) | 16 | 0.69 (0.58–0.92) | 0.490 |
RV S Wave (cm/s) | 27 | 14.8 ± 3.5 | 12 | 13.8 ± 2.2 | 15 | 15.5 ± 4.1 | 0.204 |
LV Size | 48 | 29 | 19 | 1.000 * | |||
Normal | 48 (100%) | 29 (100%) | 19 (100%) | ||||
Mild Dilation | 0 (0%) | 0 (0%) | 0 (0%) | ||||
Moderate Dilation | 0 (0%) | 0 (0%) | 0 (0%) | ||||
Severe Dilation | 0 (0%) | 0 (0%) | 0 (0%) | ||||
LVIDd (cm) | 42 | 4.0 ± 0.6 | 25 | 3.9 ± 0.5 | 17 | 4.1 ± 0.6 | 0.369 |
LVIDs (cm) | 41 | 2.7 ± 0.6 | 25 | 2.6 ± 0.6 | 16 | 2.8 ± 0.7 | 0.391 |
EF (%) | 46 | 59.5 ± 5.4 | 28 | 60.1 ± 4.6 | 18 | 58.7 ± 6.5 | 0.505 |
LV EF | 47 | 29 | 18 | 0.278 * | |||
Normal | 42 (89%) | 27 (93%) | 15 (83%) | ||||
Mild Impairment | 4 (9%) | 2 (7%) | 2 (11%) | ||||
Moderate Impairment | 1 (2%) | 0 (0%) | 1 (6%) | ||||
Severe Impairment | 0 (0%) | 0 (0%) | 0 (0%) | ||||
TV Vmax (m/s) | 25 | 1.3 ± 0.3 | 14 | 1.3 ± 0.3 | 11 | 1.3 ± 0.3 | 0.956 |
TR Vmax (m/s) | 40 | 2.6 ± 0.6 | 24 | 2.6 ± 0.7 | 16 | 2.5 ± 0.6 | 0.480 |
PV Vmax (m/s) | 44 | 1.6 ± 0.6 | 25 | 1.7 ± 0.7 | 19 | 1.5 ± 0.6 | 0.469 |
AV Vmax (m/s) | 46 | 1.1 (0.9–1.4) | 27 | 1.1 (0.9–1.4) | 19 | 1.1 (0.9–1.3) | 0.728 |
Preoperative TTE | Postoperative TTE | |||||
---|---|---|---|---|---|---|
N | HR (95% CI) | p-Value | N | HR (95% CI) | p-Value | |
TAPSE (per cm) | 42 | 0.85 (0.50–1.46) | 0.563 | 19 | 1.73 (0.93–3.20) | 0.082 |
RV FAC (per pp) | 34 | 0.99 (0.96–1.02) | 0.577 | 24 | 0.94 (0.90–0.99) | 0.014 |
RV-PA Coupling (per mm/mmHG) | 37 | 0.97 (0.51–1.83) | 0.923 | - | NA ** | - |
RV S Wave (per cm/s) | 27 | 1.09 (0.95–1.27) | 0.229 | - | NA ** | - |
LVIDd (per cm) | 42 | 1.14 (0.61–2.13) | 0.687 | 44 | 0.85 (0.43–1.67) | 0.632 |
LVIDs (per cm) | 41 | 1.36 (0.74–2.51) | 0.323 | 42 | 1.04 (0.52–2.06) | 0.919 |
TV Vmax (per m/s) | 25 | 2.05 (0.43–9.88) | 0.371 | 40 | 0.82 (0.22–2.96) | 0.756 |
TR Vmax (per m/s) | 40 | 0.85 (0.50–1.47) | 0.570 | - | NA ** | - |
PV Vmax (per m/s) | 44 | 0.95 (0.56–1.63) | 0.864 | 39 | 1.52 (0.81–2.84) | 0.191 |
AV Vmax (per m/s) | 46 | 1.01 (0.44–2.32) | 0.983 | 32 | 2.11 (0.77–5.77) | 0.146 |
RV Base Diameter (per cm) | 44 | 1.27 (0.86–1.87) | 0.228 | 37 | 1.92 (0.88–4.19) | 0.100 |
RV Size | 49 | 1.57 (1.13–2.18) * | 0.008 * | 43 | 1.40 (1.00–1.95) * | 0.052 * |
Normal | 6 | 1 | - | 28 | 1 | - |
Mild Dilation | 11 | 0.58 (0.15–2.16) | 0.414 | 7 | 2.17 (0.85–5.54) | 0.104 |
Moderate Dilation | 9 | 1.98 (0.59–6.66) | 0.272 | 4 | 1.05 (0.35–3.16) | 0.927 |
Severe Dilation | 23 | 2.37 (0.80–7.01) | 0.118 | 4 | 4.65 (1.52–14.2) | 0.007 |
RV Function | 49 | 1.11 (0.63–1.95) * | 0.727 * | 42 | 2.21 (1.38–3.54) * | 0.001 * |
Normal | 42 | 1 | - | 9 | 1 | - |
Mild Impairment | 4 | 0.86 (0.26–2.89) | 0.809 | 21 | 1.12 (0.43–2.89) | 0.816 |
Moderate Impairment | 3 | 1.39 (0.42–4.60) | 0.588 | 6 | 1.52 (0.46–5.02) | 0.487 |
Severe Impairment | 0 | - | - | 6 | 22.92 (5.48–96.0) | <0.001 |
LV EF | 47 | 2.35 (1.05–5.28) * | 0.038 * | 46 | 1.10 (0.72–1.69) * | 0.664 * |
Normal | 42 | 1 | - | 38 | 1 | - |
Mild Impairment | 4 | 1.93 (0.67–5.55) | 0.220 | 4 | 0.82 (0.25–2.71) | 0.740 |
Moderate Impairment | 1 | 9.52 (1.11–81.9) | 0.040 | 1 | 10.80 (1.20–97.0) | 0.034 |
Severe Impairment | 0 | - | - | 3 | 1.15 (0.27–4.89) | 0.845 |
Timing of TTE | Direction of Change * | ||||||
---|---|---|---|---|---|---|---|
N | Pre-Operative | Post-Operative | Reduced | No Change | Increased | p-Value | |
RV Base Diameter (cm) | 35 | 4.6 ± 0.9 | 3.6 ± 0.6 | 29 | 2 | 4 | <0.001 |
RV Size | 43 | 33 | 8 | 2 | <0.001 | ||
Normal | 5 (12%) | 28 (65%) | |||||
Mild Dilation | 10 (23%) | 7 (16%) | |||||
Moderate Dilation | 6 (14%) | 4 (9%) | |||||
Severe Dilation | 22 (51%) | 4 (9%) | |||||
RV Function | 42 | 2 | 11 | 29 | <0.001 | ||
Normal | 36 (86%) | 9 (21%) | |||||
Mild Impairment | 3 (7%) | 21 (50%) | |||||
Moderate Impairment | 3 (7%) | 6 (14%) | |||||
Severe Impairment | 0 (0%) | 6 (14%) | |||||
TAPSE (cm) | 17 | 2.3 (2.1–2.6) | 0.9 (0.7–1.4) | 16 | 0 | 1 | 0.003 |
RV FAC (%) | 24 | 51 (42–54) | 34 (20–36) | 20 | 1 | 3 | <0.001 |
RV-PA Coupling (mm/mmHG) ** | - | - | - | - | - | - | - |
RV S wave (cm/s) ** | - | - | - | - | - | - | - |
LV Size | 45 | 0 | 43 | 2 | 0.500 | ||
Normal | 45 (100%) | 43 (96%) | |||||
Mild Dilation | 0 (0%) | 2 (4%) | |||||
Moderate Dilation | 0 (0%) | 0 (0%) | |||||
Severe Dilation | 0 (0%) | 0 (0%) | |||||
LVIDd (cm) | 39 | 4.0 ± 0.6 | 4.1 ± 0.6 | 14 | 4 | 21 | 0.249 |
LVIDs (cm) | 37 | 2.7 ± 0.6 | 2.6 ± 0.6 | 15 | 3 | 19 | 0.882 |
EF (%) | 43 | 59.4 ± 5.5 | 56.3 ± 12.5 | 18 | 12 | 13 | 0.127 |
LV EF | 45 | 3 | 36 | 6 | 0.199 | ||
Normal | 40 (89%) | 38 (84%) | |||||
Mild Impairment | 4 (9%) | 3 (7%) | |||||
Moderate Impairment | 1 (2%) | 1 (2%) | |||||
Severe Impairment | 0 (0%) | 3 (7%) | |||||
TV Vmax (m/s) | 21 | 1.3 ± 0.3 | 1.5 ± 0.2 | 3 | 1 | 17 | 0.019 |
TR Vmax (m/s) ** | - | - | - | - | - | - | - |
PV Vmax (m/s) | 34 | 1.7 ± 0.6 | 1.9 ± 0.6 | 13 | 1 | 20 | 0.115 |
AV Vmax (m/s) | 31 | 1.2 (1.0–1.4) | 1.4 (1.2–1.8) | 4 | 4 | 23 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brooke, A.; Porter-Bent, S.; Hodson, J.; Ahmad, R.; Oelofse, T.; Singh, H.; Shah, T.; Ashoub, A.; Rooney, S.; Steeds, R.P. The Role of Transthoracic Echocardiography for Assessment of Mortality in Patients with Carcinoid Heart Disease Undergoing Valve Replacement. Cancers 2023, 15, 1875. https://doi.org/10.3390/cancers15061875
Brooke A, Porter-Bent S, Hodson J, Ahmad R, Oelofse T, Singh H, Shah T, Ashoub A, Rooney S, Steeds RP. The Role of Transthoracic Echocardiography for Assessment of Mortality in Patients with Carcinoid Heart Disease Undergoing Valve Replacement. Cancers. 2023; 15(6):1875. https://doi.org/10.3390/cancers15061875
Chicago/Turabian StyleBrooke, Abigail, Sasha Porter-Bent, James Hodson, Raheel Ahmad, Tessa Oelofse, Harjot Singh, Tahir Shah, Ahmed Ashoub, Stephen Rooney, and Richard P. Steeds. 2023. "The Role of Transthoracic Echocardiography for Assessment of Mortality in Patients with Carcinoid Heart Disease Undergoing Valve Replacement" Cancers 15, no. 6: 1875. https://doi.org/10.3390/cancers15061875
APA StyleBrooke, A., Porter-Bent, S., Hodson, J., Ahmad, R., Oelofse, T., Singh, H., Shah, T., Ashoub, A., Rooney, S., & Steeds, R. P. (2023). The Role of Transthoracic Echocardiography for Assessment of Mortality in Patients with Carcinoid Heart Disease Undergoing Valve Replacement. Cancers, 15(6), 1875. https://doi.org/10.3390/cancers15061875