Surgical Prehabilitation in Patients with Gastrointestinal Cancers: Impact of Unimodal and Multimodal Programs on Postoperative Outcomes and Prospects for New Therapeutic Strategies—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- Population: adults with a malignant GI cancer (esophagus, stomach, duodenum, jejunum, ileum, colon, rectum, anal, liver, pancreas) scheduled for elective surgery.
- Intervention: preoperative prehabilitation intervention(s), alone or combined, for a minimum of 7 days:
- ○
- Nutrition: protein supplementation, oral nutritional supplements (ONS), enteral nutrition (EN), parenteral nutrition (PN);
- ○
- Physical activity: resistance, endurance, balance, flexibility exercises;
- ○
- Pro- or symbiotic supplementation;
- ○
- Fecal microbiota transplantation;
- ○
- Oral ghrelin receptor agonists.
- Comparison: comparison group of no intervention, placebo, or other preoperative prehabilitation intervention(s).
- Outcomes: postoperative muscle mass, muscle strength, physical performance, QoL, surgical and general postoperative complications, LOS, hospital readmission and/or mortality.
2.2. Information Sources and Search Strategy
2.3. Study Selection Process
2.4. Data Collection Process and Data Items
2.5. Study Risk of Bias Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Risk of Bias in the Studies
3.4. Main Findings
3.4.1. Unimodal Nutritional Interventions
3.4.2. Unimodal Physical Activity Interventions
3.4.3. Unimodal Probiotics and Symbiotics Interventions
3.4.4. Combined Nutritional and Physical Activity Interventions
3.4.5. Multimodal Interventions (>2 Interventions)
4. Discussion
4.1. Variability of Population and Type of Surgery
4.2. Variability of Surgical Prehabilitation Programs
4.3. Challenges of Surgical Prehabilitation
4.4. Prospects for New Therapeutic Strategies
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, M.; Abnet, C.C.; Neale, R.E.; Vignat, J.; Giovannucci, E.L.; McGlynn, K.A.; Bray, F. Global Burden of 5 Major Types of Gastrointestinal Cancer. Gastroenterology 2020, 159, 335–349.e15. [Google Scholar] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [PubMed]
- Viana, E.; Oliveira, I.D.S.; Rechinelli, A.B.; Marques, I.L.; Souza, V.F.; Spexoto, M.C.B.; Pereira, T.S.S.; Guandalini, V.R. Malnutrition and nutrition impact symptoms (NIS) in surgical patients with cancer. PLoS ONE 2020, 15, e0241305. [Google Scholar]
- De Pinho, N.B.; Martucci, R.B.; Rodrigues, V.D.; D’Almeida, C.A.; Thuler, L.C.S.; Saunders, C.; Jager-Wittenaar, H.; Peres, W.A.F. Malnutrition associated with nutrition impact symptoms and localization of the disease: Results of a multicentric research on oncological nutrition. Clin. Nutr. 2019, 38, 1274–1279. [Google Scholar] [PubMed]
- Muscaritoli, M.; Lucia, S.; Farcomeni, A.; Lorusso, V.; Saracino, V.; Barone, C.; Plastino, F.; Gori, S.; Magarotto, R.; Carteni, G.; et al. Prevalence of malnutrition in patients at first medical oncology visit: The PreMiO study. Oncotarget 2017, 8, 79884–79896. [Google Scholar]
- Hebuterne, X.; Lemarie, E.; Michallet, M.; de Montreuil, C.B.; Schneider, S.M.; Goldwasser, F. Prevalence of malnutrition and current use of nutrition support in patients with cancer. JPEN J. Parenter. Enter. Nutr. 2014, 38, 196–204. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prado, C.M.; Landi, F.; Chew, S.T.H.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in muscle health and nutrition: A toolkit for healthcare professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar]
- Shpata, V.; Prendushi, X.; Kreka, M.; Kola, I.; Kurti, F.; Ohri, I. Malnutrition at the time of surgery affects negatively the clinical outcome of critically ill patients with gastrointestinal cancer. Med. Arch. 2014, 68, 263–267. [Google Scholar] [CrossRef] [Green Version]
- Mosquera, C.; Koutlas, N.J.; Edwards, K.C.; Strickland, A.; Vohra, N.A.; Zervos, E.E.; Fitzgerald, T.L. Impact of malnutrition on gastrointestinal surgical patients. J. Surg. Res. 2016, 205, 95–101. [Google Scholar]
- National Cancer Registration and Analysis Service—Chemotherapy, Radiotherapy and Surgical Tumor Resections in England. Available online: http://www.ncin.org.uk/cancer_type_and_topic_specific_work/topic_specific_work/main_cancer_treatments (accessed on 1 December 2022).
- Silver, J.K.; Baima, J. Cancer prehabilitation: An opportunity to decrease treatment-related morbidity, increase cancer treatment options, and improve physical and psychological health outcomes. Am. J. Phys. Med. Rehabil. 2013, 92, 715–727. [Google Scholar] [CrossRef]
- Hughes, M.J.; Hackney, R.J.; Lamb, P.J.; Wigmore, S.J.; Christopher Deans, D.A.; Skipworth, R.J.E. Prehabilitation Before Major Abdominal Surgery: A Systematic Review and Meta-analysis. World J. Surg. 2019, 43, 1661–1668. [Google Scholar] [CrossRef]
- Daniels, S.L.; Lee, M.J.; George, J.; Kerr, K.; Moug, S.; Wilson, T.R.; Brown, S.R.; Wyld, L. Prehabilitation in elective abdominal cancer surgery in older patients: Systematic review and meta-analysis. BJS Open 2020, 4, 1022–1041. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Carli, F. Promoting Perioperative Metabolic and Nutritional Care. Anesthesiology 2015, 123, 1455–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gustafsson, U.O.; Scott, M.J.; Hubner, M.; Nygren, J.; Demartines, N.; Francis, N.; Rockall, T.A.; Young-Fadok, T.M.; Hill, A.G.; Soop, M.; et al. Guidelines for Perioperative Care in Elective Colorectal Surgery: Enhanced Recovery After Surgery (ERAS((R))) Society Recommendations: 2018. World J. Surg. 2019, 43, 659–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, D.E.; Allum, W.; De Manzoni, G.; Ferri, L.; Immanuel, A.; Kuppusamy, M.; Law, S.; Lindblad, M.; Maynard, N.; Neal, J.; et al. Guidelines for Perioperative Care in Esophagectomy: Enhanced Recovery After Surgery (ERAS((R))) Society Recommendations. World J. Surg. 2019, 43, 299–330. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.E.; Hayes, L.D.; Keegan, T.J.; Subar, D.A.; Gaffney, C.J. The Impact of Prehabilitation on Patient Outcomes in Hepatobiliary, Colorectal, and Upper Gastrointestinal Cancer Surgery: A PRISMA-Accordant Meta-analysis. Ann. Surg. 2021, 274, 70–77. [Google Scholar] [CrossRef] [PubMed]
- McIsaac, D.I.; Gill, M.; Boland, L.; Hutton, B.; Branje, K.; Shaw, J.; Grudzinski, A.L.; Barone, N.; Gillis, C.; Prehabilitation Knowledge, N. Prehabilitation in adult patients undergoing surgery: An umbrella review of systematic reviews. Br. J. Anaesth. 2022, 128, 244–257. [Google Scholar] [CrossRef]
- Waterland, J.L.; McCourt, O.; Edbrooke, L.; Granger, C.L.; Ismail, H.; Riedel, B.; Denehy, L. Efficacy of Prehabilitation Including Exercise on Postoperative Outcomes Following Abdominal Cancer Surgery: A Systematic Review and Meta-Analysis. Front. Surg. 2021, 8, 628848. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, L.; Liu, H.; Wang, Z.; Li, D.; Du, W.; Xu, L.; Chen, H.; Zhang, B.; Ju, H.; et al. Faeces from malnourished colorectal cancer patients accelerate cancer progression. Clin. Nutr. 2022, 41, 632–644. [Google Scholar]
- Liu, L.; Chen, X.; Liu, L.; Qin, H. Clostridium butyricum Potentially Improves Immunity and Nutrition through Alteration of the Microbiota and Metabolism of Elderly People with Malnutrition in Long-Term Care. Nutrients 2022, 14, 3546. [Google Scholar] [CrossRef] [PubMed]
- De Clercq, N.C.; van den Ende, T.; Prodan, A.; Hemke, R.; Davids, M.; Pedersen, H.K.; Nielsen, H.B.; Groen, A.K.; de Vos, W.M.; van Laarhoven, H.W.M.; et al. Fecal Microbiota Transplantation from Overweight or Obese Donors in Cachectic Patients with Advanced Gastroesophageal Cancer: A Randomized, Double-blind, Placebo-Controlled, Phase II Study. Clin. Cancer Res. 2021, 27, 3784–3792. [Google Scholar] [CrossRef] [PubMed]
- Takeda, T.; Sasaki, T.; Okamoto, T.; Ishitsuka, T.; Yamada, M.; Nakagawa, H.; Mie, T.; Furukawa, T.; Kasuga, A.; Matsuyama, M.; et al. Impact of the Extent of Weight Loss before Administration on the Efficacy of Anamorelin in Advanced Pancreatic Cancer Patients with Cachexia. Intern. Med. 2023, 0730-22. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Uchino, J.; Kojima, T.; Matano, Y.; Minato, K.; Tanaka, K.; Mizukami, T.; Atagi, S.; Higashiguchi, T.; Muro, K.; et al. A multicenter, open-label, single-arm study of anamorelin (ONO-7643) in patients with cancer cachexia and low body mass index. Cancer 2022, 128, 2025–2035. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [Green Version]
- He, F.J.; Wang, M.J.; Yang, K.; Chen, X.L.; Jin, T.; Zhu, L.L.; Zhuang, W. Effects of Preoperative Oral Nutritional Supplements on Improving Postoperative Early Enteral Feeding Intolerance and Short-Term Prognosis for Gastric Cancer: A Prospective, Single-Center, Single-Blind, Randomized Controlled Trial. Nutrients 2022, 14, 1472. [Google Scholar] [CrossRef] [PubMed]
- Tesar, M.; Kozusnikova, V.; Martinek, L.; Durdik, S.; Ihnat, P. Preoperative nutritional support for patients undergoing elective colorectal cancer surgery—Does it really work? Biomed. Pap. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.; Park, H.M.; Kim, C.H.; Kim, H.R. Impact of Preoperative Immunonutrition on the Outcomes of Colon Cancer Surgery: Results from a Randomized Controlled Trial. Ann. Surg. 2021, 277, 381–386. [Google Scholar] [CrossRef]
- Okabayashi, T.; Sui, K.; Mastumoto, T.; Iwata, J.; Morita, S.; Iiyama, T.; Shimada, Y. l-Carnitine Improves Postoperative Liver Function in Hepatectomized Patients. JPEN J. Parenter Enter. Nutr. 2020, 44, 823–830. [Google Scholar] [CrossRef]
- Ashida, R.; Okamura, Y.; Wakabayashi-Nakao, K.; Mizuno, T.; Aoki, S.; Uesaka, K. The Impact of Preoperative Enteral Nutrition Enriched with Eicosapentaenoic Acid on Postoperative Hypercytokinemia after Pancreatoduodenectomy: The Results of a Double-Blinded Randomized Controlled Trial. Dig. Surg. 2019, 36, 348–356. [Google Scholar] [CrossRef]
- Berkel, A.E.M.; Bongers, B.C.; Kotte, H.; Weltevreden, P.; de Jongh, F.H.C.; Eijsvogel, M.M.M.; Wymenga, M.; Bigirwamungu-Bargeman, M.; van der Palen, J.; van Det, M.J.; et al. Effects of Community-based Exercise Prehabilitation for Patients Scheduled for Colorectal Surgery With High Risk for Postoperative Complications: Results of a Randomized Clinical Trial. Ann. Surg. 2022, 275, e299–e306. [Google Scholar] [CrossRef] [PubMed]
- Steffens, D.; Young, J.; Beckenkamp, P.R.; Ratcliffe, J.; Rubie, F.; Ansari, N.; Pillinger, N.; Koh, C.; Munoz, P.A.; Solomon, M. Feasibility and acceptability of a preoperative exercise program for patients undergoing major cancer surgery: Results from a pilot randomized controlled trial. Pilot Feasibility Stud. 2021, 7, 27. [Google Scholar] [CrossRef] [PubMed]
- Karlsson, E.; Farahnak, P.; Franzen, E.; Nygren-Bonnier, M.; Dronkers, J.; van Meeteren, N.; Rydwik, E. Feasibility of preoperative supervised home-based exercise in older adults undergoing colorectal cancer surgery—A randomized controlled design. PLoS ONE 2019, 14, e0219158. [Google Scholar] [CrossRef] [PubMed]
- Roussel, E.; Brasse-Lagnel, C.; Tuech, J.J.; Montialoux, H.; Papet, E.; Tortajada, P.; Bekri, S.; Schwarz, L. Influence of Probiotics Administration Before Liver Resection in Patients with Liver Disease: A Randomized Controlled Trial. World J. Surg. 2022, 46, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Polakowski, C.B.; Kato, M.; Preti, V.B.; Schieferdecker, M.E.M.; Ligocki Campos, A.C. Impact of the preoperative use of synbiotics in colorectal cancer patients: A prospective, randomized, double-blind, placebo-controlled study. Nutrition 2019, 58, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Ausania, F.; Senra, P.; Melendez, R.; Caballeiro, R.; Ouvina, R.; Casal-Nunez, E. Prehabilitation in patients undergoing pancreaticoduodenectomy: A randomized controlled trial. Rev. Esp. Enferm. Dig. 2019, 111, 603–608. [Google Scholar] [CrossRef]
- Minnella, E.M.; Awasthi, R.; Loiselle, S.E.; Agnihotram, R.V.; Ferri, L.E.; Carli, F. Effect of Exercise and Nutrition Prehabilitation on Functional Capacity in Esophagogastric Cancer Surgery: A Randomized Clinical Trial. JAMA Surg. 2018, 153, 1081–1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, S.K.; Brown, V.; White, D.; King, D.; Hunt, J.; Wainwright, J.; Emery, A.; Hodge, E.; Kehinde, A.; Prabhu, P.; et al. Multimodal Prehabilitation During Neoadjuvant Therapy Prior to Esophagogastric Cancer Resection: Effect on Cardiopulmonary Exercise Test Performance, Muscle Mass and Quality of Life-A Pilot Randomized Clinical Trial. Ann. Surg. Oncol. 2022, 29, 1839–1850. [Google Scholar] [CrossRef]
- Carli, F.; Bousquet-Dion, G.; Awasthi, R.; Elsherbini, N.; Liberman, S.; Boutros, M.; Stein, B.; Charlebois, P.; Ghitulescu, G.; Morin, N.; et al. Effect of Multimodal Prehabilitation vs Postoperative Rehabilitation on 30-Day Postoperative Complications for Frail Patients Undergoing Resection of Colorectal Cancer: A Randomized Clinical Trial. JAMA Surg. 2020, 155, 233–242. [Google Scholar] [CrossRef]
- Minnella, E.M.; Ferreira, V.; Awasthi, R.; Charlebois, P.; Stein, B.; Liberman, A.S.; Scheede-Bergdahl, C.; Morais, J.A.; Carli, F. Effect of two different pre-operative exercise training regimens before colorectal surgery on functional capacity: A randomised controlled trial. Eur. J. Anaesthesiol. 2020, 37, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Barazzoni, R.; Austin, P.; Ballmer, P.; Biolo, G.; Bischoff, S.C.; Compher, C.; Correia, I.; Higashiguchi, T.; Holst, M.; et al. ESPEN guidelines on definitions and terminology of clinical nutrition. Clin. Nutr. 2017, 36, 49–64. [Google Scholar] [CrossRef] [PubMed]
- Weimann, A.; Braga, M.; Carli, F.; Higashiguchi, T.; Hubner, M.; Klek, S.; Laviano, A.; Ljungqvist, O.; Lobo, D.N.; Martindale, R.G.; et al. ESPEN practical guideline: Clinical nutrition in surgery. Clin. Nutr. 2021, 40, 4745–4761. [Google Scholar] [CrossRef] [PubMed]
- Gillis, C.; Fenton, T.R.; Gramlich, L.; Keller, H.; Sajobi, T.T.; Culos-Reed, S.N.; Richer, L.; Awasthi, R.; Carli, F. Malnutrition modifies the response to multimodal prehabilitation: A pooled analysis of prehabilitation trials. Appl. Physiol. Nutr. Metab. 2022, 47, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Beilstein, C.M.; Krutkyte, G.; Vetsch, T.; Eser, P.; Wilhelm, M.; Stanga, Z.; Bally, L.; Verra, M.; Huber, M.; Wuethrich, P.Y.; et al. Multimodal prehabilitation for major surgery in elderly patients to lower complications: Protocol of a randomised, prospective, multicentre, multidisciplinary trial (PREHABIL Trial). BMJ Open 2023, 13, e070253. [Google Scholar] [CrossRef]
- Van Rooijen, S.; Carli, F.; Dalton, S.O.; Johansen, C.; Dieleman, J.; Roumen, R.; Slooter, G. Preoperative modifiable risk factors in colorectal surgery: An observational cohort study identifying the possible value of prehabilitation. Acta Oncol. 2017, 56, 329–334. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Gupta, E.; Hilsden, R.; Hawel, J.D.; Elnahas, A.I.; Schlachta, C.M.; Alkhamesi, N.A. Preoperative malnutrition in patients with colorectal cancer. Can. J. Surg. 2021, 64, E621–E629. [Google Scholar] [CrossRef]
- GlobalSurg Collaborative; National Institute for Health Research Global Health Research Unit on Global Surgery. Global variation in postoperative mortality and complications after cancer surgery: A multicentre, prospective cohort study in 82 countries. Lancet 2021, 397, 387–397. [Google Scholar] [CrossRef]
- Vonlanthen, R.; Slankamenac, K.; Breitenstein, S.; Puhan, M.A.; Muller, M.K.; Hahnloser, D.; Hauri, D.; Graf, R.; Clavien, P.A. The impact of complications on costs of major surgical procedures: A cost analysis of 1200 patients. Ann. Surg. 2011, 254, 907–913. [Google Scholar] [CrossRef]
- Bencini, L.; Bernini, M.; Farsi, M. Laparoscopic approach to gastrointestinal malignancies: Toward the future with caution. World J. Gastroenterol. 2014, 20, 1777–1789. [Google Scholar] [CrossRef]
- Mackenzie, H.; Markar, S.R.; Askari, A.; Ni, M.; Faiz, O.; Hanna, G.B. National proficiency-gain curves for minimally invasive gastrointestinal cancer surgery. Br. J. Surg. 2016, 103, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gan, T.J. Preoperative Nutrition and Prehabilitation. Anesthesiol. Clin. 2016, 34, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bozzetti, F.; Hutterer, E.; Isenring, E.; Kaasa, S.; et al. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef] [PubMed]
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sport. Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef]
- Hanalis-Miller, T.; Nudelman, G.; Ben-Eliyahu, S.; Jacoby, R. The Effect of Pre-operative Psychological Interventions on Psychological, Physiological, and Immunological Indices in Oncology Patients: A Scoping Review. Front. Psychol. 2022, 13, 839065. [Google Scholar] [CrossRef]
- Scheede-Bergdahl, C.; Minnella, E.M.; Carli, F. Multi-modal prehabilitation: Addressing the why, when, what, how, who and where next? Anaesthesia 2019, 74 (Suppl. S1), 20–26. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeissig, S.; Linnebacher, M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun. 2021, 41, 1137–1151. [Google Scholar] [CrossRef]
- Fligor, S.C.; Wang, S.; Allar, B.G.; Tsikis, S.T.; Ore, A.S.; Whitlock, A.E.; Calvillo-Ortiz, R.; Arndt, K.R.; Gangadharan, S.P.; Callery, M.P. Gastrointestinal Malignancies and the COVID-19 Pandemic: Evidence-Based Triage to Surgery. J. Gastrointest. Surg. 2020, 24, 2357–2373. [Google Scholar] [CrossRef]
- Strous, M.T.A.; Janssen-Heijnen, M.L.G.; Vogelaar, F.J. Impact of therapeutic delay in colorectal cancer on overall survival and cancer recurrence—Is there a safe timeframe for prehabilitation? Eur. J. Surg. Oncol. 2019, 45, 2295–2301. [Google Scholar] [CrossRef]
- Matsui, R.; Rifu, K.; Watanabe, J.; Inaki, N.; Fukunaga, T. Current status of the association between malnutrition defined by the GLIM criteria and postoperative outcomes in gastrointestinal surgery for cancer: A narrative review. J. Cancer Res. Clin. Oncol. 2022, 149, 1635–1643. [Google Scholar] [CrossRef]
- Trepanier, M.; Minnella, E.M.; Paradis, T.; Awasthi, R.; Kaneva, P.; Schwartzman, K.; Carli, F.; Fried, G.M.; Feldman, L.S.; Lee, L. Improved Disease-free Survival After Prehabilitation for Colorectal Cancer Surgery. Ann. Surg. 2019, 270, 493–501. [Google Scholar] [CrossRef]
- Boukili, I.E.; Flaris, A.N.; Mercier, F.; Cotte, E.; Kepenekian, V.; Vaudoyer, D.; Glehen, O.; Passot, G. Prehabilitation before major abdominal surgery: Evaluation of the impact of a perioperative clinical pathway, a pilot study. Scand. J. Surg. 2022, 111, 14574969221083394. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Yao, Q.; Liu, Y.; Jia, T.; Zhang, J.; Jiang, E. Underlying Causes and Co-existence of Malnutrition and Infections: An Exceedingly Common Death Risk in Cancer. Front. Nutr. 2022, 9, 814095. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Jiang, G.; Zhou, H.; Li, J.; Xiang, W.; Li, S.; Wang, H.; Zhou, J. Gut microbiota: A potential target for improved cancer therapy. J. Cancer Res. Clin. Oncol. 2022, 149, 541–552. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Temel, J.S.; Abernethy, A.P.; Currow, D.C.; Friend, J.; Duus, E.M.; Yan, Y.; Fearon, K.C. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): Results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016, 17, 519–531. [Google Scholar] [CrossRef]
- Takayama, K.; Katakami, N.; Yokoyama, T.; Atagi, S.; Yoshimori, K.; Kagamu, H.; Saito, H.; Takiguchi, Y.; Aoe, K.; Koyama, A.; et al. Anamorelin (ONO-7643) in Japanese patients with non-small cell lung cancer and cachexia: Results of a randomized phase 2 trial. Support. Care Cancer 2016, 24, 3495–3505. [Google Scholar] [CrossRef] [Green Version]
- Katakami, N.; Uchino, J.; Yokoyama, T.; Naito, T.; Kondo, M.; Yamada, K.; Kitajima, H.; Yoshimori, K.; Sato, K.; Saito, H.; et al. Anamorelin (ONO-7643) for the treatment of patients with non-small cell lung cancer and cachexia: Results from a randomized, double-blind, placebo-controlled, multicenter study of Japanese patients (ONO-7643-04). Cancer 2018, 124, 606–616. [Google Scholar] [CrossRef]
- Fonseca, G.; von Haehling, S. An overview of anamorelin as a treatment option for cancer-associated anorexia and cachexia. Expert Opin. Pharmacother. 2021, 22, 889–895. [Google Scholar] [CrossRef]
Studies | Population | Intervention | Postoperative Outcomes | Results | Limitations |
---|---|---|---|---|---|
He et al., 2022 [28] | Gastric cancer scheduled for radical gastrectomy n = 67 | 1 week - INT: EN 500 mL, 450 kcal, 17 g protein/day (n = 32) - CO: dietary advice (n = 35) | - Postoperative complications a - 30-day hospital readmission | No significant differences in all outcomes between groups | Lack of information on baseline nutritional parameters, important variations of surgical risk levels, no information on surgical approach, short duration of intervention, no intention to treat analysis |
Tesar et al., 2022 [29] | Colorectal cancer scheduled for colorectal resection n = 120 | 1 week - INT: ONS 250 mL, 600 kcal, 24 g protein/day or ONS for diabetics 400 mL, 600 kcal, 30 g protein/day (n = 60) - CO: no ONS (n = 60) | - Muscle mass: BIA - Muscle strength: handgrip strength - 30-day postoperative complications - LOS | No significant differences in all outcomes between groups | Few patients at risk of malnutrition, lack of information on baseline nutritional parameters, important variations of surgical risk levels, short duration of intervention, adherence to the intervention not mentioned, no intention to treat analysis |
Lee et al., 2021 [30] | Colon cancer scheduled for colon resection n = 176 | 1 week - INT: ONS 400 mL, 400 kcal, 20 g protein, 1 g arginine, 0.92 g ω-3 fatty acids/day (EPA + DHA + ALA) (n = 88) - CO: normal diet (n = 88) | - 30-day postoperative complications - LOS - 30-day hospital readmission | No significant differences in all outcomes between groups | Few patients at risk of malnutrition, lack of information on baseline nutritional parameters, important variations of surgical risk levels, short duration of intervention, adherence to the intervention not mentioned, no intention to treat analysis |
Okabayashi et al., 2020 [31] | Hepatic cancer scheduled for hepatectomy without hepaticojejunostomy n = 208 | 2 weeks - INT: Oral L-carnitine, 30 mg/kg/day (n = 102) - CO: usual intake (n = 106) | - Postoperative complications a - LOS - 90-day mortality | - No significant differences in postoperative complications and mortality between groups - LOS significantly shorter in the L-carnitine group compared to the control group | No information on tumor stage and baseline nutritional parameters, important variations of surgical risk levels, no information on surgical approach, short duration of intervention, adherence to the intervention not mentioned |
Ashida et al., 2019 [32] | Periampullary cancer scheduled for pancreatoduodenectomy n = 24 | 1 week - INT: ONS 500 mL, 600 kcal, 32 g protein, 2 g EPA/day (n = 12) - CO: ONS 500 mL, 600 kcal, 30 g protein/day (n = 12) | - Postoperative complications a | No significant difference in postoperative complications between groups | Small sample size, no information on tumor stage, lack of information on baseline nutritional parameters, short duration of intervention, adherence to the intervention not mentioned, no intention to treat analysis |
Studies | Population | Intervention | Postoperative Outcomes | Results | Limitations |
---|---|---|---|---|---|
Berkel et al., 2022 [33] | Colorectal cancer or premalignant colorectal lesions, high risk for postoperative complications, scheduled for colorectal resection n = 74 | 3 weeks - INT: supervised aerobic and resistance exercise, 60 min, 3x/week (n = 39) - CO: nutritional counseling and advice on smoking cessation (n = 35) | - 30-day postoperative complications - LOS - 30 and 90-day hospital readmission | - Overall postoperative complications significantly lower in the intervention group compared to the control group - No differences in the type of complications, LOS, and hospital readmissions between groups | Lack of information on baseline nutritional parameters, important variations of surgical risk levels, no information on tumor stage, many patients excluded after randomization, adherence to the intervention not mentioned |
Steffens et al., 2021 [34] | Gastrointestinal cancer scheduled for pelvic exenteration or cytoreductive surgery & hyperthermic intraperitoneal chemotherapy n = 22 | 2 to 6 weeks - INT: supervised aerobic, resistance, and respiratory exercise, 60 min, 1x/week + home-based aerobic, resistance, and respiratory exercise, 60 min, 4x/week + walking, ≥30 min, 7x/week (n = 11) - CO: nutritional counseling, advice on smoking cessation, and reduction of alcohol intake (n = 11) | - Postoperative complications a - LOS | No significant differences in all outcomes between groups | Low recruitment rate, small sample size, no information on tumor stage and baseline nutritional parameters, important variations of surgical risk levels, high loss to follow-up rate in intervention group, feasibility analysis, no intention to treat analysis |
Karlsson et al., 2019 [35] | Colorectal cancer scheduled for colorectal resection n = 23 | 2 to 6 weeks - INT: home-based supervised aerobic, resistance, and respiratory exercise, 60 min, 2–3/week (n = 11) - CO: usual care, advice for 150 min/week of moderate physical activity (n = 12) | - 30-day postoperative complications - LOS | No significant differences in all outcomes between groups | Small sample size, difference in baseline characteristics between groups, no information on baseline nutritional parameters, important variations of surgical risk levels, feasibility analysis, no intention to treat analysis |
Studies | Population | Intervention | Postoperative Outcomes | Results | Limitations |
---|---|---|---|---|---|
Roussel et al., 2022 [36] | Hepatocellular carcinoma with underlying cirrhosis scheduled for liver resection n = 54 | 2 weeks - INT: oral probiotics—109 concentration of 5 lactic acid bacteria, 2x/day (n = 27) - CO: corn starch placebo (n = 27) | - 90-day postoperative complications - 90-day mortality | No significant differences in all outcomes between groups | Differences in baseline characteristics between groups, no information on tumor stage and baseline nutritional parameters, important variations of surgical risk levels, no information on surgical approach |
Polakowski et al., 2019 [37] | Colorectal cancer scheduled for colorectal resection n = 120 | 1 week - INT: oral symbiotic—6 g of fructooligosaccharide + 109 concentration of 5 lactic acid bacteria, 2x/day (n = 36) - CO: corn starch placebo (n = 37) | - 30-day infectious and non-infectious postoperative complications - LOS - 30-day mortality | - Infectious complications and median LOS significantly lower in the intervention group compared to the control group - No significant difference in non-infectious complications and mortality between groups | Lack of information on baseline nutritional parameters, important variations of surgical risk levels, no information on surgical approach, short duration of intervention, adherence to the intervention not mentioned |
Studies | Population | Intervention | Postoperative Outcomes | Results | Limitations |
---|---|---|---|---|---|
Ausania et al., 2019 [38] | Pancreatic or peripancreatic malignancy scheduled for Whipple procedure n = 40 | At least 1 week - INT: supervised high-intensity aerobic exercise, 60 min, 5x/week + daily home-based functional exercises + nutritional support (oral and vitamin supplements, total parenteral nutrition if required) (n = 18) - CO: usual care (n = 22) | - Postoperative complications a—LOS - Readmission rate | No significant differences in all outcomes between groups | Small sample size, no information on tumor stage, lack of information on baseline nutritional parameters, short duration of intervention, no information on nutritional support composition, adherence to the intervention not mentioned, no intention to treat analysis |
Minnella et al., 2018 [39] | Esophagogastric cancer scheduled for esophagectomy or total or partial gastric resection n = 68 | Median length 36 days (IQR 17–73) - INT: Home-based aerobic exercise, 30 min, 3x/week + resistance exercise, 30 min, 1x/week + whey protein (aim protein intake 1.2–1.5 g/kg/d) (n = 34) - CO: usual care (n = 34) | - Physical performance: 6MWD - 30-day postoperative complications - LOS - 30-day hospital readmission - Mortality | - Better physical performance in the intervention group compared to the control group - No significant difference in postoperative complications, LOS hospital readmission, and mortality between groups | Few patients at risk of malnutrition, lack of information on baseline nutritional parameters, important variations of surgical risk levels, no minimal and consistent duration of intervention, no intention to treat analysis |
Studies | Population | Intervention | Postoperative Outcomes | Results | Limitations |
---|---|---|---|---|---|
Allen et al., 2022 [40] | Locally advanced esophagogastric cancer undergoing neoadjuvant chemoradiotherapy scheduled for esophagectomy or gastrectomy n = 54 | 15 weeks—Started before neoadjuvant chemoradiotherapy and continued until surgery: - INT: supervised aerobic, resistance, and flexibility exercise, 60 min, 2x/week + home-based resistance and flexibility exercise, 60 min, 3x/week + nutritional support to cover protein and energy needs + 6 sessions of psychological coaching (n = 26) - CO: usual care (n = 28) | - Muscle strength: handgrip strength - QoL: EORTC QLQ-C30 - Postoperative complications a - LOS - 30-day hospital readmission - 3-year mortality | - Better postoperative handgrip strength and QoL in the intervention group compared to the control group - No significant difference in postoperative complications, LOS, hospital readmission, and mortality | Lack of information on baseline nutritional parameters, important variations of surgical risk levels, no information on surgical approach, high lost to follow-up rate, data not available for all outcomes in all patients |
Carli et al., 2020 [41] | Frail colorectal cancer scheduled for colorectal resection n = 120 | 4 weeks - INT1 started before surgery: supervised aerobic, resistance, and flexibility exercise, 60 min, 1x/week + home-based aerobic exercise, 30 min, 7x/week and resistance exercise, 3x/week + whey protein (aim protein intake 1.5 g/kg/d) + personalized coping strategies 3x/week (n = 60) - INT2, started after hospital discharge: Same intervention as INT1 (n = 60) | - 30-day postoperative complications - LOS - 30-day hospital readmission | No significant differences in all outcomes between groups | Differences in baseline characteristics between groups, lack of information on baseline nutritional parameters, important variations of surgical risk levels, absence of control group with usual care, poor adherence in the int2 group |
Minnella et al., 2020 [42] | Colorectal cancer scheduled for colorectal resection n = 42 | 4 weeks - INT1: supervised high-intensity interval training (aerobic exercise) and resistance exercise, 40 min, 3x/week + whey protein (aim protein intake 1.5 g/kg/d) + training to relaxation technique (n = 21) - INT 2: same intervention as INT1 but at moderate intensity | - Physical performance: aerobic fitness (V02 at the ventilatory anaerobic threshold) within one and two months after surgery - 30-day postoperative complications - LOS | - At 2 months after surgery, significant improvement in physical performance in the high-intensity interval training group compared to the moderate-intensity interval training group - No difference in postoperative complications and LOS between the two groups | Few patients at risk of malnutrition, lack of information on baseline nutritional parameters, important variations of surgical risk levels, absence of control group with usual care, high loss to follow-up rate, data for postoperative outcome available for only 50% of participants |
Randomization Process | Deviations from the Intended Intervention | Missing Outcome Data | Measurement of the Outcome | Selection of the Reported Result | Overall | |
---|---|---|---|---|---|---|
Unimodal nutritional interventions | ||||||
He, 2022 [28] | + | + | + | + | ! | ! |
Tesar, 2022 [29] | + | - | + | - | ! | - |
Lee, 2021 [30] | + | ! | - | ! | ! | - |
Okabayashi, 2020 [31] | + | ! | + | ! | ! | ! |
Ashida, 2019 [32] | + | + | + | + | ! | + |
Unimodal physical activity interventions | ||||||
Berkel, 2022 [33] | + | + | ! | + | ! | ! |
Steffens, 2021 [34] | + | - | - | + | ! | - |
Karlsson, 2019 [35] | + | + | + | + | ! | ! |
Unimodal probiotics and symbiotics interventions | ||||||
Roussel, 2022 [36] | + | + | + | + | ! | ! |
Polakowski, 2019 [37] | + | + | + | + | ! | ! |
Combined nutritional and physical activity interventions | ||||||
Ausania, 2019 [38] | + | - | + | + | ! | - |
Minnella, 2019 [39] | + | + | ! | ! | ! | ! |
Multimodal interventions (>2 interventions) | ||||||
Allen, 2022 [40] | + | + | ! | + | ! | ! |
Carli, 2020 [41] | ! | + | + | + | + | ! |
Minnella, 2020 [42] | + | + | ! | + | ! | ! |
Legend: | ||||||
+ | Low risk | ! | Some concerns | - | High risk |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mareschal, J.; Hemmer, A.; Douissard, J.; Dupertuis, Y.M.; Collet, T.-H.; Koessler, T.; Toso, C.; Ris, F.; Genton, L. Surgical Prehabilitation in Patients with Gastrointestinal Cancers: Impact of Unimodal and Multimodal Programs on Postoperative Outcomes and Prospects for New Therapeutic Strategies—A Systematic Review. Cancers 2023, 15, 1881. https://doi.org/10.3390/cancers15061881
Mareschal J, Hemmer A, Douissard J, Dupertuis YM, Collet T-H, Koessler T, Toso C, Ris F, Genton L. Surgical Prehabilitation in Patients with Gastrointestinal Cancers: Impact of Unimodal and Multimodal Programs on Postoperative Outcomes and Prospects for New Therapeutic Strategies—A Systematic Review. Cancers. 2023; 15(6):1881. https://doi.org/10.3390/cancers15061881
Chicago/Turabian StyleMareschal, Julie, Alexandra Hemmer, Jonathan Douissard, Yves Marc Dupertuis, Tinh-Hai Collet, Thibaud Koessler, Christian Toso, Frédéric Ris, and Laurence Genton. 2023. "Surgical Prehabilitation in Patients with Gastrointestinal Cancers: Impact of Unimodal and Multimodal Programs on Postoperative Outcomes and Prospects for New Therapeutic Strategies—A Systematic Review" Cancers 15, no. 6: 1881. https://doi.org/10.3390/cancers15061881
APA StyleMareschal, J., Hemmer, A., Douissard, J., Dupertuis, Y. M., Collet, T. -H., Koessler, T., Toso, C., Ris, F., & Genton, L. (2023). Surgical Prehabilitation in Patients with Gastrointestinal Cancers: Impact of Unimodal and Multimodal Programs on Postoperative Outcomes and Prospects for New Therapeutic Strategies—A Systematic Review. Cancers, 15(6), 1881. https://doi.org/10.3390/cancers15061881