Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. CT Images Acquisition and Segmentation
2.3. Feature Extraction and Selection
Feature Selection
2.4. Model Building
2.5. Statistical Analysis
3. Results
3.1. Clinical Characteristics
3.2. Radiomic Features Selection
3.3. Radiomics Single-Lesion Analysis
3.4. Radiomics Multiple-Lesion Analysis
3.5. Delta-Radiomics Analysis
3.6. Early RECIST Analysis
3.7. Combined Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-Year Overall Survival for Patients with Advanced Non-Small-Cell Lung Cancer Treated with Pembrolizumab: Results from the Phase I KEYNOTE-001 Study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef] [PubMed]
- Garon, E.B.; Rizvi, N.A.; Hui, R.; Leighl, N.; Balmanoukian, A.S.; Eder, J.P.; Patnik, A.; Aggarwal, C.; Gubens, M.; Horn, L.; et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. N. Engl. J. Med 2015, 372, 2018–2028. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez–Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Horn, L.; Spigel, D.R.; Vokes, E.E.; Holgado, E.; Ready, N.; Steins, M.; Poddubskaya, E.; Borghaei, H.; Felip, E.; Paz-Ares, L.; et al. Nivolumab Versus Docetaxel in Previously Treated Patients with Advanced Non–Small-Cell Lung Cancer: Two-Year Outcomes from Two Randomized, Open-Label, Phase III Trials (CheckMate 017 and CheckMate 057). J. Clin. Oncol. 2017, 35, 3924–3933. [Google Scholar] [CrossRef]
- Herbst, R.S.; Baas, P.; Kim, D.W.; Felip, E.; Pérez-Gracia, J.L.; Han, J.Y.; Molina, J.; Kim, J.-H.; Arvis, C.D.; Ahn, M.-J.; et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet 2016, 387, 1540–1550. [Google Scholar] [CrossRef]
- Planchard, D.; Popat, S.; Kerr, K.; Novello, S.; Smit, E.F.; Faivre-Finn, C.; Mok, T.S.; Reck, M.; Van Schil, P.E.; Hellmann, M.D.; et al. Metastatic Non-Small-Cell Lung Cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2018, 29, 192–237. [Google Scholar] [CrossRef]
- Ilie, M.; Long-Mira, E.; Bence, C.; Butori, C.; Lassalle, S.; Bouhlel, L. Comparative study of the PD-L1 status between surgically resected specimens and matched biopsies of NSCLC patients reveal major discordances: A potential issue for anti-PD-L1 therapeutic strategies. Ann. Oncol. 2016, 27, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Büttner, R.; Gosney, J.R.; Skov, B.G.; Adam, J.; Motoi, N.; Bloom, K.J. Programmed Death-Ligand 1 Immunohistochemistry Testing: A Review of Analytical Assays and Clinical Implementation in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2017, 35, 3867–3876. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, M.D.; Paz-Ares, L.; Bernabe Caro, R.; Zurawski, B.; Kim, S.W.; Carcereny Costa, E. Nivolumab plus Ipilimumab in Advanced Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2019, 381, 2020–2031. [Google Scholar] [CrossRef]
- Gadgeel, S.; Rodríguez-Abreu, D.; Speranza, G.; Esteban, E.; Felip, E.; Dómine, M. Updated Analysis From KEYNOTE-189: Pembrolizumab or Placebo Plus Pemetrexed and Platinum for Previously Untreated Metastatic Nonsquamous Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2020, 38, 1505–1517. [Google Scholar] [CrossRef]
- Heeke, S.; Hofman, P. Tumor mutational burden assessment as a predictive biomarker for immunotherapy in lung cancer patients: Getting ready for prime-time or not. Transl. Lung Cancer Res. 2018, 7, 631–638. [Google Scholar] [CrossRef]
- Frix, A.N.; Cousin, F.; Refaee, T.; Bottari, F.; Vaidyanathan, A.; Desir, C. Radiomics in Lung Diseases Imaging: State-of-the-Art for Clinicians. J. Pers. Med. 2021, 11, 602. [Google Scholar] [CrossRef]
- Bidzińska, J.; Szurowska, E. See Lung Cancer with an AI. Cancers 2023, 15, 1321. [Google Scholar] [CrossRef]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef] [Green Version]
- Sun, R.; Limkin, E.J.; Vakalopoulou, M.; Dercle, L.; Champiat, S.; Han, S.R. A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: An imaging biomarker, retrospective multicohort study. Lancet Oncol. 2018, 19, 1180–1191. [Google Scholar] [CrossRef]
- Yoon, H.J.; Kang, J.; Park, H.; Sohn, I.; Lee, S.H.; Lee, H.Y. Deciphering the tumor microenvironment through radiomics in non-small cell lung cancer: Correlation with immune profiles. PLoS ONE. 2020, 15, e0231227. [Google Scholar] [CrossRef] [Green Version]
- Trebeschi, S.; Drago, S.G.; Birkbak, N.J.; Kurilova, I.; Cǎlin, A.M.; Pizzi, A.D. Predicting Response to Cancer Immunotherapy using Non-invasive Radiomic Biomarkers. Ann. Oncol. 2019, 30, 998–1004. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Hobbs, B.; Amer, A.; Li, X.; Behrens, C.; Canales, J.R. Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer. Sci. Rep. 2018, 8, 1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Wu, M.; Zhang, Y.; Luo, Y.; He, S.; Wang, Y. Imaging Biomarkers to Predict and Evaluate the Effectiveness of Immunotherapy in Advanced Non-Small-Cell Lung Cancer. Front. Oncol. 2021, 11, 657615. [Google Scholar] [CrossRef] [PubMed]
- Khorrami, M.; Prasanna, P.; Gupta, A.; Patil, P.; Velu, P.D.; Thawani, R. Changes in CT Radiomic Features Associated with Lymphocyte Distribution Predict Overall Survival and Response to Immunotherapy in Non–Small Cell Lung Cancer. Cancer Immunol. Res. 2020, 8, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Bao, X.; Wang, T.; Liu, J.; Peng, W.; Shi, J. A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer. Oncoimmunology 2022, 11, 2028962. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Grassi, R.; Boldrini, L.; Vacca, G.; D’Ippolito, E. Delta radiomics: A systematic review. Radiol. Med. 2021, 126, 1571–1583. [Google Scholar] [CrossRef] [PubMed]
- Barabino, E.; Rossi, G.; Pamparino, S.; Fiannacca, M.; Caprioli, S.; Fedeli, A. Exploring Response to Immunotherapy in Non-Small Cell Lung Cancer Using Delta-Radiomics. Cancers 2022, 14, 350. [Google Scholar] [CrossRef]
- Nardone, V.; Reginelli, A.; Guida, C.; Belfiore, M.P.; Biondi, M.; Mormile, M. Delta-radiomics increases multicentre reproducibility: A phantom study. Med. Oncol. Northwood Lond. Engl. 2020, 37, 38. [Google Scholar] [CrossRef]
- Plautz, T.E.; Zheng, C.; Noid, G.; Li, X.A. Time stability of delta-radiomics features and the impact on patient analysis in longitudinal CT images. Med. Phys. 2019, 46, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.F.; Prince, E.; Pillarisetty, V.G.; Katz, S.C. Challenges in assessing solid tumor responses to immunotherapy. Cancer Gene Ther. 2020, 27, 528–538. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Leijenaar, R.T.H.; Deist, T.M.; Peerlings, J.; de Jong, E.E.C.; Van Timmeren, J. Radiomics: The bridge between medical imaging and personalized medicine. Nat. Rev. Clin. Oncol. 2017, 14, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Zhang, Y.; Zhang, J.; Zhang, Y.; Wang, Y.; Chen, F. A Combined-Radiomics Approach of CT Images to Predict Response to Anti-PD-1 Immunotherapy in NSCLC: A Retrospective Multicenter Study. Front. Oncol. 2022, 11, 688679. [Google Scholar] [CrossRef]
- Xie, D.; Xu, F.; Zhu, W.; Pu, C.; Huang, S.; Lou, K. Delta radiomics model for the prediction of progression-free survival time in advanced non-small-cell lung cancer patients after immunotherapy. Front. Oncol. 2022, 12, 990608. [Google Scholar] [CrossRef]
- Paijens, S.T.; Vledder, A.; de Bruyn, M.; Nijman, H.W. Tumor-infiltrating lymphocytes in the immunotherapy era. Cell Mol. Immunol. 2021, 18, 842–859. [Google Scholar] [CrossRef]
- Petitprez, F.; Meylan, M.; de Reyniès, A.; Sautès-Fridman, C.; Fridman, W.H. The Tumor Microenvironment in the Response to Immune Checkpoint Blockade Therapies. Front. Immunol. 2020, 11, 784. [Google Scholar] [CrossRef]
- Tumeh, P.C.; Harview, C.L.; Yearley, J.H.; Shintaku, I.P.; Taylor, E.J.M.; Robert, L. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligero, M.; Garcia-Ruiz, A.; Viaplana, C.; Villacampa, G.; Raciti, M.V.; Landa, J. A CT-based Radiomics Signature Is Associated with Response to Immune Checkpoint Inhibitors in Advanced Solid Tumors. Radiology 2021, 299, 109–119. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; Shen, L.; Chen, J.; Xia, L.; Ni, B. A multi-omics-based serial deep learning approach to predict clinical outcomes of single-agent anti-PD-1/PD-L1 immunotherapy in advanced stage non-small-cell lung cancer. Am. J. Transl. Res. 2021, 13, 743–756. [Google Scholar] [PubMed]
- Yang, F.; Wang, Y.; Tang, L.; Mansfield, A.S.; Adjei, A.A.; Leventakos, K. Efficacy of immune checkpoint inhibitors in non-small cell lung cancer: A systematic review and meta-analysis. Front. Oncol. 2022, 12, 955440. [Google Scholar] [CrossRef] [PubMed]
- Brahmer, J.R.; Lee, J.S.; Ciuleanu, T.E.; Bernabe Caro, R.; Nishio, M.; Urban, L. Five-Year Survival Outcomes with Nivolumab Plus Ipilimumab Versus Chemotherapy as First-Line Treatment for Metastatic Non–Small-Cell Lung Cancer in CheckMate 227. J. Clin. Oncol. 2023, 41, 1200–1212. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Baseline Radiomics Analysis | Delta-Radiomics Analysis | ||||
---|---|---|---|---|---|---|
All Patients (N = 188) | Training Set (N = 146) | Test Set (N = 42) | All Patients (N = 160) | Training Set (N = 121) | Test Set (N = 39) | |
Age, median (range) | 66 (42−95) | 66 (42−85) | 64 (44−95) | 65 (42−95) | 65 (42−85) | 64 (44−95) |
Sex | ||||||
Male | 113 (60%) | 90 (62%) | 23 (55%) | 96 (60%) | 76 (63%) | 20 (51%) |
Female | 75 (40%) | 56 (38%) | 19 (45%) | 64 (40%) | 45 (37%) | 19 (49%) |
Smoking history | ||||||
Never | 10 (5%) | 3 (2%) | 7 (17%) | 9 (6%) | 2 (2%) | 7 (18%) |
Current or former | 178 (95%) | 143 (98%) | 35 (83%) | 151 (94%) | 119 (98%) | 32 (82%) |
Pathological type | ||||||
Adenocarcinoma | 117 (62%) | 86 (59%) | 31 (74%) | 100 (62%) | 71 (59%) | 29 (74%) |
Squamous cell | 58 (31%) | 50 (34%) | 8 (19%) | 48 (30%) | 41 (34%) | 7 (18%) |
Other a Clinical stage Stage III Stage IV PD-L1 expression Unknown <1% 1−49% ≥50% | 13 (7%) 27 (14%) 161 (86%) 66 (35%) 30 (16%) 26 (14%) 66 (35%) | 10 (7%) 26 (18%) 120 (82%) 47 (32%) 19 (13%) 20 (14%) 60 (41%) | 3 (7%) 1 (2%) 41 (98%) 19 (45%) 11 (26%) 6 (14%) 6 (14%) | 12 (8%) 22 (14%) 138 (86%) 59 (37%) 27 (17%) 20 (12%) 54 (34%) | 9 (7%) 21 (17%) 100 (83%) 42 (35%) 17 (14%) 14 (12%) 48 (39%) | 3 (8%) 1 (3%) 38 (97%) 17 (43%) 10 (26%) 6 (15%) 6 (15%) |
Known mutation b | 6 (3%) | 3 (2%) | 3 (7%) | 6 (4%) | 3 (2%) | 3 (8%) |
Treatment molecule | ||||||
Pembrolizumab | 67 (36%) | 61 (42%) | 6 (14%) | 51 (32%) | 46 (38%) | 5 (13%) |
Nivolumab | 100 (53%) | 71 (49%) | 29 (69%) | 90 (56%) | 63 (52%) | 27 (69%) |
Atezolizumab | 21 (11%) | 14 (9%) | 7 (17%) | 19 (12%) | 12 (10%) | 7 (18%) |
Treatment line | ||||||
First line | 50 (27%) | 47 (32%) | 3 (7%) | 38 (24%) | 35 (29%) | 3 (8%) |
Further lines | 138 (73%) | 99 (68%) | 39 (93%) | 122 (76%) | 86 (71%) | 36 (92%) |
Response at 6 months | ||||||
Responders | 89 (47%) | 69 (47%) | 20 (48%) | 77 (48%) | 58 (48%) | 19 (49%) |
Non-responders | 99 (53%) | 77 (53%) | 22 (52%) | 83 (52%) | 63 (52%) | 20 (51%) |
OS c, median (range) | 14.9 (0.4−73.7) | 15.1 (0.4−71) | 12 (1.2−73.7) | 15 (1.2−70.8) | 15.3 (1.6−60.4) | 12.4 (1.2−70.8) |
Clinical Predictors | Response at 6 Months | OS | ||
---|---|---|---|---|
AUC (95% CI) | p-Value | C-Index (95% CI) | p-Value | |
Age | 0.51 (0.41−0.51) | 0.97 | 0.52 (0.46−0.58) | 0.41 |
Sex | 0.55 (0.47−0.55) | 0.24 | 0.51 (0.46−0.56) | 0.42 |
Clinical stage | 0.54 (0.47−0.54) | 0.26 | 0.52 (0.47−0.56) | 0.50 |
Line of treatment | 0.54 (0.46−0.54) | 0.28 | 0.55 (0.50−0.60) | 0.06 |
Pathological type | 0.50 (0.42−0.50) | 0.92 | 0.50 (0.45−0.56) | 0.63 |
ICI molecule | 0.53 (0.48−0.53) | 0.21 | 0.52 (0.49−0.55) | 0.18 |
Absolute neutrophil count | 0.59 (0.49−0.59) | 0.07 | 0.59 (0.52−0.66) | 0.05 |
Absolute lymphocyte count | 0.50 (0.40−0.50) | 0.37 | 0.47 (0.41−0.53) | 0.22 |
Absolute eosinophil count | 0.60 (0.51−0.61) | 0.05 | 0.57 (0.51−0.64) | 0.13 |
Neutrophil to lymphocyte ratio | 0.54 (0.45−0.54) | 0.41 | 0.57 (0.51−0.64) | 0.43 |
Predictive Models | Response at 6 Months | OS | ||
---|---|---|---|---|
GLM AUC (95% CI) | RF | Cox Model C-Index (95% CI) | RF | |
Clinical model | 0.64 (0.46−0.82) | / | 0.51 (0.4−0.63) | / |
Single-lesion radiomics model | 0.6 (0.42−0.78) | 0.66 (0.48−0.63) | 0.62 (0.51−0.73) | 0.4 |
Multiple-lesion radiomics model | 0.54 (0.41−0.66) | 0.62 (0.5−0.74) | 0.5 (0.43−0.57) | 0.52 |
Delta-radiomics model | 0.77 (0.61−0.93) | 0.8 (0.65−0.95) | 0.68 (0.56−0.8) | 0.62 |
RECIST model | 0.66 (0.54−0.78) | / | 0.56 (0.47−0.65) | / |
Combined single-lesion model | 0.69 (0.52−0.86) | 0.66 (0.48−0.84) | 0.62 (0.5−0.73) | / |
Combined delta-radiomics model | 0.78 (0.62−0.93) | 0.78 (0.62−0.94) | 0.65 (0.54−0.77) | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cousin, F.; Louis, T.; Dheur, S.; Aboubakar, F.; Ghaye, B.; Occhipinti, M.; Vos, W.; Bottari, F.; Paulus, A.; Sibille, A.; et al. Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers 2023, 15, 1968. https://doi.org/10.3390/cancers15071968
Cousin F, Louis T, Dheur S, Aboubakar F, Ghaye B, Occhipinti M, Vos W, Bottari F, Paulus A, Sibille A, et al. Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers. 2023; 15(7):1968. https://doi.org/10.3390/cancers15071968
Chicago/Turabian StyleCousin, François, Thomas Louis, Sophie Dheur, Frank Aboubakar, Benoit Ghaye, Mariaelena Occhipinti, Wim Vos, Fabio Bottari, Astrid Paulus, Anne Sibille, and et al. 2023. "Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors" Cancers 15, no. 7: 1968. https://doi.org/10.3390/cancers15071968
APA StyleCousin, F., Louis, T., Dheur, S., Aboubakar, F., Ghaye, B., Occhipinti, M., Vos, W., Bottari, F., Paulus, A., Sibille, A., Vaillant, F., Duysinx, B., Guiot, J., & Hustinx, R. (2023). Radiomics and Delta-Radiomics Signatures to Predict Response and Survival in Patients with Non-Small-Cell Lung Cancer Treated with Immune Checkpoint Inhibitors. Cancers, 15(7), 1968. https://doi.org/10.3390/cancers15071968