Renal Safety Profile of BCR-ABL Tyrosine Kinase Inhibitors in a Real-Life Setting: A Study Based on Vigibase®, the WHO Pharmacovigilance Database
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Data Selection
2.3. Statistical Analysis
3. Results
3.1. Characteristics of the 1409 Included Renal Cases
3.2. Disproportionality Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Imatinib | Dasatinib | Nilotinib | Bosutinib | Ponatinib | |
---|---|---|---|---|---|
BCR-ABL tyrosine kinase inhibitors indications in adult patients | Ph+ CML Ph+ ALL MDS/MDP with PDGFR re-arrangements Advanced HES and/or CEL with FIP1L1-PDGFRα rearrangement Kit (CD 117) positive unresectable and/or metastatic and/or high risk of relapse following resection malignant GISTUnresectable, reccurent or metastatic DFSP not eligible for surgery [2] | Newly diagnosed Ph+ CML in chronic phase, chronic, accelerated, or blast phase CML with resistance or intolerance to previous therapy Ph+ ALL and lymphoid blast CML with resistance or intolerance to previous therapy [3] | Newly diagnosed Ph+ CML in chronic phase, chronic and accelerated phase Ph+ CML with resistance or intolerance to prior therapy No efficacy data available in blast crisis [4] | Newly diagnosed Ph+ CML in chronic phase, chronic, accelerated phase, and blast phase Ph+ CML previously treated with one or more tyrosine kinase inhibitor(s) and for whom imatinib, nilotinib, and dasatinib are not considered appropriate treatment options [5] | Chronic, accelerated, or blast phase Ph+ CML resistant or intolerant to dasatinib or nilotinib, and for whom subsequent treatment with imatinib is not clinically appropriate; or who have the T315I mutation Ph+ ALL, resistant to dasatinib; or intolerant to dasatinib, and for whom subsequent treatment with imatinib is not clinically appropriate; or who have the T315I mutation [6] |
Pharmacodynamics | |||||
BCR-ABL | ++++ | ++++ | ++++ | ++++ | ++++ |
Src | +++ | +++ | |||
VEGFR | ++ | ||||
PDGFR (α et β) | +++ | + | ++ | + | ++ |
Kit | +++ | +++ | ++ | ++ | ++ |
EphA et EphB | + | + | + | ||
Lyn | +++ | ||||
Hck | +++ | ||||
c-FMS (CSF1R) | + | ||||
Txk | + | ||||
Axl | + | ||||
Tec | + | ||||
ErbB | + | ||||
Csk | + | ||||
Stk20 | + | ||||
Calmoduline | + | ||||
DDR1 and DDR2 | + | ||||
CSF-1 | + | ||||
FGFR-1/2/3 | |||||
Flt3 | + | ||||
RET | ++ | ||||
Pharmacokinetics | |||||
Dose, mg | 400 | 100 | 400 | 200 | 45 |
Cmax Mean (CV%), ng/mL | 1606 (40) | 104.5 (29) | 445 (42) | 16.9 (67) | 54.7 (26) |
Tmax Median [range], h | 2.5 [1.5–6] | 0.5 [0.25–1.5] | 4 [2–6] | 6 [3–36.1] | 6 [5–8] |
AUC Mean, (CV%), µg·h/mL | 25.5 (37) | 0.314 (42) | 11.9 (56) | 0.48 (25) | 1.27 (28) |
T1/2 Mean, (CV%), h | 15.7 (18) | 3.6 (28) | 13 (37) | 41.2 (8) | 24.2 b (15) |
CL/F Mean (CV%), L/h | 18 (32) | 0.405 (42) | 50.5 (73) | 5.60 a (23) | 35.4 (35) |
Vd/F Mean (CV%), L | 404 (36) | NA | 804 (51) | 344 a (29) | 1242 (30) |
Imatinib (n = 736) | Dasatinib (n = 287) | Nilotinib (n = 177) | Bosutinib (n = 125) | Ponatinib (n = 84) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | ROR [CI95low; CI95up] | n | ROR [CI95low; CI95up] | n | ROR [CI95low; CI95up] | n | ROR [CI95low; CI95up] | n | ROR [CI95low; CI95up] | |
Renal failure and impairment (HLT) | ||||||||||
Acute kidney injury (PT) | 109 | 0.98 [0.81; 1.19] | 37 | 0.78 [0.56; 1.08] | 26 | 0.56 [0.38; 0.82] | 16 | 1.26 [0.77; 2.07] | 17 | 1.71 [1.06; 2.75] |
Chronic kidney disease (PT) | 31 | 2.67 [1.88; 3.80] | 5 | - | 11 | 2.27 [1.25; 4.10] * | 4 | - | 4 | - |
Oliguria (PT) | 6 | 0.90 [0.40; 1.99] | 2 | - | 1 | - | 1 | - | 0 | - |
Renal failure (PT) | 123 | 2.07 [1.73; 2.47] | 37 | 1.45 [1.05; 2.00] | 35 | 1.41 [1.01; 1.96] | 25 | 3.69 [2.49; 5.47] | 25 | 4.69 [3.16; 6.96] |
Renal impairment (PT) | 127 | 2.39 [2.01; 2.85] | 22 | 0.96 [0.63; 1.46] | 26 | 1.17 [0.79; 1.71] | 29 | 4.79 [3.32; 6.92] | 5 | - |
Renal disorders NEC (HLT) | ||||||||||
Fluid retention (PT) | 235 | 10.57 [9.28; 12.04] | 139 | 14.51 [12.26; 17.18] | 22 | 2.30 [1.51; 3.49] | 27 | 10.38 [7.10; 15.18] | 10 | 4.84 [2.30; 9.01] |
Renal disorder (PT) | 32 | 2.26 [1.59; 3.19] | 8 | 1.31 [0.66; 2.62] | 12 | 2.02 [1.15; 3.57] | 18 | 11.15 [7.00; 17.74] | 2 | - |
Nephritis NEC (HLT) | ||||||||||
Tubulointerstitial nephritis (PT) | 6 | 0.52 [0.23; 1.15] | 3 | - | 2 | - | 0 | - | 0 | - |
Nephropathies and tubular disorders NEC (HLT) | ||||||||||
Nephropathy (PT) | 13 | 3.36 [1.95; 5.81] | 0 | - | 2 | - | 2 | - | 0 | - |
Toxic nephropathy (PT) | 10 | 1.28 [0.69; 2.38] | 0 | - | 2 | - | 0 | - | 1 | - |
Glomerulonephritis and nephrotic syndrome (HLT) | ||||||||||
Nephrotic syndrome (PT) | 6 | 1.07 [0.48; 2.39] | 13 | 5.46 [3.16; 9.42] | 6 | 2.58 [1.16; 5.74] * | 1 | - | 0 | - |
Renal vascular and ischemic conditions (HLT) | ||||||||||
Renal artery stenosis (PT) | 1 | - | 0 | - | 7 | 25.85 [12.20; 54.82] | 0 | - | 9 | 155.76 [79.94; 303.50] |
Thrombotic microangiopathy (PT) | 4 | - | 6 | 3.95 [1.77; 8.80] | 1 | - | 0 | - | 4 | - |
References
- Hochhaus, A.; Saussele, S.; Rosti, G.; Mahon, F.-X.; Janssen, J.J.W.M.; Hjorth-Hansen, H.; Richter, J.; Buske, C. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv41–iv51. [Google Scholar] [CrossRef] [PubMed]
- European Medicine Agency (EMA) Imatinib, Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines?search_api_views_fulltext=imatinib (accessed on 4 March 2023).
- European Medicine Agency (EMA) Dasatinib, Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines?search_api_views_fulltext=dasatinib (accessed on 4 March 2023).
- European Medicine Agency (EMA) Nilotinib, Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines?search_api_views_fulltext=nilotinib (accessed on 4 March 2023).
- European Medicine Agency (EMA) Bosutinib, Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines?search_api_views_fulltext=bosutinib (accessed on 4 March 2023).
- European Medicine Agency (EMA) Ponatinib, Summary of Product Characteristics. Available online: https://www.ema.europa.eu/en/medicines?search_api_views_fulltext=ponatinib (accessed on 4 March 2023).
- Cirmi, S.; El Abd, A.; Letinier, L.; Navarra, M.; Salvo, F. Cardiovascular Toxicity of Tyrosine Kinase Inhibitors Used in Chronic Myeloid Leukemia: An Analysis of the FDA Adverse Event Reporting System Database (FAERS). Cancers 2020, 12, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirano, T.; Hashimoto, M.; Korogi, Y.; Tsuji, T.; Miyanaka, K.; Yamasaki, H.; Tsuda, H. Dasatinib-induced nephrotic syndrome. Leuk. Lymphoma 2016, 57, 726–727. [Google Scholar] [CrossRef]
- Kaiafa, G.; Kakaletsis, N.; Savopoulos, C.; Perifanis, V.; Giannouli, A.; Papadopoulos, N.; Zisekas, S.; Hatzitolios, A.I. Simultaneous manifestation of pleural effusion and acute renal failure associated with dasatinib: A case report. J. Clin. Pharm. 2014, 39, 102–105. [Google Scholar] [CrossRef] [PubMed]
- Wallace, E.; Lyndon, W.; Chumley, P.; Jaimes, E.A.; Fatima, H. Dasatinib-Induced Nephrotic-Range Proteinuria. Am. J. Kidney Dis. 2013, 61, 1026–1031. [Google Scholar] [CrossRef]
- Ozkurt, S.; Temiz, G.; Acikalin, M.F.; Soydan, M. Acute Renal Failure under Dasatinib Therapy. Ren. Fail. 2010, 32, 147–149. [Google Scholar] [CrossRef]
- Calizo, R.C.; Bhattacharya, S.; van Hasselt, J.G.C.; Wei, C.; Wong, J.S.; Wiener, R.J.; Ge, X.; Wong, N.J.; Lee, J.-J.; Cuttitta, C.M.; et al. Disruption of podocyte cytoskeletal biomechanics by dasatinib leads to nephrotoxicity. Nat. Commun. 2019, 10, 2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Floege, J.; Eitner, F.; Alpers, C.E. A New Look at Platelet-Derived Growth Factor in Renal Disease. JASN 2008, 19, 12–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Human Protein Atlas. Available online: https://www.proteinatlas.org/search (accessed on 5 January 2022).
- Ollero, M.; Sahali, D. Inhibition of the VEGF signalling pathway and glomerular disorders. Nephrol. Dial. Transplant. 2015, 30, 1449–1455. [Google Scholar] [CrossRef]
- Meyboom, R.H.B.; Egberts, A.C.G.; Edwards, I.R.; Hekster, Y.A.; de Koning, F.H.P.; Gribnau, F.W.J. Principles of Signal Detection in Pharmacovigilance. Drug Saf. 1997, 16, 355–365. [Google Scholar] [CrossRef]
- Lindquist, M. VigiBase, the WHO Global ICSR Database System: Basic Facts. Drug Inf. J. 2008, 42, 409–419. [Google Scholar] [CrossRef]
- Tregunno, P.M.; Fink, D.B.; Fernandez-Fernandez, C.; Lázaro-Bengoa, E.; Norén, G.N. Performance of Probabilistic Method to Detect Duplicate Individual Case Safety Reports. Drug Saf. 2014, 37, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Faillie, J.-L. Les études cas–non cas: Principe, méthodes, biais et interprétations. Therapies 2018, 73, 247–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency (EMA) Screening for adverse reactions in EudraVigilance 2016. Available online: https://www.ema.europa.eu/en/documents/other/screening-adverse-reactions-eudravigilance_en.pdf (accessed on 5 January 2023).
- Candore, G.; Juhlin, K.; Manlik, K.; Thakrar, B.; Quarcoo, N.; Seabroke, S.; Wisniewski, A.; Slattery, J. Comparison of Statistical Signal Detection Methods Within and Across Spontaneous Reporting Databases. Drug Saf. 2015, 38, 577–587. [Google Scholar] [CrossRef] [PubMed]
- Montastruc, J.-L.; Sommet, A.; Bagheri, H.; Lapeyre-Mestre, M. Benefits and strengths of the disproportionality analysis for identification of adverse drug reactions in a pharmacovigilance database: Commentary. Br. J. Clin. Pharmacol. 2011, 72, 905–908. [Google Scholar] [CrossRef] [Green Version]
- Khouri, C.; Mahé, J.; Caquelin, L.; Locher, C.; Despas, F. Pharmacology and pharmacovigilance of protein kinase inhibitors. Therapies 2022, 77, 207–217. [Google Scholar] [CrossRef]
- Mahé, J.; de Campaigno, E.P.; Chené, A.-L.; Montastruc, J.-L.; Despas, F.; Jolliet, P. Pleural adverse drugs reactions and protein kinase inhibitors: Identification of suspicious targets by disproportionality analysis from VigiBase: Pleural adverse drugs reactions and protein kinase inhibitors. Br. J. Clin. Pharm. 2018, 84, 2373–2383. [Google Scholar] [CrossRef]
- Masiello, D.; Gorospe, G.; Yang, A.S. The occurrence and management of fluid retention associated with TKI therapy in CML, with a focus on dasatinib. J. Hematol. Oncol. 2009, 2, 46. [Google Scholar] [CrossRef] [Green Version]
- Quintás-Cardama, A.; Kantarjian, H.; O’Brien, S.; Borthakur, G.; Bruzzi, J.; Munden, R.; Cortes, J. Pleural Effusion in Patients With Chronic Myelogenous Leukemia Treated With Dasatinib After Imatinib Failure. JCO 2007, 25, 3908–3914. [Google Scholar] [CrossRef]
- Carragher, N.O.; Westhoff, M.A.; Fincham, V.J.; Schaller, M.D.; Frame, M.C. A Novel Role for FAK as a Protease-Targeting Adaptor Protein: Regulation by p42 ERK and Src. Curr. Biol. 2023, 13, 1442–1450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gafter-Gvili, A.; Ram, R.; Gafter, U.; Shpilberg, O.; Raanani, P. Renal failure associated with tyrosine kinase inhibitors—Case report and review of the literature. Leuk. Res. 2010, 34, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Schiessl, I.M.; Grill, A.; Fremter, K.; Steppan, D.; Hellmuth, M.-K.; Castrop, H. Renal Interstitial Platelet-Derived Growth Factor Receptor-β Cells Support Proximal Tubular Regeneration. JASN 2018, 29, 1383–1396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takikita-Suzuki, M.; Haneda, M.; Sasahara, M.; Owada, M.K.; Nakagawa, T.; Isono, M.; Takikita, S.; Koya, D.; Ogasawara, K.; Kikkawa, R. Activation of Src Kinase in Platelet-Derived Growth Factor-B-Dependent Tubular Regeneration after Acute Ischemic Renal Injury. Am. J. Pathol. 2003, 163, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, T.; Sasahara, M.; Haneda, M.; Kataoka, H.; Nakagawa, H.; Yagi, M.; Kikkawa, R.; Hazama, F. Role of PDGF B-Chain and PDGF Receptors in Rat Tubular Regeneration after Acute Injury. Am. J. Pathol. 1999, 155, 1689–1699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izzedine, H.; Escudier, B.; Lhomme, C.; Pautier, P.; Rouvier, P.; Gueutin, V.; Baumelou, A.; Derosa, L.; Bahleda, R.; Hollebecque, A.; et al. Kidney Diseases Associated With Anti-Vascular Endothelial Growth Factor (VEGF): An 8-year Observational Study at a Single Center. Medicine 2014, 93, 333–339. [Google Scholar] [CrossRef]
- Estrada, C.C.; Maldonado, A.; Mallipattu, S.K. Therapeutic Inhibition of VEGF Signaling and Associated Nephrotoxicities. JASN 2019, 30, 187–200. [Google Scholar] [CrossRef] [Green Version]
- Van Wynsberghe, M.; Flejeo, J.; Sakhi, H.; Ollero, M.; Sahali, D.; Izzedine, H.; Henique, C. Nephrotoxicity of Anti-Angiogenic Therapies. Diagnostics 2021, 11, 640. [Google Scholar] [CrossRef]
- Rea, D.; Mirault, T.; Cluzeau, T.; Gautier, J.-F.; Guilhot, F.; Dombret, H.; Messas, E. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica 2014, 99, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Loren, C.P.; Aslan, J.E.; Rigg, R.A.; Nowak, M.S.; Healy, L.D.; Gruber, A.; Druker, B.J.; McCarty, O.J.T. The BCR-ABL inhibitor ponatinib inhibits platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling, platelet activation and aggregate formation under shear. Thromb. Res. 2015, 135, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Pouwer, M.G.; Pieterman, E.J.; Verschuren, L.; Caspers, M.P.M.; Kluft, C.; Garcia, R.A.; Aman, J.; Jukema, J.W.; Princen, H.M.G. The BCR-ABL1 Inhibitors Imatinib and Ponatinib Decrease Plasma Cholesterol and Atherosclerosis, and Nilotinib and Ponatinib Activate Coagulation in a Translational Mouse Model. Front. Cardiovasc. Med. 2018, 5, 55. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.D.; Moslehi, J.J.; Lindner, J.R. Arterial Thrombotic Complications of Tyrosine Kinase Inhibitors. Arterioscler. Thromb. Vasc. Biol. 2021, 41, 3–10. [Google Scholar] [CrossRef]
- Cortes, J.E.; Jean Khoury, H.; Kantarjian, H.; Brümmendorf, T.H.; Mauro, M.J.; Matczak, E.; Pavlov, D.; Aguiar, J.M.; Fly, K.D.; Dimitrov, S.; et al. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib: Bosutinib Cardiac and Vascular Toxicity in Ph+ Leukemias. Am. J. Hematol. 2016, 91, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Baldo, P.; De Paoli, P. Pharmacovigilance in oncology: Evaluation of current practice and future perspectives: Pharmacovigilance in oncology and current practice. J. Eval. Clin. Pr. 2014, 20, 559–569. [Google Scholar] [CrossRef]
- Bate, A.; Evans, S.J.W. Quantitative signal detection using spontaneous ADR reporting. Pharmacoepidem. Drug Saf. 2009, 18, 427–436. [Google Scholar] [CrossRef]
- Arora, A.; Jalali, R.; Vohora, D. Relevance of the Weber effect in contemporary pharmacovigilance of oncology drugs. TCRM 2017, 13, 1195–1203. [Google Scholar] [CrossRef] [Green Version]
Parameters | Imatinib n = 736 | Dasatinib n = 287 | Nilotinib n = 177 | Bosutinib n = 125 | Ponatinib n = 84 | All Drugs n = 1409 |
---|---|---|---|---|---|---|
Age in years, mean (SD) | 65.0 (13.8) | 61.1 (14.4) | 62.6 (15.0) | 68.1 (11.6) | 60.1 (13.6) | 63.9 (14.1) |
Sex, n (%) | ||||||
Women | 328 (45) | 143 (50) | 69 (39) | 68 (54) | 35 (42) | 643 (46) |
Men | 408 (55) | 144 (50) | 108 (61) | 57 (46) | 49 (58) | 766 (54) |
ADR related to renal and urinary disorders in HLT, n (%) | ||||||
Renal failure and impairment | 393 (53) | 104 (36) | 104 (59) | 74 (59) | 51 (61) | 726 (52) |
Renal disorders | 268 (36) | 152 (53) | 41 (23) | 47 (38) | 12 (14) | 520 (37) |
Nephropathies and tubular disorders | 39 (5) | 0 (0) | 9 (5) | 2 (2) | 3 (4) | 53 (4) |
Renal vascular and ischemic conditions | 15 (2) | 8 (3) | 10 (6) | 0 (0) | 17 (20) | 50 (4) |
Glomerulonephritis and nephrotic syndrome | 11 (1) | 20 (7) | 7 (4) | 1 (1) | 0 (0) | 39 (3) |
Nephritis | 6 (1) | 3 (1) | 4 (2) | 1 (1) | 0 (0) | 14 (1) |
Renal hypertension and related conditions | 4 (1) | 0 (0) | 2 (1) | 0 (0) | 1 (1) | 7 (1) |
Seriousness, n (%) | ||||||
Serious | 546 (74) | 230 (80) | 148 (84) | 104 (83) | 80 (95) | 1108 (79) |
Not serious | 149 (20) | 54 (19) | 21 (12) | 21 (17) | 3 (4) | 248 (18) |
Unknown | 41 (6) | 3 (1) | 8 (5) | 0 (0) | 1 (1) | 53 (4) |
Outcome, n (%) | ||||||
Recovered/resolved | 118 (16) | 35 (12) | 28 (16) | 32 (26) | 15 (17) | 228 (16) |
Not recovered | 82 (11) | 23 (8) | 22 (12) | 9 (7) | 10 (11) | 146 (10) |
Recovering/resolving | 74 (10) | 30 (10) | 18 (10) | 17 (14) | 5 (6) | 144 (10) |
Recovered with sequelae | 7 (1) | 0 (0) | 2 (1) | 2 (2) | 1 (1) | 12 (1) |
Death | 88 (12) | 32 (11) | 36 (20) | 9 (7) | 30 (36) | 195 (14) |
Unknown | 367 (50) | 167 (58) | 71 (40) | 56 (45) | 23 (27) | 684 (49) |
Time to onset in days *, mean (SD) | 426 (971) | 269 (501) | 607 (1041) | 127 (327) | 524 (627) | 410 (880) |
Discontinuation of the drug *, n (%) | 298 (39) | 108 (37) | 65 (36) | 56 (45) | 30 (34) | 557 (39) |
Top 5 countries reporting cases, n (%) | ||||||
United States of America | 240 (33) | 146 (51) | 46 (26) | 71 (57) | 50 (60) | 553 (39) |
Japan | 124 (17) | 28 (10) | 37 (21) | 20 (16) | 9 (11) | 128 (15) |
Germany | 63 (9) | 28 (10) | 19 (11) | 2 (2) | 4 (5) | 116 (8) |
United Kingdom of Great Britain and Northern Ireland | 35 (5) | 10 (4) | 10 (6) | 5 (4) | 1 (1) | 61 (4) |
Canada | 29 (4) | 15 (5) | 6 (3) | 3 (2) | 6 (7) | 59 (4) |
Top 3 indications, n (%) | ||||||
Chronic myeloid leukemia | 343 (47) | 179 (62) | 127 (72) | 72 (58) | 37 (44) | 758 (54) |
Gastrointestinal tumor | 132 (18) | 0 (0) | 2 (1) | 0 (0) | 1 (1) | 135 (10) |
Acute lymphoid leukemia | 10 (1) | 17 (6) | 4 (2) | 2 (2) | 13 (15) | 46 (3) |
Renal Failure and Impairment (HLT) | Renal Disorders (HLT) | Nephritis (HLT) | Nephropathies and Tubular Disorders (HLT) | Glomerulonephritis and Nephrotic Syndrome (HLT) | Renal Vascular and Ischemic Conditions (HLT) | ||
---|---|---|---|---|---|---|---|
Imatinib (n = 736) | TTO in days, median [Q25–Q75] | 55.0 [13.5–330.3], n = 151/393 * | 62.0 [11.0–227.0], n = 61/268 * | UNK, n = 1/6 * | 88.0 [28.8–696.0], n = 11/39 * | 684.0 [14.0–325.5], n = 3/11 * | 61.9 [29.5–531.0], n = 6/15 * |
Outcome after TKI discontinuation, n (%) | |||||||
Recovered/resolved | 74 (19) | 32 (12) | 0 (0) | 5 (13) | 2 (18) | 2 (13) | |
Recovering/resolving | 37 (9.4) | 25 (9.3) | 1 (17) | 10 (26) | 0 (0) | 0 (0) | |
Not recovered/not resolved | 48 (12) | 20 (7.5) | 0 (0) | 7 (18) | 2 (18) | 1 (6.7) | |
Recovered/resolved with sequalae | 5 (1.3) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (13) | |
Death | 39 (9.9) | 5 (1.9) | 0 (0) | 2 (5.1) | 0 (0) | 2 (13) | |
UNK | 189 (48) | 186 (70) | 5 (83) | 15 (38.7) | 7 (63) | 8 (53) | |
Dasatinib (n = 287) | TTO in days, mean (SD) | 264.3 (465.2), n = 44/104 * | 280.5 (644.8), n = 23/152 * | UNK, n = 1/3 * | n = 0/0 * | 222.8 (280.6), n = 6/20 * | 529.0 (452.4), n = 5/8 * |
Outcome after TKI discontinuation, n (%) | |||||||
Recovered/resolved | 13 (12) | 14 (9.2) | 0 (0) | 0 (0) | 6 (30) | 1 (12) | |
Recovering/resolving | 8 (7.7) | 11 (7.2) | 2 (67) | 0 (0) | 6 (30) | 2 (25) | |
Not recovered/not resolved | 12 (12) | 6 (3.9) | 0 (0) | 0 (0) | 1 (5) | 2 (25) | |
Death | 9 (8.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
UNK | 61 (59) | 120 (79) | 1 (33) | 0 (0) | 7 (35) | 3 (38) | |
Nilotinib (n = 177) | TTO in days, median [Q25–Q75] | 262.0 [30.7–682.5], n = 47/104 * | 383.5 [141.3–1071.5], n = 14/41 * | UNK, n = 1/4 * | 383.5 [160.5–591.4], n = 4/9 * | 366.0 [340.2–632.3], n = 4/7 * | 616.7 [407.7–1805.9], n = 4/10 * |
Outcome after TKI discontinuation, n (%) | |||||||
Recovered/resolved | 15 (14) | 7 (17) | 2 (50) | 1 (11) | 0 (0) | 2 (20) | |
Recovering/resolving | 10 (9.6) | 3 (7.3) | 1 (25) | 2 (22) | 1 (14) | 1 (10) | |
Not recovered/not resolved | 16 (15) | 1 (2.4) | 0 (0) | 1 (11) | 2 (29) | 2 (20) | |
Recovered/resolved with sequalae | 1 (0.96) | 1 (2.4) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Death | 19 (18) | 4 (9) | 0 (0) | 1 (11) | 0 (0) | 0 (0) | |
UNK | 43 (41) | 25 (61) | 1 (25) | 4 (44) | 4 (57) | 5 (50) | |
Bosutinib (n = 125) | TTO in days, median [Q25–Q75] | 26.5 [8.0–116.0], n = 26/74 * | 56.0 [35.0–167.5], n = 3/47 * | UNK, n = 0/1 * | UNK, n = 1/2 * | UNK, n = 0/1 * | n = 0/0 * |
Outcome after TKI discontinuation, n (%) | |||||||
Recovered/resolved | 22 (30) | 9 (19) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Recovering/resolving | 11 (15) | 4 (8.5) | 1 (100) | 1 (50) | 0 (0) | 0 (0) | |
Not recovered/not resolved | 6 (8.1) | 2 (4.3) | 0 (0) | 0 (0) | 1 (100) | 0 (0) | |
Recovered/resolved with sequalae | 2 (2.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Death | 2 (2.7) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
UNK | 31 (42) | 32 (68) | 0 (0) | 1 (50) | 0 (0) | 0 (0) | |
Ponatinib (n = 84) | TTO in days, median [Q25–Q75] | 183.0 [97.5–783.0], n = 8/61 * | UNK, n = 2/12 * | n = 0/0 * | UNK, n = 0/3 * | n = 0/0 * | 490.0 [123.5–800.5], n = 7/17 * |
Outcome after TKI discontinuation, n (%) | |||||||
Recovered/resolved | 6 (12) | 1 (8.3) | 0 (0) | 1 (33) | 0 (0) | 7 (41) | |
Recovering/resolving | 3 (5.9) | 2 (17) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Not recovered/not resolved | 5 (9.8) | 2 (17) | 0 (0) | 0 (0) | 0 (0) | 1 (5.9) | |
Recovered/resolved with sequalae | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (5.9) | |
Death | 3 (5.9) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 2 (12) | |
UNK | 14 (66) | 7 (58) | 0 (0) | 2 (66) | 0 (0) | 6 (34.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cellier, M.; Bourneau-Martin, D.; Abbara, C.; Crosnier, A.; Lagarce, L.; Garnier, A.-S.; Briet, M. Renal Safety Profile of BCR-ABL Tyrosine Kinase Inhibitors in a Real-Life Setting: A Study Based on Vigibase®, the WHO Pharmacovigilance Database. Cancers 2023, 15, 2041. https://doi.org/10.3390/cancers15072041
Cellier M, Bourneau-Martin D, Abbara C, Crosnier A, Lagarce L, Garnier A-S, Briet M. Renal Safety Profile of BCR-ABL Tyrosine Kinase Inhibitors in a Real-Life Setting: A Study Based on Vigibase®, the WHO Pharmacovigilance Database. Cancers. 2023; 15(7):2041. https://doi.org/10.3390/cancers15072041
Chicago/Turabian StyleCellier, Morgane, Delphine Bourneau-Martin, Chadi Abbara, Alexandre Crosnier, Laurence Lagarce, Anne-Sophie Garnier, and Marie Briet. 2023. "Renal Safety Profile of BCR-ABL Tyrosine Kinase Inhibitors in a Real-Life Setting: A Study Based on Vigibase®, the WHO Pharmacovigilance Database" Cancers 15, no. 7: 2041. https://doi.org/10.3390/cancers15072041
APA StyleCellier, M., Bourneau-Martin, D., Abbara, C., Crosnier, A., Lagarce, L., Garnier, A. -S., & Briet, M. (2023). Renal Safety Profile of BCR-ABL Tyrosine Kinase Inhibitors in a Real-Life Setting: A Study Based on Vigibase®, the WHO Pharmacovigilance Database. Cancers, 15(7), 2041. https://doi.org/10.3390/cancers15072041