Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease
Abstract
:Simple Summary
Abstract
1. The Limitations of Studies Investigating Radiation-Associated Rectal Cancer
2. Radiotherapy Is a Pillar of Prostate Cancer Treatment
3. Direct Beam Radiation Damages Surrounding Organs
4. The Incidence and Risk of Developing RARC
5. The Molecular Profile of RARC Remains Unknown
6. Assessment, Surveillance and Diagnosis
7. Treatment, Outcomes and Prognosis of RARC
8. The Oncologic Outcomes of RARC
9. Risk Reduction and Prevention
10. Future Directions
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.-W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Barton, M.B.; Jacob, S.; Shafiq, J.; Wong, K.; Thompson, S.R.; Hanna, T.P.; Delaney, G.P. Estimating the demand for radiotherapy from the evidence: A review of changes from 2003 to 2012. Radiother. Oncol. 2014, 112, 140–144. [Google Scholar] [CrossRef]
- Bleyer, A.; Spreafico, F.; Barr, R. Prostate cancer in young men: An emerging young adult and older adolescent challenge. Cancer 2020, 126, 46–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Cancer Institute. Seer Prostate. Available online: http://seer.cancer.gov/registries/ (accessed on 20 May 2022).
- Witte, J.S.; Goddard, K.A.; Conti, D.V.; Elston, R.C.; Lin, J.; Suarez, B.K.; Broman, K.W.; Burmester, J.K.; Weber, J.L.; Catalona, W.J. Genomewide scan for prostate cancer-aggressiveness loci. Am. J. Hum. Genet. 2000, 67, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.E.; D’Amico, A.V. Progress and controversies: Radiation therapy for prostate cancer. CA Cancer J. Clin. 2014, 64, 389–407. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. Available online: http://www.nccn.org/ (accessed on 19 May 2022).
- Kamran, S.C.; D’Amico, A.V. Radiation therapy for prostate cancer. Hematol. Oncol. Clin. N. Am. 2020, 34, 45–69. [Google Scholar] [CrossRef]
- Michalski, J.M.; Moughan, J.; Purdy, J.; Bosch, W.; Bruner, D.W.; Bahary, J.-P.; Lau, H.; Duclos, M.; Parliament, M.; Morton, G.; et al. Effect of Standard vs Dose-Escalated Radiation Therapy for Patients with Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol. 2018, 4, e180039. [Google Scholar] [CrossRef]
- Michaelson, M.D.; Cotter, S.E.; Gargollo, P.C.; Zietman, A.L.; Dahl, D.M.; Smith, M.R. Management of complications of prostate cancer treatment. CA Cancer J. Clin. 2008, 58, 196–213. [Google Scholar] [CrossRef]
- Dracham, C.B.; Shankar, A.; Madan, R. Radiation induced secondary malignancies: A review article. Radiat. Oncol. J. 2018, 36, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Ishihara, S.; Hata, K.; Kiyomatsu, T.; Nozawa, H.; Kawai, K.; Tanaka, T.; Nishikawa, T.; Otani, K.; Yasuda, K.; et al. Radiation-associated colon cancer: A case report. Mol. Clin. Oncol. 2017, 6, 817–820. [Google Scholar] [CrossRef] [Green Version]
- Rombouts, A.J.M.; Hugen, N.; Van Beek, J.J.P.; Poortmans, P.M.P.; De Wilt, J.H.W.; Nagtegaal, I.D. Does pelvic radiation increase rectal cancer incidence?—A systematic review and meta-analysis. Cancer Treat. Rev. 2018, 68, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Brenner, H. Long-term survival rates of cancer patients achieved by the end of the 20th century: A period analysis. Lancet 2002, 360, 1131–1135. [Google Scholar] [CrossRef] [PubMed]
- Siegel, D.A.; O’Neil, M.E.; Richards, T.B.; Dowling, N.F.; Weir, H.K. Prostate Cancer Incidence and Survival, by Stage and Race/Ethnicity—United States, 2001–2017. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1473–1480. [Google Scholar] [CrossRef]
- Zelefsky, M.J.; Housman, D.M.; Pei, X.; Alicikus, Z.; Magsanoc, J.M.; Dauer, L.T.; St Germain, J.; Yamada, Y.; Kollmeier, M.; Cox, B.; et al. Incidence of secondary cancer development after high-dose intensity-modulated radiotherapy and image-guided brachytherapy for the treatment of localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2012, 83, 953–959. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Stukenborg, G.J.; Keim, J.; Theodorescu, D. Cancer incidence after localized therapy for prostate cancer. Cancer 2006, 107, 991–998. [Google Scholar] [CrossRef] [PubMed]
- Nieder, A.M.; Porter, M.P.; Soloway, M.S. Radiation therapy for prostate cancer increases subsequent risk of bladder and rectal cancer: A population based cohort study. J. Urol. 2008, 180, 2005–2009, discussion 2009. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Guan, X.; Liu, E.; Wei, R.; Zhao, Z.; Chen, H.; Liu, Z.; Yang, M.; Jiang, Z.; Wang, X. Risk and prognosis of secondary rectal cancer after radiation therapy for pelvic cancer. Front. Oncol. 2020, 10, 584072. [Google Scholar] [CrossRef]
- Neugut, A.I.; Ahsan, H.; Robinson, E.; Ennis, R.D. Bladder carcinoma and other second malignancies after radiotherapy for prostate carcinoma. Cancer 1997, 79, 1600–1604. [Google Scholar] [CrossRef]
- Brenner, D.J.; Curtis, R.E.; Hall, E.J.; Ron, E. Second malignancies in prostate carcinoma patients after radiotherapy compared with surgery. Cancer 2000, 88, 398–406. [Google Scholar] [CrossRef]
- Baxter, N.N.; Tepper, J.E.; Durham, S.B.; Rothenberger, D.A.; Virnig, B.A. Increased risk of rectal cancer after prostate radiation: A population-based study. Gastroenterology 2005, 128, 819–824. [Google Scholar] [CrossRef]
- Kendal, W.S.; Eapen, L.; Macrae, R.; Malone, S.; Nicholas, G. Prostatic irradiation is not associated with any measurable increase in the risk of subsequent rectal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 661–668. [Google Scholar] [CrossRef]
- Boorjian, S.; Cowan, J.E.; Konety, B.R.; DuChane, J.; Tewari, A.; Carroll, P.R.; Kane, C.J. Cancer of the Prostate Strategic Urologic Research Endeavor Investigators Bladder cancer incidence and risk factors in men with prostate cancer: Results from Cancer of the Prostate Strategic Urologic Research Endeavor. J. Urol. 2007, 177, 883–887. [Google Scholar] [CrossRef]
- Rapiti, E.; Fioretta, G.; Verkooijen, H.M.; Zanetti, R.; Schmidlin, F.; Shubert, H.; Merglen, A.; Miralbell, R.; Bouchardy, C. Increased risk of colon cancer after external radiation therapy for prostate cancer. Int. J. Cancer 2008, 123, 1141–1145. [Google Scholar] [CrossRef]
- Huo, D.; Hetzel, J.T.; Roy, H.; Rubin, D.T. Association of colorectal cancer and prostate cancer and impact of radiation therapy. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1979–1985. [Google Scholar] [CrossRef] [Green Version]
- Hinnen, K.A.; Schaapveld, M.; Van Vulpen, M.; Battermann, J.J.; Van der Poel, H.; Van Oort, I.M.; Van Roermund, J.G.H.; Monninkhof, E.M. Prostate brachytherapy and second primary cancer risk: A competitive risk analysis. J. Clin. Oncol. 2011, 29, 4510–4515. [Google Scholar] [CrossRef]
- Joung, J.Y.; Lim, J.; Oh, C.-M.; Jung, K.-W.; Cho, H.; Kim, S.H.; Seo, H.K.; Park, W.S.; Chung, J.; Lee, K.H.; et al. Risk of Second Primary Cancer among Prostate Cancer Patients in Korea: A Population-Based Cohort Study. PLoS ONE 2015, 10, e0140693. [Google Scholar] [CrossRef]
- Rombouts, A.J.M.; Hugen, N.; Elferink, M.A.G.; Poortmans, P.M.P.; Nagtegaal, I.D.; De Wilt, J.H.W. Increased risk for second primary rectal cancer after pelvic radiation therapy. Eur. J. Cancer 2020, 124, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Grantzau, T.; Overgaard, J. Risk of second non-breast cancer after radiotherapy for breast cancer: A systematic review and meta-analysis of 762,468 patients. Radiother. Oncol. 2015, 114, 56–65. [Google Scholar] [CrossRef]
- Yap, J.; Chuba, P.J.; Thomas, R.; Aref, A.; Lucas, D.; Severson, R.K.; Hamre, M. Sarcoma as a second malignancy after treatment for breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2002, 52, 1231–1237. [Google Scholar] [CrossRef]
- Tward, J.D.; Wendland, M.M.M.; Shrieve, D.C.; Szabo, A.; Gaffney, D.K. The risk of secondary malignancies over 30 years after the treatment of non-Hodgkin lymphoma. Cancer 2006, 107, 108–115. [Google Scholar] [CrossRef]
- Chaturvedi, A.K.; Engels, E.A.; Gilbert, E.S.; Chen, B.E.; Storm, H.; Lynch, C.F.; Hall, P.; Langmark, F.; Pukkala, E.; Kaijser, M.; et al. Second cancers among 104,760 survivors of cervical cancer: Evaluation of long-term risk. J. Nat. Cancer Inst. 2007, 99, 1634–1643. [Google Scholar] [CrossRef] [Green Version]
- Charas, T.; Taggar, A.; Zelefsky, M.J. Second malignancy risk in prostate cancer and radiotherapy. Future Oncol. 2017, 13, 385–389. [Google Scholar] [CrossRef]
- Hamada, N.; Fujimichi, Y. Classification of radiation effects for dose limitation purposes: History, current situation and future prospects. J. Radiat. Res. 2014, 55, 629–640. [Google Scholar] [CrossRef] [Green Version]
- West, C.M.; Barnett, G.C. Genetics and genomics of radiotherapy toxicity: Towards prediction. Genome Med. 2011, 3, 52. [Google Scholar] [CrossRef] [Green Version]
- Taitt, H.E. Global trends and prostate cancer: A review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location. Am. J. Mens Health 2018, 12, 1807–1823. [Google Scholar] [CrossRef] [Green Version]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Murray, L.; Henry, A.; Hoskin, P.; Siebert, F.-A.; Venselaar, J.; PROBATE group of GEC ESTRO. Second primary cancers after radiation for prostate cancer: A systematic review of the clinical data and impact of treatment technique. Radiother. Oncol. 2014, 110, 213–228. [Google Scholar] [CrossRef] [Green Version]
- Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012, 487, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Yaeger, R.; Chatila, W.K.; Lipsyc, M.D.; Hechtman, J.F.; Cercek, A.; Sanchez-Vega, F.; Jayakumaran, G.; Middha, S.; Zehir, A.; Donoghue, M.T.A.; et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell 2018, 33, 125–136.e3. [Google Scholar] [CrossRef] [Green Version]
- Chatila, W.K.; Kim, J.K.; Walch, H.; Marco, M.R.; Chen, C.-T.; Wu, F.; Omer, D.M.; Khalil, D.N.; Ganesh, K.; Qu, X.; et al. Genomic and transcriptomic determinants of response to neoadjuvant therapy in rectal cancer. Nat. Med. 2022, 28, 1646–1655. [Google Scholar] [CrossRef]
- Pino, M.S.; Chung, D.C. The chromosomal instability pathway in colon cancer. Gastroenterology 2010, 138, 2059–2072. [Google Scholar] [CrossRef] [Green Version]
- Hasan, S.; Renz, P.; Wegner, R.E.; Finley, G.; Raj, M.; Monga, D.; McCormick, J.; Kirichenko, A. Microsatellite instability (MSI) as an independent predictor of pathologic complete response (PCR) in locally advanced rectal cancer: A national cancer database (NCDB) analysis. Ann. Surg. 2020, 271, 716–723. [Google Scholar] [CrossRef]
- Tsuji, T.; Sawai, T.; Nakagoe, T.; Hidaka, S.; Shibasaki, S.; Tanaka, K.; Nanashima, A.; Yamaguchi, H.; Yasutake, T.; Tagawa, Y. Genetic analysis of radiation-associated rectal cancer. J. Gastroenterol. 2003, 38, 1185–1188. [Google Scholar] [CrossRef]
- Narui, K.; Ike, H.; Fujii, S.; Nojiri, K.; Tatsumi, K.; Yamagishi, S.; Saito, S.; Kunisaki, C.; Imada, T.; Nozawa, A.; et al. A case of radiation-induced rectal cancer. Nippon. Shokakibyo Gakkai Zasshi 2006, 103, 551–557. [Google Scholar]
- Shon, W.; Sukov, W.R.; Jenkins, S.M.; Folpe, A.L. MYC amplification and overexpression in primary cutaneous angiosarcoma: A fluorescence in-situ hybridization and immunohistochemical study. Mod. Pathol. 2014, 27, 509–515. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Zhang, L.; Chang, N.-E.; Singer, S.; Maki, R.G.; Antonescu, C.R. Consistent MYC and FLT4 gene amplification in radiation-induced angiosarcoma but not in other radiation-associated atypical vascular lesions. Genes Chromosomes Cancer 2011, 50, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Saenko, V.; Yamashita, S.; Mitsutake, N. Radiation-Induced Thyroid Cancers: Overview of Molecular Signatures. Cancers 2019, 11, 1290. [Google Scholar] [CrossRef] [Green Version]
- Romei, C.; Elisei, R. RET/PTC Translocations and Clinico-Pathological Features in Human Papillary Thyroid Carcinoma. Front. Endocrinol. 2012, 3, 54. [Google Scholar] [CrossRef] [Green Version]
- Mossanen, M.; Carvalho, F.L.F.; Muralidhar, V.; Preston, M.A.; Reardon, B.; Conway, J.R.; Curran, C.; Freeman, D.; Sha, S.; Sonpavde, G.; et al. Genomic Features of Muscle-invasive Bladder Cancer Arising after Prostate Radiotherapy. Eur. Urol. 2022, 81, 466–473. [Google Scholar] [CrossRef]
- Majumdar, S.R.; Fletcher, R.H.; Evans, A.T. How does colorectal cancer present? Symptoms, duration, and clues to location. Am. J. Gastroenterol. 1999, 94, 3039–3045. [Google Scholar] [CrossRef]
- Porouhan, P.; Farshchian, N.; Dayani, M. Management of radiation-induced proctitis. J. Fam. Med. Prim. Care 2019, 8, 2173–2178. [Google Scholar] [CrossRef]
- US Preventive Services Task Force; Davidson, K.W.; Barry, M.J.; Mangione, C.M.; Cabana, M.; Caughey, A.B.; Davis, E.M.; Donahue, K.E.; Doubeni, C.A.; Krist, A.H.; et al. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA 2021, 325, 1965–1977. [Google Scholar] [CrossRef]
- NCCN Survivorship. Available online: http://www.nccn.org/ (accessed on 20 May 2022).
- Zelefsky, M.J.; Pei, X.; Teslova, T.; Kuk, D.; Magsanoc, J.M.; Kollmeier, M.; Cox, B.; Zhang, Z. Secondary cancers after intensity-modulated radiotherapy, brachytherapy and radical prostatectomy for the treatment of prostate cancer: Incidence and cause-specific survival outcomes according to the initial treatment intervention. BJU Int. 2012, 110, 1696–1701. [Google Scholar] [CrossRef]
- Nakamura, Y.; Soma, T.; Izumi, K.; Sakai, Y.; Ushijima, H.; Kudo, S.; Saito, Y.; Kageyama, Y. Screening of chronic radiation proctitis and colorectal cancer using periodic total colonoscopy after external beam radiation therapy for prostate cancer. Jpn. J. Clin. Oncol. 2021, 51, 1298–1302. [Google Scholar] [CrossRef]
- Tamai, O.; Nozato, E.; Miyazato, H.; Isa, T.; Hiroyasu, S.; Shiraishi, M.; Kusano, T.; Muto, Y.; Higashi, M. Radiation-associated rectal cancer: Report of four cases. Dig. Surg. 1999, 16, 238–243. [Google Scholar] [CrossRef]
- Goldner, G.; Tomicek, B.; Becker, G.; Geinitz, H.; Wachter, S.; Zimmermann, F.; Wachter-Gerstner, N.; Reibenwein, J.; Glocker, S.; Bamberg, M.; et al. Proctitis after external-beam radiotherapy for prostate cancer classified by Vienna Rectoscopy Score and correlated with EORTC/RTOG score for late rectal toxicity: Results of a prospective multicenter study of 166 patients. Int. J. Radiat. Oncol. Biol. Phys. 2007, 67, 78–83. [Google Scholar] [CrossRef]
- Moreno, C.C.; Sullivan, P.S.; Mittal, P.K. MRI evaluation of rectal cancer: Staging and restaging. Curr. Probl. Diagn. Radiol. 2017, 46, 234–241. [Google Scholar] [CrossRef]
- Garcia-Aguilar, J.; Renfro, L.A.; Chow, O.S.; Shi, Q.; Carrero, X.W.; Lynn, P.B.; Thomas, C.R.; Chan, E.; Cataldo, P.A.; Marcet, J.E.; et al. Organ preservation for clinical T2N0 distal rectal cancer using neoadjuvant chemoradiotherapy and local excision (ACOSOG Z6041): Results of an open-label, single-arm, multi-institutional, phase 2 trial. Lancet Oncol. 2015, 16, 1537–1546. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Aguilar, J.; Patil, S.; Gollub, M.J.; Kim, J.K.; Yuval, J.B.; Thompson, H.M.; Verheij, F.S.; Omer, D.M.; Lee, M.; Dunne, R.F.; et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J. Clin. Oncol. 2022, 40, 2546–2556. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Marks, G.; Marks, J. Long-term results of reirradiation for patients with recurrent rectal carcinoma. Cancer 2002, 95, 1144–1150. [Google Scholar] [CrossRef]
- Haddock, M.G.; Gunderson, L.L.; Nelson, H.; Cha, S.S.; Devine, R.M.; Dozois, R.R.; Wolff, B.G. Intraoperative irradiation for locally recurrent colorectal cancer in previously irradiated patients. Int. J. Radiat. Oncol. Biol. Phys. 2001, 49, 1267–1274. [Google Scholar] [CrossRef]
- Kamran, S.C.; Zelefsky, M.; Nguyen, P.L.; Lawton, C.A.F. To Radiate or Not to Radiate-The Challenges of Pelvic Reirradiation. Semin. Radiat. Oncol. 2020, 30, 238–241. [Google Scholar] [CrossRef]
- Hom, D.B.; Adams, G.L.; Monyak, D. Irradiated soft tissue and its management. Otolaryngol. Clin. N. Am. 1995, 28, 1003–1019. [Google Scholar]
- Viswanathan, A.N.; Lee, L.J.; Eswara, J.R.; Horowitz, N.S.; Konstantinopoulos, P.A.; Mirabeau-Beale, K.L.; Rose, B.S.; Von Keudell, A.G.; Wo, J.Y. Complications of pelvic radiation in patients treated for gynecologic malignancies. Cancer 2014, 120, 3870–3883. [Google Scholar] [CrossRef] [Green Version]
- Ashburn, J.H.; Kalady, M.F. Radiation-Induced Problems in Colorectal Surgery. Clin. Colon Rectal Surg. 2016, 29, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Valentini, V.; Morganti, A.G.; Gambacorta, M.A.; Mohiuddin, M.; Doglietto, G.B.; Coco, C.; De Paoli, A.; Rossi, C.; Di Russo, A.; Valvo, F.; et al. Preoperative hyperfractionated chemoradiation for locally recurrent rectal cancer in patients previously irradiated to the pelvis: A multicentric phase II study. Int. J. Radiat. Oncol. Biol. Phys. 2006, 64, 1129–1139. [Google Scholar] [CrossRef]
- Morganti, A.G.; Santoni, R.; Osti, M.F. Radiotherapy in pelvic recurrences of rectal cancer. Ann. Ital. Chir. 2001, 72, 585–594. [Google Scholar]
- Romesser, P.B.; Crane, C.H. Chemo-Re-Irradiation and Salvage Surgery for Locally Recurrent Rectal Cancer. Ann. Surg. Oncol. 2021, 28, 4769–4771. [Google Scholar] [CrossRef]
- Van der Meij, W.; Rombouts, A.J.M.; Rütten, H.; Bremers, A.J.A.; De Wilt, J.H.W. Treatment of locally recurrent rectal carcinoma in previously (chemo)irradiated patients: A review. Dis. Colon Rectum 2016, 59, 148–156. [Google Scholar] [CrossRef]
- Lee, S.-H.; Hernandez de Anda, E.; Finne, C.O.; Madoff, R.D.; Garcia-Aguilar, J. The effect of circumferential tumor location in clinical outcomes of rectal cancer patients treated with total mesorectal excision. Dis. Colon Rectum 2005, 48, 2249–2257. [Google Scholar] [CrossRef]
- Hung, H.; You, J.; Chiang, J.; Hsieh, P.; Chiang, S.; Lai, C.; Tasi, W.; Yeh, C.; Chern, Y.; Hsu, Y. Clinicopathological characteristics and outcomes of metachronous rectal cancer in patients with a history of cervical cancer with and without remote radiotherapy: Reports of 45 cases. Medicine 2020, 99, e21328. [Google Scholar] [CrossRef]
- Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Prevention and treatment. World J. Gastroenterol. 2013, 19, 199–208. [Google Scholar] [CrossRef]
- Quinn, T.J.; Daignault-Newton, S.; Bosch, W.; Mariados, N.; Sylvester, J.; Shah, D.; Gross, E.; Hudes, R.; Beyer, D.; Kurtzman, S.; et al. Who benefits from a prostate rectal spacer? secondary analysis of a phase III trial. Pract. Radiat. Oncol. 2020, 10, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Mariados, N.; Sylvester, J.; Shah, D.; Karsh, L.; Hudes, R.; Beyer, D.; Kurtzman, S.; Bogart, J.; Hsi, R.A.; Kos, M.; et al. Hydrogel spacer prospective multicenter randomized controlled pivotal trial: Dosimetric and clinical effects of perirectal spacer application in men undergoing prostate image guided intensity modulated radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 2015, 92, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.E.; Efstathiou, J.A.; Bhattacharyya, S.K.; Payne, H.A.; Woodward, E.; Pinkawa, M. Association of the Placement of a Perirectal Hydrogel Spacer with the Clinical Outcomes of Men Receiving Radiotherapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e208221. [Google Scholar] [CrossRef]
- Xiang, M.; Chang, D.T.; Pollom, E.L. Second cancer risk after primary cancer treatment with three-dimensional conformal, intensity-modulated, or proton beam radiation therapy. Cancer 2020, 126, 3560–3568. [Google Scholar] [CrossRef]
- Hassan Osman, M.; Mehiri, N.; Chérif, J.; Zouaoui, A.; Toujani, S.; Louzir, B.; Haouet, S.; Menif, E.; Doghfous, J.; Béji, M. Multifocal epithelioid haemangioendothelioma. Tunis. Med. 2009, 87, 637. [Google Scholar]
Study | Data Source | Cohort Size * | Latency Period Inclusion | Follow-Up Duration | Radiation Modality | Control Group | Analysis | Findings ** |
---|---|---|---|---|---|---|---|---|
Neugut et al. (1997) [20] | SEER | 141,761 | ≥6 mo | Not reported † | Not reported | RT− | Time from treatment | |
6 mo < 5 yrs | RT+: RR 0.7 (0.5–0.9) RT−: RR 0.8 (0.7–0.9) | |||||||
5–8 yrs | RT+: RR 0.8 (0.5–1.2) RT−: RR 0.8 (0.6–1.0) | |||||||
>8 yrs | RT+: RR 0.8 (0.4–1.3) RT−: RR 0.8 (0.6–1.1) | |||||||
Brenner et al. (2000) [21] | SEER | 122,123 | ≥2 mo | ≥10 yrs | Not reported | Sx | Time from treatment | |
≥5 yrs | 35% increased risk (95% CI, −1, 86); p = 0.06 | |||||||
≥10 yrs | 105% increased risk (95% CI, 9, 292); p = 0.03 | |||||||
Baxter et al. (2005) [22] | SEER | 85,815 | ≥5 yrs | Mean >9 yrs | EBRT | Sx | Definitely irradiated sites Potentially irradiated sites Non-irradiated sites | HR 1.70 (95% CI: 1.4–2.2); p < 0.0001 HR 1.08 (95% CI: 0.92–1.26); p = 0.35 HR 0.95 (95% CI: 0.78–1.15); p = 0.58 |
RT+ vs. RT−: 70% increase in the development of RARC | ||||||||
Neider et al. (2005) [18] | SEER | 243,082 | ≥6 mo | >10 yrs | EBRT BT EBRT-BT | Sx | Time from treatment Entire follow-up period | EBRT: HR 1.26 (95% CI: 1.08, 1.47) BT: HR 1.08 (95% CI: 0.77, 1.54) EBRT−BT: HR 1.21 (95% CI: 0.89, 1.65) |
Risks vary depending on RT modality and time | ||||||||
Kendal et al. (2006) [23] | SEER | 237,773 | ≥5 yrs | Median 5 yrs | EBRT | Sx WW | Time from treatment Entire follow-up period | RT+ vs. Sx: RR 2.38 (95% CI: 2.21–2.55) Sx vs. WW: RR 3.44 (95% CI: 3.22–3.67) |
The WW group had a higher risk of rectal cancer than RT+ group, suggesting radiation does not influence this process. | ||||||||
Moon et al. (2006) [17] | SEER | 140,767 | ≥5 yrs | Median 10 yrs | EBRT | RT− | Time from treatment ≥5 yrs | EBRT: OR 1.60 (95% CI, 1.29–1.99) |
BT, either in isolation or in combination with EBRT, did not show significantly different odds of RARC | ||||||||
Boorjian et al. (2007) [24] | CaPSURE | 9681 | ≥30 days | Median 39 mo | EBRT BT EBRT-RT | RT− | Entire follow-up period | RT+: 11/31 patients (35%, p = 0.14) |
Rapiti et al. (2008) [25] | GCR | 1134 | ≥5 yrs | Median 7.4 yrs | EBRT | RT− | Time from treatment | |
5–9 yrs | RT+: SIR 1.2 (95% CI: 0.04–6.9) RT−: SIR 1.5 (95% CI: 0.4–3.9) | |||||||
≥10 yrs | RT+: SIR 5.3 (95% CI: 0.2–29.3) RT−: undefined | |||||||
Increased incidence of colon cancer in 13 patients | ||||||||
Huo et al. (2009) [26] | SEER | 635,910 | Notreported | >10 yrs | EBRT BT | RT− | Time from treatment | |
<6 mo (p = 0.02) | RT+: SIR 0.99 (95% CI: 0.77–1.27) RT−: SIR 1.38 (95% CI: 1.19–1.60) | |||||||
6 mo–5 yrs (p = 0.95) | RT+: SIR 0.96 (95% CI: 0.88–1.05) RT−: SIR 0.96 (95% CI: 0.90–1.02) | |||||||
>5–10 yrs (p = 0.08) | RT+: SIR 1.06 (95% CI: 0.93–1.20) RT−: SIR 0.92 (95% CI: 0.84–1.01) | |||||||
>10 yrs (p < 0.0001) | RT+: SIR 1.44 (95% CI: 1.22–1.71) RT−: SIR 0.76 (95% CI: 0.65–0.88) | |||||||
Entire follow-up period (p = 0.03) | RT+: RR 1.04 (95% CI: 0.97–1.11) RT−: RR 0.95 (95% CI: 0.91–1.00) | |||||||
Hinnen et al. (2011) [27] | NCR | 1888 | ≥1 yr | Median 7.5 yrs | BT | Sx | Time from treatment | |
1–4 yrs | BT: RR 0.41 (95% CI: 0.05–1.48) RP: RR 2.12 (95% CI: 0.69–4.94) | |||||||
5–15 yrs | BT: RR 1.78 (95% CI: 0.71–3.67) RP: RR 0.96 (95% CI:0.19–2.81) | |||||||
Joung et al. (2015) [28] | KCR | 55,378 | >2 mo | Median 3.5 yrs | Not reported | RT− | Time from treatment | RT+: SIR 1.03 (CI not reported) RT−: SIR 0.67 (CI not reported), p < 0.05 |
Rombouts et al. (2020) [29] | NCR | 96,577 | Not reported | Median 6.8 yrs | Not reported | RT− | Time from treatment | RT+: SIR 1.20 (95% CI: 1.10–1.30) RT−: SIR 0.99 (95% CI: 0.91–1.06) |
Subhazard ratio Crude incidence ratio | SHR: 1.89 (95% CI: 1.66–2.16) CIR: 1.3% RT+ vs. 0.7% RT− (p < 0.001) | |||||||
5-yr overall survival | RT+: 33.7% (95% CI: 29.6–37.8) RT−: 39.1% (95% CI: 35.4–42.8) | |||||||
Yang et al. (2020) [19] | SEER | 291,395 | ≤5 yrs | >20 yrs | EBRT BT EBRT-BT | RT− | Time from treatment | |
Entire follow-up period | RT+, EBRT: SIR 1.22 (95% CI: 1.09–1.36) RT+, EBRT−BT: SIR 1.85 (95% CI: 1.60–2.14) RT−: SIR 0.85 (95% CI: 0.8–0.91) | |||||||
5-yr OS | Significantly lower in RT−SPRC vs. matched-PRCO group HR = 1.33 (95% CI: 1.14–1.55); p < 0.001 | |||||||
5-yr RCSS | Significantly lower in RT−SPRC vs. matched-PRCO group HR = 1.30 (95% CI: 1.07–1.58); p = 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omer, D.M.; Thompson, H.M.; Verheij, F.S.; Yuval, J.B.; Rosen, R.; Beets, N.R.A.; Luthra, A.; Romesser, P.B.; Paty, P.B.; Garcia-Aguilar, J.; et al. Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease. Cancers 2023, 15, 2214. https://doi.org/10.3390/cancers15082214
Omer DM, Thompson HM, Verheij FS, Yuval JB, Rosen R, Beets NRA, Luthra A, Romesser PB, Paty PB, Garcia-Aguilar J, et al. Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease. Cancers. 2023; 15(8):2214. https://doi.org/10.3390/cancers15082214
Chicago/Turabian StyleOmer, Dana M., Hannah M. Thompson, Floris S. Verheij, Jonathan B. Yuval, Roni Rosen, Nathalie R. A. Beets, Anisha Luthra, Paul B. Romesser, Philip B. Paty, Julio Garcia-Aguilar, and et al. 2023. "Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease" Cancers 15, no. 8: 2214. https://doi.org/10.3390/cancers15082214
APA StyleOmer, D. M., Thompson, H. M., Verheij, F. S., Yuval, J. B., Rosen, R., Beets, N. R. A., Luthra, A., Romesser, P. B., Paty, P. B., Garcia-Aguilar, J., & Sanchez-Vega, F. (2023). Rectal Cancer after Prostate Radiation: A Complex and Controversial Disease. Cancers, 15(8), 2214. https://doi.org/10.3390/cancers15082214