The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Glycolysis Contributes to GI Cancers Progression
3. Glycolysis Induces an Immunosuppressive Tumor Microenvironment in GI Cancers
4. The Characteristics of Glycolysis-Associated CircRNAs in GI Cancers
5. CircRNAs Regulate Glycolysis-Related Enzymes or Transporters in GI Cancers
5.1. CircRNAs and GLUT1 in GI Cancers
5.2. CircRNAs and HK2 in GI Cancers
5.3. CircRNAs and PKM2 in GI Cancers
5.4. CircRNAs and LDHA in GI Cancers
6. CircRNAs Control Glycolysis by Regulating Signaling Pathways
6.1. CircRNAs Are Involved in Glycolysis by Regulating the HIF1, c-Myc, or STAT3 Signaling Pathways in GI Cancers
6.1.1. CircRNAs and HIF1 in GI Cancers
6.1.2. CircRNAs and C-Myc in GI Cancers
6.1.3. CircRNAs and STAT3 in GI Cancers
6.2. CircRNAs Regulate Glycolysis via the PI3K/Akt/mTOR or FOXK1 Pathways in GI Cancers
6.2.1. CircRNAs and PI3K/Akt/mTOR in GI Cancers
6.2.2. CircRNAs and FOXK1 in GI Cancers
7. Clinical Significance of Glycolysis-Associated CircRNAs in GI Cancers
7.1. Diagnostic and Prognostic Value of Glycolysis-Associated CircRNAs in GI Cancers
7.2. Therapeutic Value of Glycolysis-Associated CircRNAs in GI Cancers
8. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CircRNAs | circular RNAs |
GI | gastrointestinal |
GC | gastric cancer |
HCC | hepatocellular carcinoma |
CRC | colorectal cancer |
EC | esophageal cancer |
PC | pancreatic cancer |
TCA | tricarboxylic acid |
NADH | reduced nicotinamide adenine dinucleotide |
FADH2 | reduced flavin adenine dinucleotide 2 |
OXPHOS | oxidative phosphorylation |
ATP | adenosine triphosphate |
MiRNAs | microRNAs |
LncRNAs | long non-coding RNAs |
pre-mRNA | precursor mRNA |
GLUT1 | glucose uptake and glucose transporter 1 |
HK | hexokinase |
PFK | phosphofructokinase |
PK | pyruvate kinase |
PKM2 | pyruvate kinase M2 |
G6P | glucose-6-phosphate |
PPP | pentose phosphate pathway |
NADPH | nicotinamide adenine dinucleotide phosphate oxidase |
ROS | reactive oxygen species |
TME | tumor microenvironment |
MCT1 | monocarboxylate transporter 1 |
TGF-β | transforming growth factor β |
TGF-β RI | TGF-β receptor I |
mTOR | mammalian target of rapamycin |
5-FU | 5-fluorouracil |
AMP | adenosine monophosphate |
AMPK | AMP-activated protein kinase |
LDHA | lactate dehydrogenase A |
HKDC1 | hexokinase domain containing protein 1 |
STAT3 | signal transducer and activator of transcription 3 |
HIF1 | hypoxia inducible factor-1 |
HREs | hypoxia-responsive elements |
MCT4 | monocarboxylate transporter 4 |
ENO1 | enolase 1 |
IL-6 | interleukin 6 |
PI3K | phosphatidylinositol 3-kinase |
Akt | protein kinase B |
FOXM1 | forkhead box protein M1 |
FOX | forkhead box |
GFs | growth factors |
GFR | growth factor receptor |
PIP2 | phosphatidy-linositol-3,4-bisphosphate |
PIP3 | phosphatidylinositol-3,4,5-bisphosphate |
PDK | phosphoinositide-dependent kinase |
FHA | forkhead-associated |
shRNA | short hairpin RNA |
siRNA | small interfering RNA |
ASOs | antisense oligonucleotides |
EVs | extracellular vesicles |
SIRT1 | sirtuin1 |
References
- Buckley, A.M.; Lynam-Lennon, N.; O’Neill, H.; O’Sullivan, J. Targeting hallmarks of cancer to enhance radiosensitivity in gastrointestinal cancers. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Mullins, C.S.; Schafmayer, C.; Zeißig, S.; Linnebacher, M. A global assessment of recent trends in gastrointestinal cancer and lifestyle-associated risk factors. Cancer Commun. 2021, 41, 1137–1151. [Google Scholar] [CrossRef] [PubMed]
- Mulukutla, B.C.; Yongky, A.; Le, T.; Mashek, D.G.; Hu, W.S. Regulation of Glucose Metabolism—A Perspective from Cell Bioprocessing. Trends Biotechnol. 2016, 34, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Reyes, I.; Chandel, N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020, 11, 102. [Google Scholar] [CrossRef] [Green Version]
- Ghanavat, M.; Shahrouzian, M.; Deris Zayeri, Z.; Banihashemi, S.; Kazemi, S.M.; Saki, N. Digging deeper through glucose metabolism and its regulators in cancer and metastasis. Life Sci. 2021, 264, 118603. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Nagao, A.; Kobayashi, M.; Koyasu, S.; Chow, C.C.T.; Harada, H. HIF-1-Dependent Reprogramming of Glucose Metabolic Pathway of Cancer Cells and Its Therapeutic Significance. Int. J. Mol. Sci. 2019, 20, 238. [Google Scholar] [CrossRef] [Green Version]
- Ganapathy-Kanniappan, S.; Geschwind, J.F. Tumor glycolysis as a target for cancer therapy: Progress and prospects. Mol. Cancer 2013, 12, 152. [Google Scholar] [CrossRef] [Green Version]
- Shang, R.Z.; Qu, S.B.; Wang, D.S. Reprogramming of glucose metabolism in hepatocellular carcinoma: Progress and prospects. World J. Gastroenterol. 2016, 22, 9933–9943. [Google Scholar] [CrossRef]
- Huang, P.; Zhu, S.; Liang, X.; Zhang, Q.; Luo, X.; Liu, C.; Song, L. Regulatory Mechanisms of LncRNAs in Cancer Glycolysis: Facts and Perspectives. Cancer Manag. Res. 2021, 13, 5317–5336. [Google Scholar] [CrossRef]
- Welden, J.R.; Stamm, S. Pre-mRNA structures forming circular RNAs. Biochim. Et Biophys. Acta Gene Regul. Mech. 2019, 1862, 194410. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.S.; Jakobsen, T.; Hager, H.; Kjems, J. The emerging roles of circRNAs in cancer and oncology. Nat. Rev. Clin. Oncol. 2022, 19, 188–206. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.W.; Yamashita, H.; Seto, Y. Glucose metabolism in gastric cancer: The cutting-edge. World J. Gastroenterol. 2016, 22, 2046–2059. [Google Scholar] [CrossRef] [PubMed]
- Nenkov, M.; Ma, Y.; Gaßler, N.; Chen, Y. Metabolic Reprogramming of Colorectal Cancer Cells and the Microenvironment: Implication for Therapy. Int. J. Mol. Sci. 2021, 22, 6262. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Li, J.; Wu, L.; Yu, Q.; Ji, J.; Wu, J.; Dai, W.; Guo, C. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 2020, 39, 126. [Google Scholar] [CrossRef]
- Chang, X.; Liu, X.; Wang, H.; Yang, X.; Gu, Y. Glycolysis in the progression of pancreatic cancer. Am. J. Cancer Res. 2022, 12, 861–872. [Google Scholar]
- King, R.J.; Qiu, F.; Yu, F.; Singh, P.K. Metabolic and Immunological Subtypes of Esophageal Cancer Reveal Potential Therapeutic Opportunities. Front. Cell Dev. Biol. 2021, 9, 667852. [Google Scholar] [CrossRef]
- Zhang, T.B.; Zhao, Y.; Tong, Z.X.; Guan, Y.F. Inhibition of glucose-transporter 1 (GLUT-1) expression reversed Warburg effect in gastric cancer cell MKN45. Int. J. Clin. Exp. Med. 2015, 8, 2423–2428. [Google Scholar]
- Tohma, T.; Okazumi, S.; Makino, H.; Cho, A.; Mochiduki, R.; Shuto, K.; Kudo, H.; Matsubara, K.; Gunji, H.; Ochiai, T. Relationship between glucose transporter, hexokinase and FDG-PET in esophageal cancer. Hepato-Gastroenterol. 2005, 52, 486–490. [Google Scholar]
- Katagiri, M.; Karasawa, H.; Takagi, K.; Nakayama, S.; Yabuuchi, S.; Fujishima, F.; Naitoh, T.; Watanabe, M.; Suzuki, T.; Unno, M.; et al. Hexokinase 2 in colorectal cancer: A potent prognostic factor associated with glycolysis, proliferation and migration. Histol. Histopathol. 2017, 32, 351–360. [Google Scholar] [PubMed]
- Anderson, M.; Marayati, R.; Moffitt, R.; Yeh, J.J. Hexokinase 2 promotes tumor growth and metastasis by regulating lactate production in pancreatic cancer. Oncotarget. 2017, 8, 56081–56094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeWaal, D.; Nogueira, V.; Terry, A.R.; Patra, K.C.; Jeon, S.M.; Guzman, G.; Au, J.; Long, C.P.; Antoniewicz, M.R.; Hay, N. Hexokinase-2 depletion inhibits glycolysis and induces oxidative phosphorylation in hepatocellular carcinoma and sensitizes to metformin. Nat. Commun. 2018, 9, 446. [Google Scholar] [CrossRef] [Green Version]
- Tian, R.F.; Li, X.F.; Xu, C.; Wu, H.; Liu, L.; Wang, L.H.; He, D.; Cao, K.; Cao, P.G.; Ma, J.K.; et al. SiRNA targeting PFK1 inhibits proliferation and migration and enhances radiosensitivity by suppressing glycolysis in colorectal cancer. Am. J. Transl. Res. 2020, 12, 4923–4940. [Google Scholar]
- Li, H.; Xu, H.; Xing, R.; Pan, Y.; Li, W.; Cui, J.; Lu, Y. Pyruvate kinase M2 contributes to cell growth in gastric cancer via aerobic glycolysis. Pathol. Res. Pract. 2019, 215, 152409. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, M.; Tanuma, N.; Shibuya, R.; Shiroki, T.; Abue, M.; Yamamoto, K.; Miura, K.; Yamaguchi, K.; Sato, I.; Tamai, K.; et al. Pyruvate kinase type M2 contributes to the development of pancreatic ductal adenocarcinoma by regulating the production of metabolites and reactive oxygen species. Int. J. Oncol. 2018, 52, 881–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, N.H.; Kim, B.W.; Moon, H.; Yoo, H.; Kang, R.H.; Hur, J.K.; Oh, Y.; Kim, B.M.; Kim, D. AIEgen-based nanoprobe for the ATP sensing and imaging in cancer cells and embryonic stem cells. Anal. Chim. Acta 2021, 1152, 338269. [Google Scholar] [CrossRef]
- Kepp, O.; Bezu, L.; Yamazaki, T.; Di Virgilio, F.; Smyth, M.J.; Kroemer, G.; Galluzzi, L. ATP and cancer immunosurveillance. EMBO J. 2021, 40, e108130. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Guo, C.; Jiang, K.; Ying, M.; Hu, X. Quantification of lactate from various metabolic pathways and quantification issues of lactate isotopologues and isotopmers. Sci. Rep. 2017, 7, 8489. [Google Scholar] [CrossRef] [Green Version]
- Gatenby, R.A.; Gillies, R.J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 2004, 4, 891–899. [Google Scholar] [CrossRef]
- Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci. 2014, 39, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Lunt, S.Y.; Vander Heiden, M.G. Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol. 2011, 27, 441–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Du, W.; Wu, M. Regulation of the pentose phosphate pathway in cancer. Protein Cell 2014, 5, 592–602. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Yu, D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021, 221, 107753. [Google Scholar] [CrossRef] [PubMed]
- Ngwa, V.M.; Edwards, D.N.; Philip, M.; Chen, J. Microenvironmental Metabolism Regulates Antitumor Immunity. Cancer Res. 2019, 79, 4003–4008. [Google Scholar] [CrossRef] [Green Version]
- San-Millán, I.; Brooks, G.A. Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis 2017, 38, 119–133. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Li, S. Lactic acid promotes macrophage polarization through MCT-HIF1α signaling in gastric cancer. Exp. Cell Res. 2020, 388, 111846. [Google Scholar] [CrossRef]
- Gu, J.; Zhou, J.; Chen, Q.; Xu, X.; Gao, J.; Li, X.; Shao, Q.; Zhou, B.; Zhou, H.; Wei, S.; et al. Tumor metabolite lactate promotes tumorigenesis by modulating MOESIN lactylation and enhancing TGF-β signaling in regulatory T cells. Cell Rep. 2022, 39, 110986. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Gong, Z.C.; Zhang, Y.N.; Wu, H.H.; Zhao, J.; Wang, L.T.; Ye, L.J.; Liu, D.; Wang, W.; Kang, X.; et al. Lactic acid promotes metastatic niche formation in bone metastasis of colorectal cancer. Cell Commun. Signal. 2021, 19, 9. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, Y.; Zhang, X.; Deng, S.; Yuan, Y.; Luo, X.; Hossain, M.T.; Zhu, X.; Du, K.; Hu, F.; et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol. Cancer 2021, 20, 158. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Wang, H.; Cao, J.; Huang, X.; Chen, Z.; Xu, P.; Sun, G.; Xu, J.; Lv, J.; et al. Circular RNA circNRIP1 acts as a microRNA-149-5p sponge to promote gastric cancer progression via the AKT1/mTOR pathway. Mol. Cancer 2019, 18, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, F.; Hu, A.; Li, D.; Wang, J.; Guo, Y.; Liu, Y.; Li, H.; Chen, Y.; Wang, X.; Huang, K.; et al. Circ-HuR suppresses HuR expression and gastric cancer progression by inhibiting CNBP transactivation. Mol. Cancer 2019, 18, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Jiang, J.; Zhang, J.; Shen, H.; Wang, M.; Guo, Z.; Zang, X.; Shi, H.; Gao, J.; Cai, H.; et al. CircDIDO1 inhibits gastric cancer progression by encoding a novel DIDO1-529aa protein and regulating PRDX2 protein stability. Mol. Cancer 2021, 20, 101. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Bian, X.; Wu, C.; Hua, J.; Chang, S.; Yu, T.; Li, H.; Li, Y.; Hu, S.; et al. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc. Natl. Acad. Sci. USA 2021, 118, e2012881118. [Google Scholar] [CrossRef]
- Kong, Y.; Li, Y.; Luo, Y.; Zhu, J.; Zheng, H.; Gao, B.; Guo, X.; Li, Z.; Chen, R.; Chen, C. circNFIB1 inhibits lymphangiogenesis and lymphatic metastasis via the miR-486-5p/PIK3R1/VEGF-C axis in pancreatic cancer. Mol. Cancer 2020, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Li, R.; Zhang, R.; He, M.; Zhang, Y. Knockdown of circNRIP1 sensitizes colorectal cancer to 5-FU via sponging miR-532-3p. Oncol. Rep. 2021, 46, 218. [Google Scholar] [CrossRef]
- Zhao, K.; Cheng, X.; Ye, Z.; Li, Y.; Peng, W.; Wu, Y.; Xing, C. Exosome-Mediated Transfer of circ_0000338 Enhances 5-Fluorouracil Resistance in Colorectal Cancer through Regulating MicroRNA 217 (miR-217) and miR-485-3p. Mol. Cell. Biol. 2021, 41, e00517-20. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Yang, T.; Wang, Q.; Liang, R.; Tang, J. Circ_0082182 upregulates the NFIB level via sponging miR-326 to promote oxaliplatin resistance and malignant progression of colorectal cancer cells. Mol. Cell. Biochem. 2022. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, H.; Yang, H.; Bai, M.; Ning, T.; Deng, T.; Liu, R.; Fan, Q.; Zhu, K.; Li, J.; et al. Exosome-delivered circRNA promotes glycolysis to induce chemoresistance through the miR-122-PKM2 axis in colorectal cancer. Mol. Oncol. 2020, 14, 539–555. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.; Zheng, J.; Zhang, J.; Lin, J.; Lai, J.; Lyu, Z.; Feng, H.; Wang, J.; Wu, D.; Li, Y. A Novel Protein Encoded by Exosomal CircATG4B Induces Oxaliplatin Resistance in Colorectal Cancer by Promoting Autophagy. Adv. Sci. 2022, 9, e2204513. [Google Scholar] [CrossRef]
- Shan, C.; Zhang, Y.; Hao, X.; Gao, J.; Chen, X.; Wang, K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol. Cancer 2019, 18, 136. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Pan, X.; Zhu, D.; Deng, Z.; Jiang, R.; Wang, X. Circular RNA MAT2B Promotes Glycolysis and Malignancy of Hepatocellular Carcinoma through the miR-338-3p/PKM2 Axis Under Hypoxic Stress. Hepatology 2019, 70, 1298–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Guo, Z.; Lv, X.; Zhang, X. CircGOT1 promotes cell proliferation, mobility, and glycolysis-mediated cisplatin resistance via inhibiting its host gene GOT1 in esophageal squamous cell cancer. Cell Cycle 2022, 21, 247–260. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Xian, Z.; Zou, Q.; Zhang, D.; Su, D.; Yao, J.; Ren, D. CircFAT1 Suppresses Colorectal Cancer Development through Regulating miR-520b/UHRF1 Axis or miR-302c-3p/UHRF1 Axis. Cancer Biother. Radiopharm. 2021, 36, 45–57. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Tian, Z.; Liu, L. circATP2B1 Promotes Aerobic Glycolysis in Gastric Cancer Cells through Regulation of the miR-326 Gene Cluster. Front. Oncol. 2021, 11, 628624. [Google Scholar] [CrossRef]
- Chen, L.; Shan, G. CircRNA in cancer: Fundamental mechanism and clinical potential. Cancer Lett. 2021, 505, 49–57. [Google Scholar] [CrossRef]
- Long, F.; Lin, Z.; Li, L.; Ma, M.; Lu, Z.; Jing, L.; Li, X.; Lin, C. Comprehensive landscape and future perspectives of circular RNAs in colorectal cancer. Mol. Cancer 2021, 20, 26. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Y.; Wu, S.; Zhou, Z.; Ding, X.; Shi, R.; Thorne, R.F.; Zhang, X.D.; Hu, W.; Wu, M. CircACC1 Regulates Assembly and Activation of AMPK Complex under Metabolic Stress. Cell Metab. 2019, 30, 157–173.e7. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z.Q.; Yu, S.Y.; Mao, L.; Zhou, Z.J.; Wang, P.C.; Gong, Y.; Su, S.; Zhou, J.; Fan, J.; et al. CircRPN2 Inhibits Aerobic Glycolysis and Metastasis in Hepatocellular Carcinoma. Cancer Res. 2022, 82, 1055–1069. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Z.; Zhang, Y.; Wang, J.; Zhang, Z.; Wu, J.; Mao, J.; Zuo, X. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol. Ther. Oncolytics 2022, 24, 755–771. [Google Scholar] [CrossRef]
- Macheda, M.L.; Rogers, S.; Best, J.D. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J. Cell. Physiol. 2005, 202, 654–662. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhang, Y.H.; Qin, X.J.; Wang, Y.X.; Fu, J. Circular RNA circDENND4C facilitates proliferation, migration and glycolysis of colorectal cancer cells through miR-760/GLUT1 axis. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2387–2400. [Google Scholar] [PubMed]
- Ciscato, F.; Ferrone, L.; Masgras, I.; Laquatra, C.; Rasola, A. Hexokinase 2 in Cancer: A Prima Donna Playing Multiple Characters. Int. J. Mol. Sci. 2021, 22, 4716. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Choudhury, M.; Kang, J.H.; Schaefbauer, K.J.; Jung, M.Y.; Andrianifahanana, M.; Hernandez, D.M.; Leof, E.B. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci. Signal. 2019, 12, eaax4067. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cao, B.; Zhao, R.; Li, H.; Wei, B.; Dai, G. Knockdown of circBFAR inhibits proliferation and glycolysis in gastric cancer by sponging miR-513a-3p/hexokinase 2 axis. Biochem. Biophys. Res. Commun. 2021, 560, 80–86. [Google Scholar] [CrossRef]
- Hong, F.; Deng, Z.; Tie, R.; Yang, S. Hsa_circ_0045932 regulates the progression of colorectal cancer by regulating HK2 through sponging miR-873-5p. J. Clin. Lab. Anal. 2022, 36, e24641. [Google Scholar] [CrossRef]
- Chen, X.; She, P.; Wang, C.; Shi, L.; Zhang, T.; Wang, Y.; Li, H.; Qian, L.; Li, M. Hsa_circ_0001806 promotes glycolysis and cell progression in hepatocellular carcinoma through miR-125b/HK2. J. Clin. Lab. Anal. 2021, 35, e23991. [Google Scholar] [CrossRef]
- Ding, Z.; Guo, L.; Deng, Z.; Li, P. Circ-PRMT5 enhances the proliferation, migration and glycolysis of hepatoma cells by targeting miR-188-5p/HK2 axis. Ann. Hepatol. 2020, 19, 269–279. [Google Scholar] [CrossRef]
- Pu, Z.; Xu, M.; Yuan, X.; Xie, H.; Zhao, J. Circular RNA circCUL3 Accelerates the Warburg Effect Progression of Gastric Cancer through Regulating the STAT3/HK2 Axis. Mol. Ther. Nucleic Acids 2020, 22, 310–318. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, Y.; Wang, D.; Pan, D.; Zhang, Y.; Jin, Y.; Zheng, C. Enhancing 5-fluorouracil efficacy through suppression of PKM2 in colorectal cancer cells. Cancer Chemother. Pharmacol. 2018, 82, 1081–1086. [Google Scholar] [CrossRef]
- Yin, C.; Lu, W.; Ma, M.; Yang, Q.; He, W.; Hu, Y.; Xia, L. Efficacy and mechanism of combination of oxaliplatin with PKM2 knockdown in colorectal cancer. Oncol. Lett. 2020, 20, 312. [Google Scholar] [CrossRef] [PubMed]
- Hua, S.; Liu, C.; Liu, L.; Wu, D. miR-142-3p inhibits aerobic glycolysis and cell proliferation in hepatocellular carcinoma via targeting LDHA. Biochem. Biophys. Res. Commun. 2018, 496, 947–954. [Google Scholar] [CrossRef]
- Huang, H.; Peng, J.; Yi, S.; Ding, C.; Ji, W.; Huang, Q.; Zeng, S. Circular RNA circUBE2D2 functions as an oncogenic factor in hepatocellular carcinoma sorafenib resistance and glycolysis. Am. J. Transl. Res. 2021, 13, 6076–6086. [Google Scholar]
- Shao, Y.; Li, F.; Liu, H. Circ-DONSON Facilitates the Malignant Progression of Gastric Cancer Depending on the Regulation of miR-149-5p/LDHA Axis. Biochem. Genet. 2022, 60, 640–655. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, H. circRNA PLOD2 promotes tumorigenesis and Warburg effect in colon cancer by the miR-513a-5p/SIX1/LDHA axis. Cell Cycle 2022, 21, 2484–2498. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Luo, W.; Liu, Y.; Li, M. Novel circular RNA circSLIT2 facilitates the aerobic glycolysis of pancreatic ductal adenocarcinoma via miR-510-5p/c-Myc/LDHA axis. Cell Death Dis. 2021, 12, 645. [Google Scholar] [CrossRef] [PubMed]
- Catrina, S.B.; Zheng, X. Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 2021, 64, 709–716. [Google Scholar] [CrossRef]
- Liu, A.; Xu, J. Circ_03955 promotes pancreatic cancer tumorigenesis and Warburg effect by targeting the miR-3662/HIF-1α axis. Clin. Transl. Oncol. 2021, 23, 1905–1914. [Google Scholar] [CrossRef]
- Xu, G.; Li, M.; Wu, J.; Qin, C.; Tao, Y.; He, H. Circular RNA circNRIP1 Sponges microRNA-138-5p to Maintain Hypoxia-Induced Resistance to 5-Fluorouracil through HIF-1α-Dependent Glucose Metabolism in Gastric Carcinoma. Cancer Manag. Res. 2020, 12, 2789–2802. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Cao, B.; Zhao, R.; Li, T.; Xu, X.; Cui, H.; Deng, H.; Gao, J.; Wei, B. circDNMT1 Promotes Malignant Progression of Gastric Cancer through Targeting miR-576-3p/Hypoxia Inducible Factor-1 Alpha Axis. Front. Oncol. 2022, 12, 817192. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhao, Y.; Chen, Q.; Zhu, S.; Niu, Y.; Ye, Z.; Hu, P.; Chen, D.; Xu, P.; Chen, J.; et al. Hypoxic exosomal HIF-1α-stabilizing circZNF91 promotes chemoresistance of normoxic pancreatic cancer cells via enhancing glycolysis. Oncogene 2021, 40, 5505–5517. [Google Scholar] [CrossRef]
- Liu, J.; Liu, H.; Zeng, Q.; Xu, P.; Liu, M.; Yang, N. Circular RNA circ-MAT2B facilitates glycolysis and growth of gastric cancer through regulating the miR-515-5p/HIF-1α axis. Cancer Cell Int. 2020, 20, 171. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC oncogene - the grand orchestrator of cancer growth and immune evasion. Nat. Rev. Clin. Oncol. 2022, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Simon, M.C. Molecular Pathways: Targeting MYC-induced metabolic reprogramming and oncogenic stress in cancer. Clin. Cancer Res. 2013, 19, 5835–5841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dang, C.V. MYC on the path to cancer. Cell 2012, 149, 22–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.H.; Qin, L.; Li, X. Role of STAT3 signaling pathway in breast cancer. Cell Commun. Signal. 2020, 18, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Liao, S.; Bennett, S.; Tang, H.; Song, D.; Wood, D.; Zhan, X.; Xu, J. STAT3 and its targeting inhibitors in osteosarcoma. Cell Prolif. 2021, 54, e12974. [Google Scholar] [CrossRef]
- Guanizo, A.C.; Fernando, C.D.; Garama, D.J.; Gough, D.J. STAT3: A multifaceted oncoprotein. Growth Factors 2018, 36, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, X.; Cao, J.; Xu, P.; Chen, Z.; Wang, S.; Li, B.; Zhang, L.; Xie, L.; Fang, L.; et al. Circular RNA UBE2Q2 promotes malignant progression of gastric cancer by regulating signal transducer and activator of transcription 3-mediated autophagy and glycolysis. Cell Death Dis. 2021, 12, 910. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Liu, L.; Xie, A. The Role of Insulin/IGF-1/PI3K/Akt/GSK3β Signaling in Parkinson’s Disease Dementia. Front. Neurosci. 2018, 12, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Wu, C.; Chen, N.; Gu, H.; Yen, A.; Cao, L.; Wang, E.; Wang, L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 2016, 7, 33440–33450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Huang, X.; Peng, J.; Zhuang, Y.; Li, Y.; Qu, J.; Zhang, S.; Huang, F. CircMYOF triggers progression and facilitates glycolysis via the VEGFA/PI3K/AKT axis by absorbing miR-4739 in pancreatic ductal adenocarcinoma. Cell Death Discov. 2021, 7, 362. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Lu, Y.; Jiang, H.Y.; Cheng, Z.M.; Wei, Z.J.; Wei, Y.H.; Liu, T.; Xia, B.J.; Zhao, X.Y.; Huang, Y.; et al. CircC16orf62 promotes hepatocellular carcinoma progression through the miR-138-5p/PTK2/AKT axis. Cell Death Dis. 2021, 12, 597. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ding, W.; Ge, H.; Ponnusamy, M.; Wang, Q.; Hao, X.; Wu, W.; Zhang, Y.; Yu, W.; Ao, X.; et al. FOXK transcription factors: Regulation and critical role in cancer. Cancer Lett. 2019, 458, 1–12. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Cai, W.; Wang, C.H.; Cederquist, C.T.; Damasio, M.; Homan, E.P.; Batista, T.; Ramirez, A.K.; Gupta, M.K.; Steger, M.; et al. FoxK1 and FoxK2 in insulin regulation of cellular and mitochondrial metabolism. Nat. Commun. 2019, 10, 1582. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Zhang, J.; Wang, Z.; Xi, J.; Bai, L.; Zhang, Y. Knockdown of circAPLP2 Inhibits Progression of Colorectal Cancer by Regulating miR-485-5p/FOXK1 Axis. Cancer Biother. Radiopharm. 2021, 36, 737–752. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Zhong, J.; Wen, G. circ-PRKCI targets miR-1294 and miR-186-5p by downregulating FOXK1 expression to suppress glycolysis in hepatocellular carcinoma. Mol. Med. Rep. 2021, 23, 464. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, Y.; Agbede, O.; Eshaghi, E.; Peng, C. Circular RNAs in Epithelial Ovarian Cancer: From Biomarkers to Therapeutic Targets. Cancers 2022, 14, 5711. [Google Scholar] [CrossRef]
- Lin, J.; Wang, X.; Zhai, S.; Shi, M.; Peng, C.; Deng, X.; Fu, D.; Wang, J.; Shen, B. Hypoxia-induced exosomal circPDK1 promotes pancreatic cancer glycolysis via c-myc activation by modulating miR-628-3p/BPTF axis and degrading BIN1. J. Hematol. Oncol. 2022, 15, 128. [Google Scholar] [CrossRef] [PubMed]
- Le, B.T.; Raguraman, P.; Kosbar, T.R.; Fletcher, S.; Wilton, S.D.; Veedu, R.N. Antisense Oligonucleotides Targeting Angiogenic Factors as Potential Cancer Therapeutics. Mol. Ther. Nucleic Acids 2019, 14, 142–157. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.; Wang, Y.; He, L.; Zhang, J.; Zhu, X.; Liu, N.; Wang, J.; Lu, T.; He, L.; Tian, Y.; et al. Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol. Cancer 2021, 20, 132. [Google Scholar] [CrossRef]
- Wei, J.; Xu, H.; Wei, W.; Wang, Z.; Zhang, Q.; De, W.; Shu, Y. circHIPK3 Promotes Cell Proliferation and Migration of Gastric Cancer by Sponging miR-107 and Regulating BDNF Expression. OncoTargets Ther. 2020, 13, 1613–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Tian, Y.; Liang, Y.; Li, C. CircHIPK3/miR-876-5p/PIK3R1 axis regulates regulation proliferation, migration, invasion, and glutaminolysis in gastric cancer cells. Cancer Cell Int. 2020, 20, 391. [Google Scholar] [CrossRef]
- Jin, Y.; Che, X.; Qu, X.; Li, X.; Lu, W.; Wu, J.; Wang, Y.; Hou, K.; Li, C.; Zhang, X.; et al. CircHIPK3 Promotes Metastasis of Gastric Cancer via miR-653-5p/miR-338-3p-NRP1 Axis Under a Long-Term Hypoxic Microenvironment. Front. Oncol. 2020, 10, 1612. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yao, H.; Wang, S.; Li, G.; Gu, X. CircTADA2A suppresses the progression of colorectal cancer via miR-374a-3p/KLF14 axis. J. Exp. Clin. Cancer Res. 2020, 39, 160. [Google Scholar] [CrossRef]
- Yu, Y.; Lei, X. CircFAM120B Blocks the Development of Colorectal Cancer by Activating TGF-Beta Receptor II Expression via Targeting miR-645. Front. Cell Dev. Biol. 2021, 9, 682543. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Sun, T.; Xing, L. Circ_0004913 Inhibits Cell Growth, Metastasis, and Glycolysis by Absorbing miR-184 to Regulate HAMP in Hepatocellular Carcinoma. Cancer Biother. Radiopharm. 2020. [Google Scholar] [CrossRef]
- Xu, Q.; Zhou, L.; Yang, G.; Meng, F.; Wan, Y.; Wang, L.; Zhang, L. Overexpression of circ_0001445 decelerates hepatocellular carcinoma progression by regulating miR-942-5p/ALX4 axis. Biotechnol. Lett. 2020, 42, 2735–2747. [Google Scholar] [CrossRef]
- Jiang, Q.; Wang, H.; Yuan, D.; Qian, X.; Ma, X.; Yan, M.; Xing, W. Circular_0086414 induces SPARC like 1 (SPARCL1) production to inhibit esophageal cancer cell proliferation, invasion and glycolysis and induce cell apoptosis by sponging miR-1290. Bioengineered 2022, 13, 12099–12114. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Dong, Y.; Gong, A.; Kong, H.; Gao, J.; Hao, X.; Liu, Y.; Wang, Z.; Fan, Y.; Liu, C.; et al. Exosomal circRNAs as novel cancer biomarkers: Challenges and opportunities. Int. J. Biol. Sci. 2021, 17, 562–573. [Google Scholar] [CrossRef]
- Lai, Z.; Wei, T.; Li, Q.; Wang, X.; Zhang, Y.; Zhang, S. Exosomal circFBLIM1 Promotes Hepatocellular Carcinoma Progression and Glycolysis by Regulating the miR-338/LRP6 Axis. Cancer Biother. Radiopharm. 2020. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zang, H.; Zhang, X.; Huang, G. Exosomal Circ-ZNF652 Promotes Cell Proliferation, Migration, Invasion and Glycolysis in Hepatocellular Carcinoma via miR-29a-3p/GUCD1 Axis. Cancer Manag. Res. 2020, 12, 7739–7751. [Google Scholar] [CrossRef] [PubMed]
- Doyle, L.M.; Wang, M.Z. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells 2019, 8, 727. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Su, Y.; Zhong, S.; Cong, L.; Liu, B.; Yang, J.; Tao, Y.; He, Z.; Chen, C.; Jiang, Y. Exosomes: Key players in cancer and potential therapeutic strategy. Signal Transduct. Target. Ther. 2020, 5, 145. [Google Scholar] [CrossRef]
- Jardim, D.L.; Rodrigues, C.A.; Novis, Y.A.S.; Rocha, V.G.; Hoff, P.M. Oxaliplatin-related thrombocytopenia. Ann. Oncol. 2012, 23, 1937–1942. [Google Scholar] [CrossRef]
- Rogers, B.B.; Cuddahy, T.; Briscella, C.; Ross, N.; Olszanski, A.J.; Denlinger, C.S. Oxaliplatin: Detection and Management of Hypersensitivity Reactions. Clin. J. Oncol. Nurs. 2019, 23, 68–75. [Google Scholar]
- Qiu, X.; Xu, Q.; Liao, B.; Hu, S.; Zhou, Y.; Zhang, H. Circ-CCS regulates oxaliplatin resistance via targeting miR-874-3p/HK2 axis in colorectal cancer. Histol. Histopathol. 2022, 18565. [Google Scholar] [CrossRef]
- Li, C.; Li, X. Exosome-Derived Circ_0094343 Promotes Chemosensitivity of Colorectal Cancer Cells by Regulating Glycolysis via the miR-766-5p/TRIM67 Axis. Contrast Media Mol. Imaging 2022, 2022, 2878557. [Google Scholar] [CrossRef]
- Zhang, N.; Yin, Y.; Xu, S.J.; Chen, W.S. 5-Fluorouracil: Mechanisms of resistance and reversal strategies. Molecules 2008, 13, 1551–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Liu, C.; Xu, X.; Wang, Y.; Jiang, Y. Circular RNA sterile alpha motif domain containing 4A contributes to cell 5-fluorouracil resistance in colorectal cancer by regulating the miR-545-3p/6-phosphofructo-2-kinase/fructose-2,6-bisphosphataseisotype 3 axis. Anti-Cancer Drugs 2022, 33, 553–563. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Chen, H.; Min, K. CircCDC6 restrains tumor growth and glycolysis energy metabolism in colorectal cancer via regulating miR-3187-3p and downstream PRKAA2. J. Bioenerg. Biomembr. 2022, 54, 163–174. [Google Scholar] [CrossRef] [PubMed]
Regulating | CircRNA | Location | Regulation | Cancers | Involvement of miRNA | Target of Glycolysis | Molecular Mechanism |
---|---|---|---|---|---|---|---|
Transporters and enzymes | circDENND4C | Not investigated | Up | CRC | miR-760 | GLUT | Regulates circDENND4C/miR-760/GLUT axis |
circBFAR | Not investigated | Up | GC | miR-513a-3p | HK2 | Regulates circBFAR/miR-513a-3p/HK2 axis | |
hsa_circ_0001806 | Not investigated | Up | HCC | miR-125b | Regulates hsa_circ_0001806/miR-125b/HK2 axis | ||
circ-PRMT5 | Cytoplasm | Up | HCC | miR-188-5p | Regulates circ-PRMT5/miR-188-5p/HK2 axis | ||
hsa_circ_0045932 | Not investigated | Up | CRC | miR-873-5p | Regulates hsa_circ_0045932/miR-873-5p/HK2 axis | ||
circCUL3 | Cytoplasm | Up | GC | miR-515-5p | Regulates circCUL3/miR-515-5p/STAT3/HK2 axis | ||
hsa_circ_0005963 | Exosome | Up | CRC | miR-122 | PKM2 | Regulates hsa_circ_0005963/miR-122/PKM2 axis | |
circATP2B1 | Cytoplasm | Up | GC | miR-326-3p miR-330-5p | Regulates circATP2B1/miR-326-3p and miR-330-5p/PKM2 axis | ||
circMAT2B | Cytoplasm | Up | HCC | miR-338-3p | Regulates circMAT2B/miR-338-3p/PKM2 axis | ||
circ-DONSON | Not investigated | Up | GC | miR-149-5p | LDHA | Regulates circ-DONSON/miR-149-5p/LDHA axis | |
circPLOD2 | Cytoplasm | Up | CRC | miR-513a-5p | Regulates circPLOD2/miR-513a-5p/SIX2/LDHA axis | ||
circSLIT2 | Cytoplasm | Up | PC | miR-510-5p | Regulates circSLIT2/miR-510-5p/c-Myc/LDHA axis | ||
circUBE2D2 | Not investigated | Up | HCC | miR-889-3p | Regulates circUBE2D2/miR-889-3p/LDHA axis | ||
Signaling pathways | circPRKCI | Not investigated | Up | HCC | miR-1294 and miR-186-5p | FOXK1 | Regulating circPRKCI/miR-1294 and miR-186-5p/FOXK1 axis |
circAPLP2 | Not investigated | Up | CRC | miR-485-5p | Regulates circAPLP2/miR-485-5p/FOXK1 axis | ||
circ-MAT2B | Cytoplasm | Up | GC | miR-515-5p | HIF1 | Regulates circ-MAT2B/miR-515-5p/HIF1 axis | |
circZNF91 | Exosome | Up | PDAC | miR-23b-3p | Regulates circZNF91/miR-23b-3p/SIRT1/HIF1 axis | ||
circNRIP1 | Not investigated | Up | GC | miR-138-5p | Regulates circNRIP1/miR-138-5p/HIF1 axis | ||
circDNMT1 | Cytoplasm | Up | GC | miR-576-3p | Regulates circDNMT1/miR-576-3p/HIF1 axis | ||
circ_03955 | Not investigated | Up | PC | miRNA-3662 | Regulates circ_03955/miRNA-3662/HIF1 axis | ||
circ-PRKCI | Not investigated | Up | HCC | miR-1294 miR-186-5p | FOXK1 | Regulates circ-PRKCI/miR-1294 and miR-186-5p/FOXK1 axis | |
circAPLP2 | Not investigated | Up | CRC | miR-485-5p | Regulates circAPLP2/miR-485-5p/FOXK1 axis | ||
circSLIT2 | Cytoplasm | Up | PC | miR-510-5p | c-Myc | Regulates circSLIT2/miR-510-5p/c-Myc/LDHA axis | |
circCUL3 | Cytoplasm | Up | GC | miR-515-5p | STAT3 | Regulates circCUL3/miR-515-5p/STAT3/HK2 axis | |
circUBE2Q2 | Cytoplasm | Up | GC | miR-370-3p | Regulates circUBE2Q2/miR-370-3p/STAT3/ HK2 and PFK axis | ||
circMYOF | Cytoplasm | Up | PC | miR-4739 | PI3K/Akt/mTOR | Regulates circMYOF/miR-4739/VEGFA axis which activates PI3K/Akt pathway | |
circC16orf62 | Cytoplasm | Up | HCC | miR-138-5p | Regulates circC16orf62/miR-138-5p/PTK2 axis which activates the Akt/mTOR pathway | ||
circNRIP1 | Cytoplasm | Up | GC | miR-149-5p | Regulates circNRIP1/miR-149-5p/Akt which activates the activity of mTOR |
Function of CircRNA | CircRNAs | Location | Expression | Cancer Type | Target | Molecular Mechanism |
---|---|---|---|---|---|---|
miRNA sponge | circMAT2B | Cytoplasm | Up | HCC | miR-338-3p | Regulates circMAT2B/miR-338-3p/PKM2 axis |
circGOT1 | Nucleus | Up | EC | miR-606 | Promotes its host gene GOT1 expression by sponging miR-606 | |
circFAT1 | Cytoplasm | Up | CRC | miR-520b | Promotes UHRF1 expression by targeting miR-520b and miR-302c-3p | |
miR-302c-3p | ||||||
circATP2B1 | Cytoplasm | Up | GC | miR-326-3p | Promotes PKM2 expression by sponging miR-326-3p and miR-330-5p | |
miR-330-5p | ||||||
Protein sponge | circACC1 | Cytoplasm | Not investigated | CRC | AMPK | circACC1 binds the regulatory β and γ subunits of AMPK to increase AMPK holoenzyme stability and activity |
circRPN2 | Cytoplasm | Down | HCC | ENO1 | circRPN2 binds ENO1 to promote the degradation of ENO1 | |
circRHBDD1 | Cytoplasm | Up | HCC | YTHDF1 | circRHBDD1 binds and recruits YTHDF1 to PIK3R1 mRNA and accelerates the expression of PIK3R1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, X.; Peng, Y.; Fan, X.; Xie, X.; Jin, Z.; Zhang, X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers 2023, 15, 2229. https://doi.org/10.3390/cancers15082229
Luo X, Peng Y, Fan X, Xie X, Jin Z, Zhang X. The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers. 2023; 15(8):2229. https://doi.org/10.3390/cancers15082229
Chicago/Turabian StyleLuo, Xiaonuan, Yin Peng, Xinmin Fan, Xiaoxun Xie, Zhe Jin, and Xiaojing Zhang. 2023. "The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers" Cancers 15, no. 8: 2229. https://doi.org/10.3390/cancers15082229
APA StyleLuo, X., Peng, Y., Fan, X., Xie, X., Jin, Z., & Zhang, X. (2023). The Crosstalk and Clinical Implications of CircRNAs and Glucose Metabolism in Gastrointestinal Cancers. Cancers, 15(8), 2229. https://doi.org/10.3390/cancers15082229