Locoregional Therapy for Intrahepatic Cholangiocarcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. Locoregional Treatment for Intrahepatic Cholangiocarcinoma
3.1. Radiofrequency Ablation
3.1.1. Patient Selection
3.1.2. Technique
3.1.3. Outcomes
3.2. Microwave Ablation
3.2.1. Patient Selection
3.2.2. Technique
3.2.3. Outcomes
3.3. Transarterial Chemoembolization
3.3.1. Patient Selection
3.3.2. Technique
3.3.3. Outcomes
3.3.4. Adjuvant TACE
3.4. Transarterial Radioembolization
3.4.1. Patient Selection
3.4.2. Technique
3.4.3. Outcomes
3.5. External Beam Radiotherapy
3.5.1. Patient Selection
3.5.2. Technique
3.5.3. Outcomes
3.6. Stereotactic Body Radiotherapy
3.6.1. Patient Selection
3.6.2. Technique
3.6.3. Outcomes
3.7. Hepatic Arterial Infusion
3.7.1. Patient Selection
3.7.2. Technique
3.7.3. Outcomes
3.8. Irreversible Electroporation
3.9. Brachytherapy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Beal, E.W.; Tumin, D.; Moris, D.; Zhang, X.-F.; Chakedis, J.; Dilhoff, M.; Schmidt, C.M.; Pawlik, T.M. Cohort Contributions to Trends in the Incidence and Mortality of Intrahepatic Cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2018, 7, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Owen, M.L.; Beal, E.W. Minimally Invasive Surgery for Intrahepatic Cholangiocarcinoma: Patient Selection and Special Considerations. HMER 2021, 13, 137–143. [Google Scholar] [CrossRef]
- Baydoun, H.; Meirovich, H.; Maroun, G.; Coburn, N.; David, E. Locoregional Options in the Management of Cholangiocarcinoma: Single Center Experience. Ann. Palliat. Med. 2021, 10, 1784–1791. [Google Scholar] [CrossRef] [PubMed]
- Bartolini, I.; Risaliti, M.; Fortuna, L.; Agostini, C.; Ringressi, M.N.; Taddei, A.; Muiesan, P. Current Management of Intrahepatic Cholangiocarcinoma: From Resection to Palliative Treatments. Radiol. Oncol. 2020, 54, 263–271. [Google Scholar] [CrossRef]
- Primrose, J.N.; Fox, R.P.; Palmer, D.H.; Malik, H.Z.; Prasad, R.; Mirza, D.; Anthony, A.; Corrie, P.; Falk, S.; Finch-Jones, M.; et al. Capecitabine Compared with Observation in Resected Biliary Tract Cancer (BILCAP): A Randomised, Controlled, Multicentre, Phase 3 Study. Lancet Oncol. 2019, 20, 663–673. [Google Scholar] [CrossRef]
- Park, J.; Kim, M.-H.; Kim, K.-P.; Park, D.H.; Moon, S.-H.; Song, T.J.; Eum, J.; Lee, S.S.; Seo, D.W.; Lee, S.K. Natural History and Prognostic Factors of Advanced Cholangiocarcinoma without Surgery, Chemotherapy, or Radiotherapy: A Large-Scale Observational Study. Gut Liver 2009, 3, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Valle, J.; Wasan, H.; Palmer, D.H.; Cunningham, D.; Anthoney, A.; Maraveyas, A.; Madhusudan, S.; Iveson, T.; Hughes, S.; Pereira, S.P.; et al. Cisplatin plus Gemcitabine versus Gemcitabine for Biliary Tract Cancer. N. Engl. J. Med. 2010, 362, 1273–1281. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.-Y.; Ruth He, A.; Qin, S.; Chen, L.-T.; Okusaka, T.; Vogel, A.; Kim, J.W.; Suksombooncharoen, T.; Ah Lee, M.; Kitano, M.; et al. Durvalumab plus Gemcitabine and Cisplatin in Advanced Biliary Tract Cancer. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Lamarca, A.; Palmer, D.H.; Wasan, H.S.; Ross, P.J.; Ma, Y.T.; Arora, A.; Falk, S.; Gillmore, R.; Wadsley, J.; Patel, K.; et al. Second-Line FOLFOX Chemotherapy versus Active Symptom Control for Advanced Biliary Tract Cancer (ABC-06): A Phase 3, Open-Label, Randomised, Controlled Trial. Lancet Oncol. 2021, 22, 690–701. [Google Scholar] [CrossRef]
- Hare, A.E.; Makary, M.S. Locoregional Approaches in Cholangiocarcinoma Treatment. Cancers 2022, 14, 5853. [Google Scholar] [CrossRef]
- Sommer, C.M.; Kauczor, H.U.; Pereira, P.L. Locoregional Therapies of Cholangiocarcinoma. Visc. Med. 2016, 32, 414–420. [Google Scholar] [CrossRef]
- Kim, J.H.; Won, H.J.; Shin, Y.M.; Kim, K.-A.; Kim, P.N. Radiofrequency Ablation for the Treatment of Primary Intrahepatic Cholangiocarcinoma. Am. J. Roentgenol. 2011, 196, W205–W209. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Yang, W.; Wu, W.; Yan, K.; Xing, B.C.; Chen, M.H. Radiofrequency Ablation in the Management of Unresectable Intrahepatic Cholangiocarcinoma. J. Vasc. Interv. Radiol. 2012, 23, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Won, H.J.; Shin, Y.M.; Kim, P.N.; Lee, S.-G.; Hwang, S. Radiofrequency Ablation for Recurrent Intrahepatic Cholangiocarcinoma after Curative Resection. Eur. J. Radiol. 2011, 80, e221–e225. [Google Scholar] [CrossRef] [PubMed]
- Kamphues, C.; Seehofer, D.; Eisele, R.M.; Denecke, T.; Pratschke, J.; Neumann, U.P.; Neuhaus, P. Recurrent Intrahepatic Cholangiocarcinoma: Single-Center Experience Using Repeated Hepatectomy and Radiofrequency Ablation. J. Hepato-Biliary-Pancreat. Sci. 2010, 17, 509–515. [Google Scholar] [CrossRef]
- Brandi, G.; Rizzo, A.; Dall’Olio, F.G.; Felicani, C.; Ercolani, G.; Cescon, M.; Frega, G.; Tavolari, S.; Palloni, A.; De Lorenzo, S.; et al. Percutaneous Radiofrequency Ablation in Intrahepatic Cholangiocarcinoma: A Retrospective Single-Center Experience. Int. J. Hyperth. 2020, 37, 479–485. [Google Scholar] [CrossRef]
- Xiang, X.; Hu, D.; Jin, Z.; Liu, P.; Lin, H. Radiofrequency Ablation vs. Surgical Resection for Small Early-Stage Primary Intrahepatic Cholangiocarcinoma. Front. Oncol. 2020, 10, 540662. [Google Scholar] [CrossRef]
- Haidu, M.; Dobrozemsky, G.; Schullian, P.; Widmann, G.; Klaus, A.; Weiss, H.; Margreiter, R.; Bale, R. Stereotactic Radiofrequency Ablation of Unresectable Intrahepatic Cholangiocarcinomas: A Retrospective Study. Cardiovasc. Interv. Radiol. 2012, 35, 1074–1082. [Google Scholar] [CrossRef]
- Laimer, G.; Jaschke, N.; Gottardis, M.; Schullian, P.; Putzer, D.; Sturm, W.; Bale, R. Stereotactic Radiofrequency Ablation of an Unresectable Intrahepatic Cholangiocarcinoma (ICC): Transforming an Aggressive Disease into a Chronic Condition. Cardiovasc. Intervent. Radiol. 2020, 43, 791–796. [Google Scholar] [CrossRef]
- Lee, S.M.; Ko, H.K.; Shin, J.H.; Kim, J.-H.; Chu, H.H. Combination of Intraoperative Radiofrequency Ablation and Surgical Resection for Treatment of Cholangiocarcinoma: Feasibility and Long-Term Survival. Diagn. Interv. Radiol. 2020, 26, 45–52. [Google Scholar] [CrossRef]
- Shindoh, J. Ablative Therapies for Intrahepatic Cholangiocarcinoma. Hepatobiliary Surg. Nutr. 2017, 6, 2–6. [Google Scholar] [CrossRef]
- Sweeney, J.; Parikh, N.; El-Haddad, G.; Kis, B. Ablation of Intrahepatic Cholangiocarcinoma. Semin. Intervent. Radiol. 2019, 36, 298–302. [Google Scholar] [CrossRef]
- Han, K.; Ko, H.K.; Kim, K.W.; Won, H.J.; Shin, Y.M.; Kim, P.N. Radiofrequency Ablation in the Treatment of Unresectable Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-Analysis. J. Vasc. Interv. Radiol. 2015, 26, 943–948. [Google Scholar] [CrossRef]
- Carrafiello, G.; Laganà, D.; Cotta, E.; Mangini, M.; Fontana, F.; Bandiera, F.; Fugazzola, C. Radiofrequency Ablation of Intrahepatic Cholangiocarcinoma: Preliminary Experience. Cardiovasc. Intervent. Radiol. 2010, 33, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-X.; Wang, Y.; Lu, M.-D.; Liu, L.-N. Percutaneous Ultrasound-Guided Thermal Ablation for Intrahepatic Cholangiocarcinoma. BJR 2012, 85, 1078–1084. [Google Scholar] [CrossRef]
- Takahashi, E.A.; Kinsman, K.A.; Schmit, G.D.; Atwell, T.D.; Schmitz, J.J.; Welch, B.T.; Callstrom, M.R.; Geske, J.R.; Kurup, A.N. Thermal Ablation of Intrahepatic Cholangiocarcinoma: Safety, Efficacy, and Factors Affecting Local Tumor Progression. Abdom. Radiol. 2018, 43, 3487–3492. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.H.; Kim, J.H.; Shin, Y.M.; Won, H.J.; Kim, P.-N. Percutaneous Radiofrequency Ablation for Recurrent Intrahepatic Cholangiocarcinoma After Curative Resection: Multivariable Analysis of Factors Predicting Survival Outcomes. Am. J. Roentgenol. 2021, 217, 426–432. [Google Scholar] [CrossRef]
- Butros, S.R.; Shenoy-Bhangle, A.; Mueller, P.R.; Arellano, R.S. Radiofrequency Ablation of Intrahepatic Cholangiocarcinoma: Feasability, Local Tumor Control, and Long-Term Outcome. Clin. Imaging 2014, 38, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, A.; Calisti, G.; Stefano, G.D.; Farella, N.; Sarno, A.D.; Amendola, F.; Scognamiglio, U.; Giorgio, V. Radiofrequency Ablation for Intrahepatic Cholangiocarcinoma: Retrospective Analysis of a Single Centre Experience. Anticancer Res. 2011, 31, 4575–4580. [Google Scholar]
- Chiou, Y.-Y.; Hwang, J.-I.; Chou, Y.-H.; Wang, H.-K.; Chiang, J.-H.; Chang, C.-Y. Percutaneous Ultrasound-Guided Radiofrequency Ablation of Intrahepatic Cholangiocarcinoma. Kaohsiung J. Med. Sci. 2005, 21, 304–309. [Google Scholar] [CrossRef]
- Wu, Z.F.; Zhang, H.B.; Yang, N.; Zhao, W.C.; Fu, Y.; Yang, G.S. Postoperative Adjuvant Transcatheter Arterial Chemoembolisation Improves Survival of Intrahepatic Cholangiocarcinoma Patients with Poor Prognostic Factors: Results of a Large Monocentric Series. Eur. J. Surg. Oncol. (EJSO) 2012, 38, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Tsilimigras, D.I.; Farooq, A.; Hyer, J.M.; Merath, K.; Paredes, A.Z.; Mehta, R.; Sahara, K.; Shen, F.; Pawlik, T.M. Potential Survival Benefit of Radiofrequency Ablation for Small Solitary Intrahepatic Cholangiocarcinoma in Nonsurgically Managed Patients: A Population-based Analysis. J. Surg. Oncol. 2019, 120, 1358–1364. [Google Scholar] [CrossRef]
- Wang, X.; Liang, P.; Yu, J.; Yao, J.; Fan, F.; Yu, X.; Cheng, Z.; Han, Z.; Liu, F.; Dou, J. Contrast-Enhanced Ultrasound Features Predict the Prognosis of Percutaneous Microwave Ablation of Intrahepatic Cholangiocarcinoma. BJR 2022, 95, 20211379. [Google Scholar] [CrossRef]
- Yan, X.; Zhuang, L.-P.; Ning, Z.-Y.; Wang, P.; Meng, Z.-Q. Addition of Thermal Ablation to Systemic Chemotherapy for the Treatment of Unresectable Intrahepatic Cholangiocarcinoma: A Propensity Score Matching Analysis. Expert Rev. Gastroenterol. Hepatol. 2022, 16, 81–88. [Google Scholar] [CrossRef]
- Kim-Fuchs, C.; Candinas, D.; Lachenmayer, A. The Role of Conventional and Stereotactic Microwave Ablation for Intrahepatic Cholangiocarcinoma. JCM 2021, 10, 2963. [Google Scholar] [CrossRef]
- Yang, H.; Cheng, Z.; Han, Z.; Liu, F.; Yu, X.; Yu, J.; Liang, P. Assessment of the Outcomes of Intrahepatic Cholangiocarcinoma After Ultrasound-Guided Percutaneous Microwave Ablation Based on Albumin–Bilirubin Grade. Cardiovasc. Interv. Radiol. 2021, 44, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Jeong, S.; Luo, G.-J.; Ren, Y.-B.; Zhang, B.-H.; Zhang, Y.-J.; Shen, F.; Cheng, Q.-B.; Sui, C.-J.; Wang, H.-Y.; et al. Transarterial Chemoembolization versus Percutaneous Microwave Coagulation Therapy for Recurrent Unresectable Intrahepatic Cholangiocarcinoma: Development of a Prognostic Nomogram. Hepatobiliary Pancreat. Dis. Int. 2020, 19, 138–146. [Google Scholar] [CrossRef]
- Giorgio, A.; Gatti, P.; Montesarchio, L.; Santoro, B.; Dell’Olio, A.; Crucinio, N.; Coppola, C.; Scarano, F.; Biase, F.D.; Ciracì, E.; et al. Intrahepatic Cholangiocarcinoma and Thermal Ablation: Long-Term Results of An Italian Retrospective Multicenter Study. J. Clin. Transl. Hepatol. 2019, 7, 1–6. [Google Scholar] [CrossRef]
- Ni, J.-Y.; An, C.; Zhang, T.-Q.; Huang, Z.-M.; Jiang, X.-Y.; Huang, J.-H. Predictive Value of the Albumin-Bilirubin Grade on Long-Term Outcomes of CT-Guided Percutaneous Microwave Ablation in Intrahepatic Cholangiocarcinoma. Int. J. Hyperth. 2019, 36, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Li, L.; Xu, W.; Du, C.; Yang, L.; Tong, J.; Yi, Y. Ultrasound-Guided Percutaneous Microwave Ablation versus Surgical Resection for Recurrent Intrahepatic Cholangiocarcinoma: Intermediate-Term Results. Int. J. Hyperth. 2019, 36, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yu, J.; Yu, X.; Han, Z.; Cheng, Z.; Liu, F.; Liang, P. Clinical and Survival Outcomes of Percutaneous Microwave Ablation for Intrahepatic Cholangiocarcinoma. Int. J. Hyperth. 2018, 34, 292–297. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, Q.; Qian, S.; Zhu, L.; Qu, X.-D.; Zhang, W.; Yan, Z.-P.; Cheng, J.-M.; Liu, Q.-X.; Liu, R.; et al. Percutaneous Microwave Ablation Combined with Simultaneous Transarterial Chemoembolization for the Treatment of Advanced Intrahepatic Cholangiocarcinoma. OTT 2015, 8, 1245–1250. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Hu, P.; Wang, N.; Shen, Q.; Sun, A.-X.; Kuang, M.; Qian, G.-J. Thermal Ablation Versus Repeated Hepatic Resection for Recurrent Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2013, 20, 3596–3602. [Google Scholar] [CrossRef]
- Yu, M.-A.; Liang, P.; Yu, X.-L.; Cheng, Z.-G.; Han, Z.-Y.; Liu, F.-Y.; Yu, J. Sonography-Guided Percutaneous Microwave Ablation of Intrahepatic Primary Cholangiocarcinoma. Eur. J. Radiol. 2011, 80, 548–552. [Google Scholar] [CrossRef]
- Gala, K.B.; Shetty, N.S.; Patel, P.; Kulkarni, S.S. Microwave Ablation: How We Do It? Indian J. Radiol. Imaging 2020, 30, 206–213. [Google Scholar] [CrossRef]
- Currie, B.; Soulen, M. Decision Making: Intra-Arterial Therapies for Cholangiocarcinoma—TACE and TARE. Semin. Intervent. Radiol. 2017, 34, 092–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wen, X.; Zhuang, L.; Fang, K.; Shen, J. Adjuvant Transarterial Chemoembolization for Patients with Intrahepatic Cholangiocarcinoma after Surgical Resection: A Systematic Review and Meta-Analysis. JGLD 2022, 31, 215–222. [Google Scholar] [CrossRef]
- Hu, Y.; Hao, M.; Chen, Q.; Chen, Z.; Lin, H. Comparison of the Efficacy and Safety among Apatinib plus Drug-Eluting Bead Transarterial Chemoembolization (TACE), Apatinib plus Conventional TACE and Apatinib Alone in Advanced Intrahepatic Cholangiocarcinoma. Am. J. Transl. Res. 2020, 15, 6584–6598. [Google Scholar]
- Luo, J.; Zheng, J.; Shi, C.; Fang, J.; Peng, Z.; Huang, J.; Sun, J.; Zhou, G.; Li, T.; Zhu, D.; et al. Drug-Eluting Beads Transarterial Chemoembolization by CalliSpheres Is Effective and Well Tolerated in Treating Intrahepatic Cholangiocarcinoma Patients: A Preliminary Result from CTILC Study. Medicine 2020, 99, e19276. [Google Scholar] [CrossRef]
- Mosconi, C.; Solaini, L.; Vara, G.; Brandi, N.; Cappelli, A.; Modestino, F.; Cucchetti, A.; Golfieri, R. Transarterial Chemoembolization and Radioembolization for Unresectable Intrahepatic Cholangiocarcinoma—A Systemic Review and Meta-Analysis. Cardiovasc. Interv. Radiol. 2021, 44, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Savic, L.J.; Chapiro, J.; Geschwind, J.-F.H. Intra-Arterial Embolotherapy for Intrahepatic Cholangiocarcinoma: Update and Future Prospects. Hepatobiliary Surg. Nutr. 2017, 6, 7–21. [Google Scholar] [CrossRef]
- Zhou, T.-Y.; Zhou, G.-H.; Zhang, Y.-L.; Nie, C.-H.; Zhu, T.-Y.; Wang, H.-L.; Chen, S.-Q.; Wang, B.-Q.; Yu, Z.-N.; Wu, L.-M.; et al. Drug-Eluting Beads Transarterial Chemoembolization with CalliSpheres Microspheres for Treatment of Unresectable Intrahepatic Cholangiocarcinoma. J. Cancer 2020, 11, 4534–4541. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, W.; Chen, L.; Ren, Y.; Liu, Y.; Zheng, C. A Comparative Study of Efficacy and Safety of Transarterial Chemoembolization with CalliSpheres and Conventional Transarterial Chemoembolization in Treating Unresectable Intrahepatic Cholangiocarcinoma Patients. J. Cancer 2022, 13, 1282–1288. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J. Modified RECIST (MRECIST) Assessment for Hepatocellular Carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef]
- Schicho, A.; Pereira, P.L.; Pützler, M.; Michalik, K.; Albrecht, T.; Nolte-Ernsting, C.; Stroszczynski, C.; Wiggermann, P. Degradable Starch Microspheres Transcatheter Arterial Chemoembolization (DSM-TACE) in Intrahepatic Cholangiocellular Carcinoma (ICC): Results from a National Multi-Center Study on Safety and Efficacy. Med. Sci. Monit. 2017, 23, 796–800. [Google Scholar] [CrossRef]
- Kim, J.H.; Yoon, H.-K.; Sung, K.-B.; Ko, G.-Y.; Gwon, D.I.; Shin, J.H.; Song, H.-Y. Transcatheter Arterial Chemoembolization or Chemoinfusion for Unresectable Intrahepatic Cholangiocarcinoma: Clinical Efficacy and Factors Influencing Outcomes. Cancer 2008, 113, 1614–1622. [Google Scholar] [CrossRef]
- Poggi, G.; Amatu, A.; Montagna, B.; Quaretti, P.; Minoia, C.; Sottani, C.; Villani, L.; Tagliaferri, B.; Sottotetti, F.; Rossi, O.; et al. OEM-TACE: A New Therapeutic Approach in Unresectable Intrahepatic Cholangiocarcinoma. Cardiovasc. Intervent. Radiol. 2009, 32, 1187–1192. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lei, Z.; Jin, X.; Zhang, Q.; Si, A.; Yang, P.; Zhou, J.; Hartmann, D.; Hüser, N.; Shen, F. Postoperative Adjuvant Transarterial Chemoembolization for Intrahepatic Cholangiocarcinoma Patients with Microvascular Invasion: A Propensity Score Analysis. J. Gastrointest. Oncol. 2021, 12, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Q.; Lei, Z.; Wu, D.; Si, A.; Wang, K.; Wan, X.; Wang, Y.; Yan, Z.; Xia, Y.; et al. Adjuvant Transarterial Chemoembolization Following Liver Resection for Intrahepatic Cholangiocarcinoma Based on Survival Risk Stratification. Oncol. 2015, 20, 640–647. [Google Scholar] [CrossRef]
- Shen, W.F.; Zhong, W.; Liu, Q.; Sui, C.J.; Huang, Y.Q.; Yang, J.M. Adjuvant Transcatheter Arterial Chemoembolization for Intrahepatic Cholangiocarcinoma after Curative Surgery: Retrospective Control Study. World J. Surg. 2011, 35, 2083–2091. [Google Scholar] [CrossRef]
- Boehm, L.M.; Jayakrishnan, T.T.; Miura, J.T.; Zacharias, A.J.; Johnston, F.M.; Turaga, K.K.; Gamblin, T.C. Comparative Effectiveness of Hepatic Artery Based Therapies for Unresectable Intrahepatic Cholangiocarcinoma: Hepatic Artery Therapy for Unresectable ICC. J. Surg. Oncol. 2015, 111, 213–220. [Google Scholar] [CrossRef]
- Paprottka, K.J.; Galiè, F.; Ingrisch, M.; Geith, T.; Ilhan, H.; Todica, A.; Michl, M.; Nadjiri, J.; Paprottka, P.M. Outcome and Safety after 103 Radioembolizations with Yttrium-90 Resin Microspheres in 73 Patients with Unresectable Intrahepatic Cholangiocarcinoma—An Evaluation of Predictors. Cancers 2021, 13, 5399. [Google Scholar] [CrossRef] [PubMed]
- Paz-Fumagalli, R.; Core, J.; Padula, C.; Montazeri, S.; McKinney, J.; Frey, G.; Devcic, Z.; Lewis, A.; Ritchie, C.; Mody, K.; et al. Safety and Initial Efficacy of Ablative Radioembolization for the Treatment of Unresectable Intrahepatic Cholangiocarcinoma. Oncotarget 2021, 12, 2075–2088. [Google Scholar] [CrossRef]
- Bargellini, I.; Mosconi, C.; Pizzi, G.; Lorenzoni, G.; Vivaldi, C.; Cappelli, A.; Vallati, G.E.; Boni, G.; Cappelli, F.; Paladini, A.; et al. Yttrium-90 Radioembolization in Unresectable Intrahepatic Cholangiocarcinoma: Results of a Multicenter Retrospective Study. Cardiovasc. Intervent. Radiol. 2020, 43, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Buettner, S.; Braat, A.J.A.T.; Margonis, G.A.; Brown, D.B.; Taylor, K.B.; Borgmann, A.J.; Kappadath, S.C.; Mahvash, A.; IJzermans, J.N.M.; Weiss, M.J.; et al. Yttrium-90 Radioembolization in Intrahepatic Cholangiocarcinoma: A Multicenter Retrospective Analysis. J. Vasc. Interv. Radiol. 2020, 31, 1035.e2. [Google Scholar] [CrossRef] [PubMed]
- Edeline, J.; Touchefeu, Y.; Guiu, B.; Farge, O.; Tougeron, D.; Baumgaertner, I.; Ayav, A.; Campillo-Gimenez, B.; Beuzit, L.; Pracht, M.; et al. Radioembolization Plus Chemotherapy for First-Line Treatment of Locally Advanced Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 51–59. [Google Scholar] [CrossRef]
- Filippi, L.; Di Costanzo, G.G.; Tortora, R.; Pelle, G.; Cianni, R.; Schillaci, O.; Bagni, O. Repeated Treatment with 90 Y-Microspheres in Intrahepatic Cholangiocarcinoma Relapsed After the First Radioembolization. Cancer Biother. Radiopharm. 2019, 34, 231–237. [Google Scholar] [CrossRef]
- Köhler, M.; Harders, F.; Lohöfer, F.; Paprottka, P.M.; Schaarschmidt, B.M.; Theysohn, J.; Herrmann, K.; Heindel, W.; Schmidt, H.H.; Pascher, A.; et al. Prognostic Factors for Overall Survival in Advanced Intrahepatic Cholangiocarcinoma Treated with Yttrium-90 Radioembolization. JCM 2019, 9, 56. [Google Scholar] [CrossRef]
- Levillain, H.; Duran Derijckere, I.; Ameye, L.; Guiot, T.; Braat, A.; Meyer, C.; Vanderlinden, B.; Reynaert, N.; Hendlisz, A.; Lam, M.; et al. Personalised Radioembolization Improves Outcomes in Refractory Intra-Hepatic Cholangiocarcinoma: A Multicenter Study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 2270–2279. [Google Scholar] [CrossRef]
- White, J.; Carolan-Rees, G.; Dale, M.; Patrick, H.E.; See, T.C.; Bell, J.K.; Manas, D.M.; Crellin, A.; Slevin, N.J.; Sharma, R.A. Yttrium-90 Transarterial Radioembolization for Chemotherapy-Refractory Intrahepatic Cholangiocarcinoma: A Prospective, Observational Study. J. Vasc. Interv. Radiol. 2019, 30, 1185–1192. [Google Scholar] [CrossRef]
- Gangi, A.; Shah, J.; Hatfield, N.; Smith, J.; Sweeney, J.; Choi, J.; El-Haddad, G.; Biebel, B.; Parikh, N.; Arslan, B.; et al. Intrahepatic Cholangiocarcinoma Treated with Transarterial Yttrium-90 Glass Microsphere Radioembolization: Results of a Single Institution Retrospective Study. J. Vasc. Interv. Radiol. 2018, 29, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Shaker, T.M.; Chung, C.; Varma, M.K.; Doherty, M.G.; Wolf, A.M.; Chung, M.H.; Assifi, M.M. Is There a Role for Ytrrium-90 in the Treatment of Unresectable and Metastatic Intrahepatic Cholangiocarcinoma? Am. J. Surg. 2018, 215, 467–470. [Google Scholar] [CrossRef]
- Akinwande, O.; Shah, V.; Mills, A.; Noda, C.; Weiner, E.; Foltz, G.; Saad, N. Chemoembolization versus Radioembolization for the Treatment of Unresectable Intrahepatic Cholangiocarcinoma in a Single Institution Image-Based Efficacy and Comparative Toxicity. Hepatic Oncol. 2017, 4, 75–81. [Google Scholar] [CrossRef]
- Jia, Z.; Paz-Fumagalli, R.; Frey, G.; Sella, D.M.; McKinney, J.M.; Wang, W. Resin-Based Yttrium-90 Microspheres for Unresectable and Failed First-Line Chemotherapy Intrahepatic Cholangiocarcinoma: Preliminary Results. J. Cancer Res. Clin. Oncol. 2017, 143, 481–489. [Google Scholar] [CrossRef]
- Mosconi, C.; Gramenzi, A.; Ascanio, S.; Cappelli, A.; Renzulli, M.; Pettinato, C.; Brandi, G.; Monari, F.; Cucchetti, A.; Trevisani, F.; et al. Yttrium-90 Radioembolization for Unresectable/Recurrent Intrahepatic Cholangiocarcinoma: A Survival, Efficacy and Safety Study. Br. J. Cancer 2016, 115, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Mouli, S.; Memon, K.; Baker, T.; Benson, A.B.; Mulcahy, M.F.; Gupta, R.; Ryu, R.K.; Salem, R.; Lewandowski, R.J. Yttrium-90 Radioembolization for Intrahepatic Cholangiocarcinoma: Safety, Response, and Survival Analysis. J. Vasc. Interv. Radiol. 2013, 24, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.-T.; Paprottka, P.M.; Schön, A.; Bamberg, F.; Haug, A.; Dürr, E.-M.; Rauch, B.; Trumm, C.T.; Jakobs, T.F.; Helmberger, T.K.; et al. Transarterial Hepatic Yttrium-90 Radioembolization in Patients with Unresectable Intrahepatic Cholangiocarcinoma: Factors Associated with Prolonged Survival. Cardiovasc. Intervent. Radiol. 2012, 35, 105–116. [Google Scholar] [CrossRef]
- Saxena, A.; Bester, L.; Chua, T.C.; Chu, F.C.; Morris, D.L. Yttrium-90 Radiotherapy for Unresectable Intrahepatic Cholangiocarcinoma: A Preliminary Assessment of This Novel Treatment Option. Ann. Surg. Oncol. 2010, 17, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Apisarnthanarax, S.; Barry, A.; Cao, M.; Czito, B.; DeMatteo, R.; Drinane, M.; Hallemeier, C.L.; Koay, E.J.; Lasley, F.; Meyer, J.; et al. External Beam Radiation Therapy for Primary Liver Cancers: An ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2022, 12, 28–51. [Google Scholar] [CrossRef]
- Shao, F.; Qi, W.; Meng, F.T.; Qiu, L.; Huang, Q. Role of Palliative Radiotherapy in Unresectable Intrahepatic Cholangiocarcinoma: Population-Based Analysis with Propensity Score Matching. Cancer Manag. Res. 2018, 10, 1497–1506. [Google Scholar] [CrossRef]
- Smart, A.C.; Goyal, L.; Horick, N.; Petkovska, N.; Zhu, A.X.; Ferrone, C.R.; Tanabe, K.K.; Allen, J.N.; Drapek, L.C.; Qadan, M.; et al. Hypofractionated Radiation Therapy for Unresectable/Locally Recurrent Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2020, 27, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-X.; Zeng, Z.-C.; Tang, Z.-Y.; Fan, J.; Zhou, J.; Jiang, W.; Zeng, M.-S.; Tan, Y.-S. Determining the Role of External Beam Radiotherapy in Unresectable Intrahepatic Cholangiocarcinoma: A Retrospective Analysis of 84 Patients. BMC Cancer 2010, 10, 492. [Google Scholar] [CrossRef]
- Zeng, Z.-C.; Tang, Z.-Y.; Fan, J.; Zhou, J.; Qin, L.-X.; Ye, S.-L.; Sun, H.-C.; Wang, B.-L.; Li, D.; Wang, J.-H.; et al. Consideration of the Role of Radiotherapy for Unresectable Intrahepatic Cholangiocarcinoma: A Retrospective Analysis of 75 Patients. Cancer J. 2006, 12, 113–122. [Google Scholar] [PubMed]
- Tao, R.; Krishnan, S.; Bhosale, P.R.; Javle, M.M.; Aloia, T.A.; Shroff, R.T.; Kaseb, A.O.; Bishop, A.J.; Swanick, C.W.; Koay, E.J.; et al. Ablative Radiotherapy Doses Lead to a Substantial Prolongation of Survival in Patients with Inoperable Intrahepatic Cholangiocarcinoma: A Retrospective Dose Response Analysis. J. Clin. Oncol. 2016, 34, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Kolarich, A.R.; Shah, J.L.; George, T.J.; Hughes, S.J.; Shaw, C.M.; Geller, B.S.; Grajo, J.R. Non-Surgical Management of Patients with Intrahepatic Cholangiocarcinoma in the United States, 2004–2015: An NCDB Analysis. J. Gastrointest. Oncol. 2018, 9, 536–545. [Google Scholar] [CrossRef]
- Hammad, A.Y.; Berger, N.G.; Eastwood, D.; Tsai, S.; Turaga, K.K.; Christian, K.K.; Johnston, F.M.; Pawlik, T.M.; Gamblin, T.C. Is Radiotherapy Warranted Following Intrahepatic Cholangiocarcinoma Resection? The Impact of Surgical Margins and Lymph Node Status on Survival. Ann. Surg. Oncol. 2016, 23, 912–920. [Google Scholar] [CrossRef]
- Jackson, M.W.; Amini, A.; Jones, B.L.; Rusthoven, C.G.; Schefter, T.E.; Goodman, K.A. Treatment Selection and Survival Outcomes with and Without Radiation for Unresectable, Localized Intrahepatic Cholangiocarcinoma. Cancer J. 2016, 22, 237–242. [Google Scholar] [CrossRef]
- Jiang, W.; Zeng, Z.-C.; Tang, Z.-Y.; Fan, J.; Zhou, J.; Zeng, M.-S.; Zhang, J.-Y.; Chen, Y.-X.; Tan, Y.-S. Benefit of Radiotherapy for 90 Patients with Resected Intrahepatic Cholangiocarcinoma and Concurrent Lymph Node Metastases. J. Cancer Res. Clin. Oncol. 2010, 136, 1323–1331. [Google Scholar] [CrossRef]
- Shinohara, E.T.; Mitra, N.; Guo, M.; Metz, J.M. Radiation Therapy Is Associated with Improved Survival in the Adjuvant and Definitive Treatment of Intrahepatic Cholangiocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 1495–1501. [Google Scholar] [CrossRef]
- Venkat, P.S.; Hoffe, S.E.; Frakes, J.M. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. Cancer Control 2017, 24, 107327481772925. [Google Scholar] [CrossRef]
- Mahadevan, A.; Dagoglu, N.; Mancias, J.; Raven, K.; Khwaja, K.; Tseng, J.F.; Ng, K.; Enzinger, P.; Miksad, R.; Bullock, A.; et al. Stereotactic Body Radiotherapy (SBRT) for Intrahepatic and Hilar Cholangiocarcinoma. J. Cancer 2015, 6, 1099–1104. [Google Scholar] [CrossRef]
- Barney, B.M.; Olivier, K.R.; Miller, R.C.; Haddock, M.G. Clinical Outcomes and Toxicity Using Stereotactic Body Radiotherapy (SBRT) for Advanced Cholangiocarcinoma. Radiat. Oncol. 2012, 7, 67. [Google Scholar] [CrossRef]
- Frakulli, R.; Buwenge, M.; Macchia, G.; Cammelli, S.; Deodato, F.; Cilla, S.; Cellini, F.; Mattiucci, G.C.; Bisello, S.; Brandi, G.; et al. Stereotactic Body Radiation Therapy in Cholangiocarcinoma: A Systematic Review. Br. J. Radiol. 2019, 92, 20180688. [Google Scholar] [CrossRef] [PubMed]
- Weiner, A.A.; Olsen, J.; Ma, D.; Dyk, P.; DeWees, T.; Myerson, R.J.; Parikh, P. Stereotactic Body Radiotherapy for Primary Hepatic Malignancies—Report of a Phase I/II Institutional Study. Radiother. Oncol. 2016, 121, 79–85. [Google Scholar] [CrossRef]
- Sandler, K.A.; Veruttipong, D.; Agopian, V.G.; Finn, R.S.; Hong, J.C.; Kaldas, F.M.; Sadeghi, S.; Busuttil, R.W.; Lee, P. Stereotactic Body Radiotherapy (SBRT) for Locally Advanced Extrahepatic and Intrahepatic Cholangiocarcinoma. Adv. Radiat. Oncol. 2016, 1, 237–243. [Google Scholar] [CrossRef]
- Tse, R.V.; Hawkins, M.; Lockwood, G.; Kim, J.J.; Cummings, B.; Knox, J.; Sherman, M.; Dawson, L.A. Phase I Study of Individualized Stereotactic Body Radiotherapy for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. JCO 2008, 26, 657–664. [Google Scholar] [CrossRef]
- Kozak, M.M.; Toesca, D.A.S.; von Eyben, R.; Pollom, E.L.; Chang, D.T. Stereotactic Body Radiation Therapy for Cholangiocarcinoma: Optimizing Locoregional Control with Elective Nodal Irradiation. Adv. Radiat. Oncol. 2020, 5, 77–84. [Google Scholar] [CrossRef]
- Brunner, T.B.; Blanck, O.; Lewitzki, V.; Abbasi-Senger, N.; Momm, F.; Riesterer, O.; Duma, M.N.; Wachter, S.; Baus, W.; Gerum, S.; et al. Stereotactic Body Radiotherapy Dose and Its Impact on Local Control and Overall Survival of Patients for Locally Advanced Intrahepatic and Extrahepatic Cholangiocarcinoma. Radiother. Oncol. 2019, 132, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Gkika, E.; Hallauer, L.; Kirste, S.; Adebahr, S.; Bartl, N.; Neeff, H.P.; Fritsch, R.; Brass, V.; Nestle, U.; Grosu, A.L.; et al. Stereotactic Body Radiotherapy (SBRT) for Locally Advanced Intrahepatic and Extrahepatic Cholangiocarcinoma. BMC Cancer 2017, 17, 781. [Google Scholar] [CrossRef]
- Shen, Z.-T.; Zhou, H.; Li, A.-M.; Li, B.; Shen, J.-S.; Zhu, X.-X. Clinical Outcomes and Prognostic Factors of Stereotactic Body Radiation Therapy for Intrahepatic Cholangiocarcinoma. Oncotarget 2017, 8, 93541–93550. [Google Scholar] [CrossRef]
- Sebastian, N.T.; Tan, Y.; Miller, E.D.; Williams, T.M.; Alexandra Diaz, D. Stereotactic Body Radiation Therapy Is Associated with Improved Overall Survival Compared to Chemoradiation or Radioembolization in the Treatment of Unresectable Intrahepatic Cholangiocarcinoma. Clin. Transl. Radiat. Oncol. 2019, 19, 66–71. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, W.S.; Koom, W.S.; Rim, C.H. Efficacy of Stereotactic Body Radiotherapy for Unresectable or Recurrent Cholangiocarcinoma: A Meta-Analysis and Systematic Review. Strahlenther. Onkol. 2019, 195, 93–102. [Google Scholar] [CrossRef]
- Ahn, D.H.; Bekaii-Saab, T. Biliary Cancer: Intrahepatic Cholangiocarcinoma vs. Extrahepatic Cholangiocarcinoma vs. Gallbladder Cancers: Classification and Therapeutic Implications. J. Gastrointest. Oncol. 2017, 8, 293–301. [Google Scholar] [CrossRef]
- Cardinale, V.; Semeraro, R.; Torrice, A.; Gatto, M.; Napoli, C.; Bragazzi, M.C.; Gentile, R.; Alvaro, D. Intra-Hepatic and Extra-Hepatic Cholangiocarcinoma: New Insight into Epidemiology and Risk Factors. World J. Gastrointest. Oncol. 2010, 2, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, V.; Carpino, G.; Reid, L.; Gaudio, E.; Alvaro, D. Multiple Cells of Origin in Cholangiocarcinoma Underlie Biological, Epidemiological and Clinical Heterogeneity. World J. Gastrointest. Oncol. 2012, 4, 94–102. [Google Scholar] [CrossRef] [PubMed]
- Franssen, S.; Soares, K.C.; Jolissaint, J.S.; Tsilimigras, D.I.; Buettner, S.; Alexandrescu, S.; Marques, H.; Lamelas, J.; Aldrighetti, L.; Gamblin, T.C.; et al. Comparison of Hepatic Arterial Infusion Pump Chemotherapy vs Resection for Patients with Multifocal Intrahepatic Cholangiocarcinoma. JAMA Surg. 2022, 157, 590. [Google Scholar] [CrossRef] [PubMed]
- Huang, P.; Huang, X.; Zhou, Y.; Yang, G.; Sun, Q.; Shi, G.; Chen, Y. The Efficacy and Safety of Hepatic Arterial Infusion Chemotherapy Based on FOLFIRI for Advanced Intrahepatic Cholangiocarcinoma as Second-Line and Successive Treatment: A Real-World Study. Can. J. Gastroenterol. Hepatol. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Ishii, M.; Itano, O.; Morinaga, J.; Shirakawa, H.; Itano, S. Potential Efficacy of Hepatic Arterial Infusion Chemotherapy Using Gemcitabine, Cisplatin, and 5-Fluorouracil for Intrahepatic Cholangiocarcinoma. PLoS ONE 2022, 17, e0266707. [Google Scholar] [CrossRef]
- Zhang, N.; Yu, B.R.; Wang, Y.X.; Zhao, Y.M.; Zhou, J.M.; Wang, M.; Wang, L.R.; Lin, Z.H.; Zhang, T.; Wang, L. Clinical Outcomes of Hepatic Arterial Infusion Chemotherapy Combined with Tyrosine Kinase Inhibitors and Anti- PD-1 Immunotherapy for Unresectable Intrahepatic Cholangiocarcinoma. J. Dig. Dis. 2022, 23, 533–545. [Google Scholar] [CrossRef]
- Cai, Z.; He, C.; Zhao, C.; Lin, X. Survival Comparisons of Hepatic Arterial Infusion Chemotherapy with MFOLFOX and Transarterial Chemoembolization in Patients With Unresectable Intrahepatic Cholangiocarcinoma. Front. Oncol. 2021, 11, 611118. [Google Scholar] [CrossRef]
- Jolissaint, J.S.; Soares, K.C.; Seier, K.P.; Kundra, R.; Gönen, M.; Shin, P.J.; Boerner, T.; Sigel, C.; Madupuri, R.; Vakiani, E.; et al. Intrahepatic Cholangiocarcinoma with Lymph Node Metastasis: Treatment-Related Outcomes and the Role of Tumor Genomics in Patient Selection. Clin. Cancer Res. 2021, 27, 4101–4108. [Google Scholar] [CrossRef]
- Pietge, H.; Sánchez-Velázquez, P.; Akhoundova, D.; Siebenhüner, A.; Winder, T.; Bachmann, H.; Nguyen-Kim, T.D.L.; Breitenstein, S.; Knuth, A.; Petrowsky, H.; et al. Combination of HAI-FUDR and Systemic Gemcitabine and Cisplatin in Unresectable Cholangiocarcinoma: A Dose Finding Single Center Study. Oncology 2021, 99, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Cercek, A.; Boerner, T.; Tan, B.R.; Chou, J.F.; Gönen, M.; Boucher, T.M.; Hauser, H.F.; Do, R.K.G.; Lowery, M.A.; Harding, J.J.; et al. Assessment of Hepatic Arterial Infusion of Floxuridine in Combination with Systemic Gemcitabine and Oxaliplatin in Patients with Unresectable Intrahepatic Cholangiocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2020, 6, 60–67. [Google Scholar] [CrossRef]
- Higaki, T.; Aramaki, O.; Moriguchi, M.; Nakayama, H.; Midorikawa, Y.; Takayama, T. Arterial Infusion of Cisplatin plus S-1 against Unresectable Intrahepatic Cholangiocarcinoma. BST 2018, 12, 73–78. [Google Scholar] [CrossRef]
- Wright, G.P.; Perkins, S.; Jones, H.; Zureikat, A.H.; Marsh, J.W.; Holtzman, M.P.; Zeh, H.J.; Bartlett, D.L.; Pingpank, J.F. Surgical Resection Does Not Improve Survival in Multifocal Intrahepatic Cholangiocarcinoma: A Comparison of Surgical Resection with Intra-Arterial Therapies. Ann. Surg. Oncol. 2018, 25, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, I.T.; Groot Koerkamp, B.; Do, R.K.G.; Gönen, M.; Fong, Y.; Allen, P.J.; D’Angelica, M.I.; Kingham, T.P.; DeMatteo, R.P.; Klimstra, D.S.; et al. Unresectable Intrahepatic Cholangiocarcinoma: Systemic plus Hepatic Arterial Infusion Chemotherapy Is Associated with Longer Survival in Comparison with Systemic Chemotherapy Alone. Cancer 2016, 122, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, I.T.; Do, R.K.G.; Gultekin, D.H.; Gönen, M.; Schwartz, L.H.; Fong, Y.; Allen, P.J.; D’Angelica, M.I.; DeMatteo, R.P.; Klimstra, D.S.; et al. Regional Chemotherapy for Unresectable Intrahepatic Cholangiocarcinoma: A Potential Role for Dynamic Magnetic Resonance Imaging as an Imaging Biomarker and a Survival Update from Two Prospective Clinical Trials. Ann. Surg. Oncol. 2014, 21, 2675–2683. [Google Scholar] [CrossRef]
- Kasai, K.; Kooka, Y.; Suzuki, Y.; Suzuki, A.; Oikawa, T.; Ushio, A.; Kasai, Y.; Sawara, K.; Miyamoto, Y.; Oikawa, K.; et al. Efficacy of Hepatic Arterial Infusion Chemotherapy Using 5-Fluorouracil and Systemic Pegylated Interferon α-2b for Advanced Intrahepatic Cholangiocarcinoma. Ann. Surg. Oncol. 2014, 21, 3638–3645. [Google Scholar] [CrossRef]
- Inaba, Y.; Arai, Y.; Yamaura, H.; Sato, Y.; Najima, M.; Aramaki, T.; Sone, M.; Kumada, T.; Tanigawa, N.; Anai, H.; et al. Phase I/II Study of Hepatic Arterial Infusion Chemotherapy with Gemcitabine in Patients With Unresectable Intrahepatic Cholangiocarcinoma (JIVROSG-0301). Am. J. Clin. Oncol. 2011, 34, 58–62. [Google Scholar] [CrossRef]
- Kemeny, N.E.; Schwartz, L.; Gönen, M.; Yopp, A.; Gultekin, D.; D’Angelica, M.I.; Fong, Y.; Haviland, D.; Gewirtz, A.N.; Allen, P.; et al. Treating Primary Liver Cancer with Hepatic Arterial Infusion of Floxuridine and Dexamethasone: Does the Addition of Systemic Bevacizumab Improve Results? Oncology 2011, 80, 3–4. [Google Scholar] [CrossRef]
- Jarnagin, W.R.; Schwartz, L.H.; Gultekin, D.H.; Gönen, M.; Haviland, D.; Shia, J.; D’Angelica, M.; Fong, Y.; DeMatteo, R.; Tse, A.; et al. Regional Chemotherapy for Unresectable Primary Liver Cancer: Results of a Phase II Clinical Trial and Assessment of DCE-MRI as a Biomarker of Survival. Ann. Oncol. 2009, 20, 1589–1595. [Google Scholar] [CrossRef]
- Massani, M.; Bonariol, L.; Stecca, T. Hepatic Arterial Infusion Chemotherapy for Unresectable Intrahepatic Cholangiocarcinoma, a Comprehensive Review. JCM 2021, 10, 2552. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Z.; Zhu, W.; Yu, J.; Ji, H.; Tang, X.; Yu, H.; Fan, L.; Liang, B.; Li, R.; et al. Chemotherapy plus Concurrent Irreversible Electroporation Improved Local Tumor Control in Unresectable Hilar Cholangiocarcinoma Compared with Chemotherapy Alone. Int. J. Hyperth. 2021, 38, 1512–1518. [Google Scholar] [CrossRef]
- Hsiao, C.-Y.; Yang, P.-C.; Li, X.; Huang, K.-W. Clinical Impact of Irreversible Electroporation Ablation for Unresectable Hilar Cholangiocarcinoma. Sci. Rep. 2020, 10, 10883. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-C.; Chen, Y.-J.; Li, X.-Y.; Hsiao, C.-Y.; Cheng, B.-B.; Gao, Y.; Zhou, B.-Z.; Chen, S.-Y.; Hu, S.-Q.; Zeng, Q.; et al. Irreversible Electroporation Treatment With Intraoperative Biliary Stenting for Unresectable Perihilar Cholangiocarcinoma: A Pilot Study. Front. Oncol. 2021, 11, 710536. [Google Scholar] [CrossRef] [PubMed]
- Franken, L.C.; van Veldhuisen, E.; Ruarus, A.H.; Coelen, R.J.S.; Roos, E.; van Delden, O.M.; Besselink, M.G.; Klümpen, H.-J.; van Lienden, K.P.; van Gulik, T.M.; et al. Outcomes of Irreversible Electroporation for Perihilar Cholangiocarcinoma: A Prospective Pilot Study. J. Vasc. Interv. Radiol. 2022, 33, 805.e1–813.e1. [Google Scholar] [CrossRef] [PubMed]
- Belfiore, M.P.; Reginelli, A.; Maggialetti, N.; Carbone, M.; Giovine, S.; Laporta, A.; Urraro, F.; Nardone, V.; Grassi, R.; Cappabianca, S.; et al. Preliminary Results in Unresectable Cholangiocarcinoma Treated by CT Percutaneous Irreversible Electroporation: Feasibility, Safety and Efficacy. Med. Oncol. 2020, 37, 45. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, J.; Niu, L.; Liu, Y.; Ye, G.; Jiang, M.; Qi, Z. Clinical Safety and Efficacy of Locoregional Therapy Combined with Adoptive Transfer of Allogeneic Γδ T Cells for Advanced Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma. J. Vasc. Interv. Radiol. 2022, 33, 19.e3–27.e3. [Google Scholar] [CrossRef]
- Eisele, R.; Chopra, S.; Glanemann, M.; Gebauer, B. Risk of Local Failure after Ultrasound Guided Irreversible Electroporation of Malignant Liver Tumors. Interv. Med. Appl. Sci. 2014, 6, 147–153. [Google Scholar] [CrossRef]
- Schnapauff, D.; Denecke, T.; Grieser, C.; Colletini, F.; Seehofer, D.; Sinn, M.; Banzer, J.; Lopez-Hänninen, E.; Hamm, B.; Wust, P.; et al. Computed Tomography-Guided Interstitial HDR Brachytherapy (CT-HDRBT) of the Liver in Patients with Irresectable Intrahepatic Cholangiocarcinoma. Cardiovasc. Intervent. Radiol. 2012, 35, 581–587. [Google Scholar] [CrossRef]
- Kieszko, D.; Cisek, P.; Kordzińska-Cisek, I.; Grzybowska-Szatkowska, L. Treatment of Hepatic Metastases with Computed Tomography-Guided Interstitial Brachytherapy. Oncol. Lett. 2018, 15, 8717–8722. [Google Scholar] [CrossRef] [PubMed]
- Hepatobiliary Cancers Version 4.2022. NCCN Clinical Practice Guidelines in Oncology. Available online: https://www.nccn.org/professionals/physician_gls/pdf/hepatobiliary.pdf (accessed on 10 December 2022).
RFA | |||||
---|---|---|---|---|---|
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Chu (2021) [27] | Retrospective Study 1999–2019 | N = 40 Mean 56.3 y/o Recurrent ICC after curative SR Tumor size < 5 cm | Percutaneous US-guided RFA | Median OS = 26.6 mo OS 3, 5 yr: 36.2%, 18.3% | Major = 4.7% |
Brandi (2020) [16] | Retrospective Study 01/2014–06/2019 | N = 29 Mean 63 y/o Unresectable ICC Tumor size < 5 cm | Percutaneous US-guided RFA S = median 3 | LTPFS = 9.27 mo OS = 27.5 mo | Majorc = 7% Minorc = 14% |
Laimer (2020) [19] | Case Report 2007–2019 | N = 1 72 y/o Unresectable ICC Tumor size = 10 cm | SRFA S = 10 | OS > 11 yr | Majorc = 1× Minorc = 2× |
Lee (2020) [20] | Retrospective Study 2009–2016 | N = 20 Mean 60 y/o Primary and recurrent ICC with curative intent Tumor size < 3 cm | SR + US-guided IORFA | OS 6 mo, 1, 3, 5 yr: 95%, 79%, 27%, 14% LTPFS 6 mo, 1, 3, 5 yr: 70%, 33%, 13%, 13% Median OS = 22 mo | Major = 5% |
Takahashi (2018) [26] | Retrospective Study 02/2006–11/2015 | N = 20 Mean 62.5 y/o Primary and recurrent ICC Tumor size < 5 cm | Percutaneous US or CT-guided RFA and MWA | Median DFS = 8.2 mo Median OS = 23.6 mo | Major = 0% Minor = 10% |
Butros (2014) [28] | Case Series 01/1998–06/2011 | N = 7 Mean 65 y/o Primary and recurrent ICC Tumor size < 5 cm | Percutaneous CT or CT + US-guided RFA S = 1 | LTPFS = 36.3 mo OS 1, 3, 5 yr: 100%, 60%, 20% | Major = 0% Minor = 0% |
Fu (2012) [13] | Retrospective Study 01/2000–07/2010 | N = 17 Median 54.5 y/o Unresectable primary and recurrent ICC Tumor size < 7 cm | Percutaneous US-guided RFA and IORFA S = mean 1.64 | OS 1, 3, 5 yr: 84.6%, 43.3%, 28.9% Median RFT = 17 mo Median OS = 33 mo | Major = 3.6% Minor = 47% |
Haidu (2012) [18] | Retrospective Study 12/2004–06/2010 | N = 11 Median 61 y/o Unresectable ICC Tumor size 0.5–10 cm | Percutaneous SRFA S = mean 2 | OS 1, 3 yr: 91%, 71% Median OS = 60 mo | Major = 13% |
Xu (2012) [25] | Retrospective Study 10/1998–8/2010 | N = 18 Mean 60 y/o Primary and recurrent ICC with curative intent Tumor size < 7 cm | Percutaneous US-guided RFA and MWA | All OS 6 mo, 1, 3, 5 yr: 66.7%, 36.3%, 30.3%, 30.3% Primary ICC OS 6 mo, 1, 3, 5 yr: 87.5%, 75%, 62.5%, 62.5% Median OS = 29.3 mo | Major = 5.5% Minor = 5.5% |
Giorgio (2011) [29] | Case Series 01/2003–10/2010 | N = 10 Median 70 y/o Unresectable ICC Tumor size 2.4–7 cm | Percutaneous US-guided RFA S = 1–2 | OS 1, 3, 5 yr: 100%, 83.3%, 83.3% | Major = 0% Minor = 30% |
Kim (2011) [14] | Retrospective Study 10/1999–03/2009 | N = 20 Recurrent ICC after curative SR Tumor size 0.7–4.4 cm | Percutaneous US-guided RFA S = mean 1.45 | Mean LTPFS = 39.8 mo OS 6 mo 1, 2, 4 yr: 95%, 70%, 60%, 21% Median OS = 27.4 mo | Major = 7% Minor = 55% |
Kim (2011) [12] | Case Series 02/2000–06/2009 | N = 13 Mean 58.2 y/o Primary unresectable ICC Tumor size 0.9–8 cm | Percutaneous US-guided RFA S = mean 1.3 | LTPFS = 32.2 mo OS 1, 3, 5 yr: 85%, 51%, 15% Median OS = 38.5 mo | Major = 6% Minor = 77% |
Carrafiello (2010) [24] | Case Series 02/2004–07/2008 | N = 6 Mean 69.8 y/o Unresectable ICC Tumor size 1.0–5.8 cm | Percutaneous US-guided RFA S = mean 1.5 | Median OS = 20 mo | Major = 0% Minor = 17% |
Kamphues (2010) [15] | Retrospective Study 04/2002–05/2008 | N = 13 Median 62 y/o Recurrent ICC after SR or RFA Tumor size < 5 cm | IORFA vs. percutaneous US-guided RFA | Mean TTR1: 14 mo Mean TTR2: 14.6 mo OS 1, 3 yr: 92%, 52% Median OS = 51 mo | Major = 7.6% |
Chiou (2005) [30] | Case Series 01/2002–10/2004 | N = 10 Mean 66.2 y/o Unresectable ICC Tumor size 1.9–6.8 cm | Percutaneous US-guided RFA S = mean 1.2 | Total tumor necrosis = 80% | Major = 10% Minor = 0% |
Comparative Cohorts | |||||
Xiang (2020) [17] | Retrospective Cohort Study 2004–2014 | N = 34 RFA N = 150 SR Stage I, Tumor size < 5 cm | RFA vs. SR | OS 1, 3, 5 yr: RFA = 89.9%, 42.4%, 23.9% SR = 87.4%, 73.3%, 61.5% Median OS RFA = 39 mo Median OS SR = 38 mo | |
Wu (2019) [31] | Retrospective Cohort Study 2004–2013 | N = 86 RFA N = 419 ChR Nonsurgical patients Stage I or II, Tumor size < 5 cm | RFA vs. ChR | 5 yr OS Stage I: RFA = 20.1% ChR = 3.7% 3 yr OS Stage II: ND |
MWA | |||||
---|---|---|---|---|---|
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Wang (2022) [33] | Retrospective Study 02/2012–12/2020 | N = 29 Mean 56.34 y/o Untreated ICC Tumor size 0.5–8.1 cm | Percutaneous US-guided MWA | Median PFS = 18.43 mo Median OS = 18.43 mo | |
Kim-Fuchs (2021) [35] | Systematic Review and Retrospective Study 2019–2021 | Primary ICC N = 5 Recurrent ICC N = 5 Mean 58.1 y/o Primary and recurrent ICC Tumor size 0.6–3.2 cm | Stereotactic MWA | OS Primary ICC = 6–31.5 mo, all patients still living OS Recurrent ICC = 1–20 mo, 2 patients still living | Dindo IIIa+: 10% |
Yang (2021) [36] | Retrospective Study 04/2011–03/2018 | N = 55 Mean 59.6 y/o Untreated ICC Tumor size 0.8–5 cm | Percutaneous US-guided MWA | 1, 3, 5 yr OS: 87.4%, 51.4%, 35.2% 1, 3, 5 yr RFS: 68.9%, 56.9%, 56.9% | Major = 3.8% |
Ni (2019) [39] | Retrospective Study 04/2011–03/2018 | N = 78 Mean 59.6 y/o Early-stage, unresectable, and untreated ICC Tumor size < 5 cm | Percutaneous CT-guided MWA | 1, 3, 5 yr OS: 89.5%, 52.2%, 35.0% 1, 3, 5 yr RFS: 78.9%, 19.9%, 0% | Major = 3.8% Minor = 29.5% |
Zhang (2018) [41] | Retrospective Study 01/2009–02/2016 | N = 107 Mean 58 y/o Primary and recurrent ICC Tumor size < 5 cm | Percutaneous US-guided MWA | Median OS = 28.0 mo Median PFS = 8.9 mo | Major = 2.8% |
Yang (2015) [42] | Retrospective Study 01/2011–12/2014 | N = 26 Mean 57.9 y/o Primary unresectable and recurrent ICC Tumor size 2.5–6.5 cm | Percutaneous US-guided MWA + TACE | Median OS = 19.5 mo Median PFS = 6.2 mo | Major = 0% |
Xu (2012) [25] | Retrospective Study 10/1998–08/2010 | MWA or RFA N = 18 Mean 60.0 y/o Primary and recurrent ICC after SR Tumor size 0.7–6.9 cm | Percutaneous US-guided MWA or RFA | Median OS = 8.8 mo Median RFS = 4.0 mo | Major = 5.5% |
Yu (2011) [44] | Retrospective Study 05/2006–03/2010 | N = 15 Mean 57.4 y/o Unresectable ICC Tumor size 1.3–9.9 cm | Percutaneous US-guided MWA | Median OS = 10 mo | Major = 20% |
Comparative Cohorts | |||||
Ge (2020) [37] | Retrospective Cohort Study 05/2008–12/2015 | PMCT N = 92 TACE N = 183 Median 55 y/o Recurrent unresectable ICC Included tumors > 5 cm | US-guided PMCT vs. TACE | OS TACE > PMCT (p = 0.041) RFS TACE > PMCT (p = 0.047) | |
Giorgio (2019) [38] | Retrospective Cohort Study 01/2008–06/2018 | MWA N = 35 RFA N = 36 Mean age MWA, RFA = 72, 75 y/o Unresectable ICC Tumor size 2.2–7.2 cm | Percutaneous US-guided MWA vs. RFA | OS MWA > RFA (p < 0.005) PFS MWA > RFA (p < 0.005) | Major = 0% |
Xu (2019) [40] | Retrospective Cohort Study 04/2011–01/2017 | MWA N = 56 SR N = 65 Mean age MWA, SR = 54.5, 53.9 y/o Recurrent ICC after initial SR Tumor size 0.8–5 cm | Percutaneous US-guided MWA vs. SR | Median OS MWA = 31.3 mo Median OS SR = 29.4 mo 1, 3, 5 yr OS: MWA = 81.2%, 42.5%, 23.7% SR = 77.4%, 36.4%, 21.8% (p = 0.405) | Major MWA = 5.3% Major SR = 13.8% p < 0.001 |
Takahashi (2018) [26] | Retrospective Study 2006–2015 | MWA N = 6 RFA N = 44 Mean 62.5 y/o Primary, locally recurrent, and metastatic ICC Mean tumor size = 1.8 cm | Percutaneous US or CT-guided MWA or RFA | Median OS = 23.6 mo Median DFS = 8.2 mo | Major = 0% |
Zhang (2013) [43] | Retrospective Cohort Study 01/2007–12/2011 | MWA or RFA N = 77 Repeated SR N = 32 Recurrent ICC after SR Tumor size < 5 cm | MWA or RFA vs. repeated SR | Median OS: MWA or RFA = 21.3 mo Repeated SR = 20.3 mo (p= 0.996) | Major MWA or RFA = 3.9% Major SR = 46.9% p < 0.001 |
Yan (2022) [34] | Retrospective Cohort Study 01/2010–12/2018 | MWA or RFA +ChT N = 55 ChT alone N = 134 Unresectable and untreated ICC Included tumors > 5 cm | RFA or MWA + ChT vs. ChT alone | Median OS: RFA or MWA + ChT = 15.23 mo ChT alone = 7.97 mo p = 0.009 |
(A) TACE | |||||
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Luo (2020) [49] | Prospective Study 11/2015–11/2016 | N = 37 Mean 62.9 y/o Primary ICC Tumor size 3–8.3 cm | DEB-TACE | Mean OS = 376 days CR = 8.1% PR = 59.5% | Major = 0% |
Zhou (2020) [52] | Retrospective Study 11/2015–05/2018 | N = 88 Unresectable ICC Included tumors > 5 cm | DEB-TACE | Median OS = 9.0 mo Median PFS = 3.0 mo | Major = 0% |
Schicho (2017) [55] | Prospective Study 01/2010–06/2014 | N = 7 Mean = 73.7 y/o Unresectable ICC | DSM-TACE | OR = 12% DC = 44% DP = 4% | Major = 4% |
Kim (2008) [56] | Retrospective Study 02/1997–05/2007 | N = 49 Mean 62.9 y/o Unresectable ICC Tumor size 1.5–16 cm | TACE and TACI | Median OS = 12 mo 1, 2, 3, 4 yr OS: 46%, 38%, 30%, 15% | Major = 2% |
Comparative Cohorts | |||||
Sun (2022) [53] | Retrospective Cohort Study 01/2016–06/2020 | DEB-TACE N = 40 cTACE N = 49 Mean 59.6 y/o Unresectable ICC Included tumors > 5 cm | DEB-TACE vs. cTACE | DEB-TACE OS = median 10 mo cTACE OS = median 6 mo | DEB-TACE = 12.5% cTACE = 6.1% |
Baydoun (2021) [3] | Case Series 01/2013–01/2019 | N = 10 Mean 65.3 y/o Primary and recurrent ICC | TACE + RFA vs. TACE vs. RFA | All groups median OS = 29.5 mo All groups median PFS = 15.5 mo | TACE = 0% RFA Major = 0% |
Hu (2020) [48] | Retrospective Cohort Study 10/2015–12/2019 | N = 35 Mean 57.2 y/o Unresectable stage III and IV ICC Included tumors > 5 cm | Ap + DEB-TACE vs. Ap + cTACE vs. Ap | Ap + DEB-TACE median OS = 19.3 mo Ap + cTACE median OS = 14.0 mo Ap median OS = 6.5 mo | Ap + DEB-TACE ≈ Ap + cTACE > Ap |
Park (2011) [6] | Retrospective Cohort Study 01/1996–04/2009 | TACE N = 72 Supportive care N = 83 Mean 64.6 y/o Unresectable ICC Included tumors > 5 cm | TACE vs. supportive care | Median OS: TACE = 12.2 mo Supportive care = 3.3 mo | Grade 3 heme AE = 13% Grade 3 non-heme AE = 24% |
Poggi (2009) [57] | Retrospective Cohort Study 12/2005–05/2008 | ChT + OEM-TACE N = 9 ChT N = 11 Unresectable ICC | ChT + OEM-TACE vs. ChT | Median OS: ChT + OEM-TACE = 30 mo ChT = 12.7 mo | Grade 4 complications = 0% |
(B) Adjuvant TACE | |||||
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Cheng (2021) [58] | Retrospective Cohort Study 12/2002–11/2015 | SR + TACE N = 68 SR alone N = 155 Mean 51.8 y/o Included tumors > 5 cm | SR + adjuvant TACE vs. SR alone | SR + TACE vs. SR alone: 1, 3, 5 yr OS = ND 1, 3, 5 yr RR = ND | |
Li (2015) [59] | Retrospective Cohort Study 01/2008–02/2011 | SR + TACE N = 122 SR alone N = 431 Mean 54 y/o Included tumors > 5 cm | SR + adjuvant TACE vs. SR alone | SR + TACE vs. SR alone: 1, 3, 5 yr OS = ND 1, 3, 5 yr RR = ND | |
Wu (2012) [31] | Retrospective Cohort Study 01/2005–12/2006 | SR + TACE N = 57 SR alone N = 57 Median 56 y/o Included tumors > 5 cm | SR + adjuvant TACE vs. SR alone | Poor prognostic factors: 1, 3, 5 yr OS = SR + TACE > SR (p <0.001) Without poor prognostic factors: 1, 3, 5 yr OS = ND | |
Shen (2011) [60] | Retrospective Cohort Study 07/2002–12/2003 | SR + TACE N = 53 SR alone N = 72 Included tumors > 5 cm | SR + adjuvant TACE vs. SR alone | 1, 3, 5 yr OS = SR + TACE > SR (p <0.045) Median OS in patients with early recurrence: SR + TACE = 12 mo SR alone = 5 mo | Major = 0% |
TARE | |||||
---|---|---|---|---|---|
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Paprottka (2021) [62] | Retrospective Study | N = 73 Mean 64.5 y/o Unresectable ICC Included tumor burden >50% | TARE Y90 resin microspheres | Mean OS = 18.9 mo Mean PFS = 10.1 mo | Grade 3: 12.3% Grade 4–5: 0% |
Paz-Fumagalli (2021) [63] | Retrospective Study | N = 28Mean 64.2 y/o Unresectable ICC Tumor size 2–14 cm | TARE Y90 glass microspheres | 1, 3 yr OS: 78%, 59% Median PFS = 8.8 mo | Grade 3+: 7.1% |
Edeline (2020) [66] | Phase II Clinical Trial 11/2013–06/2016 | N = 41 Mean 64 y/o Unresectable and recurrent ICC Included tumors > 2 cm | SIRT + ChT Y90 glass microspheres | Median OS = 22 mo Median PFS = 14 mo | Grade 3–4: 71% |
Filippi (2019) [67] | Case Series | N = 9 Mean 65.4 y/o Recurrent ICC after 1st TARE | Repeat TARE Y90 resin microspheres | Median OS = 16.5 mo after 1st TARE | Grade 3+: 0% |
Kohler (2019) [68] | Retrospective Study | N = 46 Median 62.5 y/o Advanced and recurrent ICC Included tumor burden > 50% | TARE Y90 resin microspheres | Median OS = 9.5 mo | |
Levillain (2019) [69] | Retrospective Study 01/2004–9/2018 | N = 58 Median 66 y/o Unresectable, ChT refractory ICC Included tumors > 2 cm | TARE Y90 resin microspheres | Median OS = 10.3 mo 1, 2 yr OS: 40%, 22% | |
White (2019) [70] | Prospective Study 12/2013–02/2017 | N = 61 Median 64 y/o ChT refractory ICC | TARE Y90 resin or glass microspheres | Median OS = 8.7 mo Median PFS = 2.8 mo | Grade 3+: 8% |
Gangi (2018) [71] | Retrospective Study 05/2009–05/2016 | N = 85 Mean 73.4 y/o Unresectable ICC | TARE Y90 glass microspheres | Median OS = 12 mo | Grade 3+: 8.2% |
Shaker (2018) [72] | Retrospective Study 2006–2016 | N = 17 Median 69.3 y/o Unresectable and metastatic ICC, Stage I-IV Mean tumor size = 7.4 cm | TARE Y90 resin or glass microspheres | Median OS = 33.6 mo Median PFS = 4 mo | Technical complications: 9% |
Jia (2017) [74] | Retrospective Study 02/2006–09/2015 | N = 24 Mean 61.8 y/o Unresectable and ChT refractory ICC | TARE Y90 resin microspheres | Median OS from Dx, ChT, and TARE: 24 mo, 16 mo, 9 mo | Grade 3+: 20.8% |
Mosconi (2016) [75] | Retrospective Study 07/2010–09/2015 | N = 23 Mean 65 y/o Unresectable and recurrent ICC | TARE Y90 resin microspheres | Median OS = 17.9 mo 1, 2 yr OS: 67.9%, 20.6% | Grade 3: 8.7% |
Mouli (2013) [76] | Retrospective Study 07/2003–05/2011 | N = 46 Median 68 y/o Unresectable ICC Included tumor burden > 50% | TARE | Median OS solitary tumor = 14.6 mo Median OS multifocal tumors = 5.7 mo | Grade 3+: 17% |
Hoffmann (2012) [77] | Retrospective Study 04/2007–01/2010 | N = 33 Mean 65.2 y/o Unresectable ICC Included tumor burden < 50% | TARE Y90 resin microspheres | Median OS = 22 mo Median PFS = 9.8 mo | Major = 0% |
Saxena (2010) [78] | Retrospective Study 01/2004–05/2009 | N = 25 Mean 57 y/o Unresectable ICC Included tumor burden <50% | TAREY90 resin microspheres | Median OS = 9.3 mo 6 mo, 1 yr, 2 yr, 3 yr OS: 56%, 40%, 27%, 13% | Grade 3+: 24% |
Comparative Cohorts | |||||
Bargellini (2020) [64] | Retrospective Cohort Study 07/2008–10/2017 | N = 81 Mean 62.4 y/o Unresectable ICC Mean tumor size = 5.98 cm | A = ChT naïve + TARE B = ChT + adjuvant TARE C = progression after ChT + TARE | Median OS = 14.5 mo (ND between groups) | Major = 0% |
Buettner (2020) [65] | Retrospective Cohort Study 06/2006–02/2017 | Resin N = 92 Glass N = 22 Unresectable ICC Tumor size 5.4–10 cm | TARE Resin vs. glass microspheres | Median OS = 29 mo (ND between groups) Median PFS = 5 mo (ND between groups) | Grade 3: 4% |
Akinwande (2017) [73] | Retrospective Cohort Study 08/2001–07/2016 | TARE N = 25 TACE N = 15 Median age TARE = 64 y/o Median age TACE = 60 y/o Unresectable ICC Included tumor burden >50% | TARE vs. TACE | Grade 3+ TARE: 10% Grade 3+ TACE: 9% (ND) |
EBRT | |||||
---|---|---|---|---|---|
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Smart (2020) [81] | Retrospective Study 2008–2018 | N = 66 Median 76 y/o Unresectable or locally recurrent ICC Tumor size 2.5–16 cm | Hypofractionated proton or photon EBRT Median RT dose = 58.05 Gy | 2 yr LC = 84% 2 yr OS = 58% Median OS = 25 mo | Grade 3+: 11% |
Tao (2016) [84] | Retrospective Study 2002–2014 | EBRT + ChT N = 70 EBRT alone N = 9 Unresectable ICC, stage I-IV Tumor size 2.2–17 cm | EBRT Median RT dose = 58.05 Gy Median BED = 80.5 Gy | Median OS = 30 mo 3 yr OS: BED > 80.5 Gy = 73% BED < 80.5 Gy = 38% | 6.3% hospitalized within 90 days of EBRT |
Comparative Cohorts | |||||
Kolarich (2018) [85] | Retrospective Study NCDB 2004–2015 | N = 2222 EBRT, RFA, RI, and no local therapy Nonsurgical patients, stage I-IV ICC | EBRT, RFA, or RI vs. no local therapy | Stage I median OS: RFA = 2.1 yr, EBRT = 1.7 yr, No local therapy = 0.7 yr Stage II median OS: ND Stage III median OS: EBRT = 0.9 yr, RI = 1.2 yr, No local therapy = 0.6 yr Stage IV median OS: RI = 0.9 yr, No local therapy = 0.3 yr | |
Shao (2018) [80] | Retrospective Cohort Study SEER 1973–2013 | Palliative EBRT N = 847 No EBRT = 3180 Median 64 y/o Palliative EBRT for unresectable ICC Included tumors > 5 cm | Palliative EBRT vs. no EBRT | OS: EBRT > none (HR = 0.844, p = 0.00228) CSS: EBRT > none (HR = 0.8563, p = 0.0037) | |
Hammad (2016) [86] | Retrospective Cohort Study NCDB 1998–2013 | Total N = 2897 EBRT N = 525 Median 65 y/o Adjuvant EBRT Included tumors > 5 cm | SR + EBRT vs. SR alone | Median OS R1/R2 LN (-) patients: SR + EBRT = 39.5 mo SR alone = 21.1 mo p = 0.052 | |
Jackson (2016) [87] | Retrospective Study NCDB 2001–2011 | Total N = 1636 Median 63 y/o Unresectable, localized ICC | EBRT + ChT vs. ChT alone | 2 yr OS: EBRT + ChT = 25.8% ChT alone = 20% p = 0.001 | |
Chen (2010) [82] | Retrospective Cohort Study 12/1998–12/2008 | Palliative EBRT N = 35 No EBRT N = 49 Palliative EBRT for unresectable ICC, stage I-IV Included tumors > 10 cm | EBRT vs. no EBRT Median RT dose = 50 Gy | Median OS: EBRT = 9.5 mo No EBRT = 5.1 mo 1, 2 yr OS: EBRT = 38.5%, 9.6% No EBRT = 16.4%, 4.9% | Grade 3: 11.4% 1 RILD resulting in mortality |
Jiang (2010) [88] | Retrospective Cohort Study 01/1999–12/2008 | EBRT N = 24 No EBRT N = 66 Resected ICC with LN metastasis Included tumors > 10 cm | EBRT vs. no EBRT Median RT dose = 50 Gy | Median OS: EBRT = 19.1 mo No EBRT = 9.5 mo | Grade 3: 12.5% |
Shinohara (2008) [89] | Retrospective Cohort Study SEER 1988–2003 | Total N = 3839 Median 73 y/o Adjuvant and definitive EBRT | SR + EBRT or BI vs. SR alone vs. EBRT or BI alone vs. no treatment | Median OS: SR + EBRT/BI = 11 mo SR alone = 6 mo EBRT/BI alone = 7 mo No treatment = 3 mo | |
Zeng (2006) [83] | Retrospective Cohort Study 01/1998–12/2004 | EBRT N = 38 No EBRT N = 37 Unresectable ICC and post-op EBRT for LN (+) metastasis Included tumors > 10 cm | EBRT vs. no EBRT Median RT dose = 50 Gy | 1, 2 yr OS: EBRT = 50.1%, 11.8% No EBRT = 24.8%, 5.5% p = 0.005 | Grade 3: 7.9% |
SBRT | |||||
---|---|---|---|---|---|
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Kozak (2020) [97] | Retrospective Study 2003–2017 | ICC N = 25 PHCC N = 15 Median 71 y/o Adjuvant and definitive SBRT Tumor size 1–12.5 cm | SBRT Median RT dose = 40 Gy | Median OS ICC = 23 mo Median OS PHCC = 10 mo p = 0.018 1 + 2 yr cumulative RF incidence: ICC = 8% PHCC = 24% | Acute Grade 3–4: 42.5% Acute Grade 5: 2.5% Late Grade 3–4: 45% Late Grade 5: 0% |
Brunner (2019) [98] | Retrospective Study 07/1999–09/2016 | Total N = 64 Median 64 y/o Locally advanced ICC and ECC Tumor size 1–18 cm | SBRT Median BED = 62.7 Gy | Median OS = 15 mo 1, 2 yr OS: 61%, 34% | Grade 3 GI bleed: 4.7% Grade 4–5: 0% |
Gkika (2017) [99] | Retrospective Study 2007–2016 | ICC tumor N = 17 ECC tumor N = 26 Unresectable, positive margins after SR and recurrent disease Tumor size 2–18 cm | SBRT Median RT dose = 45 Gy | Median OS = 14 mo Median PFS = 9 mo | Grade 3 bleeding: 9% |
Shen (2017) [100] | Retrospective Study | N = 28 Unresectable ICC Included tumors > 10 cm | SBRT Median RT dose = 45 Gy | Median OS = 15 mo Median PFS = 11 mo | Grade 3: 53.6% Grade 4–5: 0% |
Sandler (2016) [95] | Retrospective Study 10/2008–6/2015 | ICC N = 6 ECC N = 25 Median 63 y/o Locally advanced disease Tumor size 1–7.3 cm | SBRT Median RT dose = 40 Gy | Median OS = 15.7 mo Median PFS = 16.8 mo | Grade 1–2: 77% Grade 3+: 16% |
Weiner (2016) [94] | Phase I/II Prospective Study 02/2012–05/2014 | HCC N = 12 ICC N = 12 Biphenotypic tumor N = 2 Median 72 y/o Unresectable disease Tumor size 1.6–12.3 cm | SBRT Median RT dose = 55 Gy | HCC median OS = 9.8 mo ICC/biphenotypic tumor median OS = 13.2 mo HCC median PFS = 5.3 mo ICC/biphenotypic tumor median PFS = 24.7 mo | Grade 4–5: 11% |
Mahadevan (2015) [91] | Retrospective Study 02/2006–02/2014 | ICC N = 31 Hilar CC = 11 Median 72 y/o Unresectable disease or positive margins after SR | SBRT Median RT dose = 30 Gy | Median OS = 17 mo Median PFS = 10 mo | Grade 3: 12% Grade 4–5: 0% |
Barney (2012) [92] | Retrospective Study 03/2009–07/2011 | ICC N = 6 ECC N = 4 Median 61.6 y/o Primary or recurrent disease | SBRT Median RT dose = 55 Gy | OS 6 mo, 1 yr: 83%, 73% Median PFS = 6.1 mo | Grade 3: 10% Grade 4–5: 10% |
Tse (2008) [96] | Phase I Clinical Trial 08/2003–03/2006 | ICC N = 10 HCC N = 31 Median 62 y/o Unresectable disease Tumor size 9–1913 mL | SBRT Median RT dose = 36 Gy | ICC median OS = 15 mo HCC median OS = 11.7 mo | Grade 3: 43.9% Grade 45: 0% |
Comparative Cohorts | |||||
Sebastian (2019) [101] | Retrospective Cohort Study NCDB 2004–2014 | SBRT N = 27 ChR N = 54 TARE N = 60 Unresectable ICC Tumor size 2.9–9.2 cm | SBRT vs. ChR vs. TARE Median RT dose SBRT = 45 Gy | OS with propensity weighting: SBRT > ChR (p < 0.0001) SBRT vs. TARE = NS (p = 0.019) |
HAI | |||||
---|---|---|---|---|---|
Author (Year) | Study Type and Time Period | Patient Population | Technique | Outcomes | Complications |
Single Cohorts | |||||
Huang (2022) [107] | Retrospective Study 12/2020–05/2021 | N = 9 Mean age 55.3 y/o ChT and immunotherapy refractory, unresectable ICC Tumor size 3.3–13 cm | HAI = FOLFIRI Mean # HAI cycles = 2.9 | 6 mo OS: 22.2% Median PFS = 5 mo | Grade 3–4: 22% |
Pietge (2021) [112] | Prospective Study 06/2012–01/2016 | N = 12 ICC, Hilar CC and gallbladder cancer Median age 63.5 y/o | HAI = FUDR + Systemic ChT = GC | Median OS = 23.9 mo Median PFS = 10.1 mo | Serious adverse event N = 16 |
Cercek (2020) [113] | Phase II Clinical Trial 05/2013–05/2019 | N = 38 Median age 64 y/o Unresectable ICCTumor size 1.7–24.8 cm | HAI = FUDR + Systemic ChT = GEMOX | Median OS = 25.0 mo Median PFS = 11.8 mo | Grade 4 requiring removal from study: 11% |
Kasai (2014) [118] | Retrospective Study 10/2008–07/2013 | N = 20 Mean age 62.45 y/o Advanced ICC Tumor size 5.8–19 cm | HAI = 5-fluorouracil + SubQ PEG-IFNα-2b | Median OS = 14.6 mo Median PFS = 8.0 mo | Grade 4: 0% |
Inaba (2011) [119] | Phase I/II Clinical Trial 05/2004–11/2006 | N = 25 Median 58 y/o Unresectable ICC | HAI = gemcitabine | Median OS = 340 days | Grade 4: 4% |
Kemeny (2011) [120] | Retrospective Study | ICC N = 18 HCC N = 4 Unresectable ICC or HCC Tumor size 1.1–16.4 cm | HAI = FUDR + dexamethasone + Systemic Bev | Median OS = 31.1 mo Median PFS = 8.45 mo | Grade 3–4 events N = 32 |
Jarnagin (2009) [121] | Phase II Clinical Trial 08/2003–03/2007 | ICC N = 26 HCC N = 8 Mean age 56.5 y/o Unresectable ICC or HCC Tumor size 2.7–18.1 cm | HAI = FUDR + dexamethasone | Median OS = 29.5 mo Median PFS = 7.4 mo | Grade 3–4: 14.7% |
Comparative Cohorts | |||||
Franssen (2022) [106] | Retrospective Cohort Study 01/2001–12/2018 | HAI N = 141 SR N = 178 Median age HAI 62 y/o Median age SR 60 y/o Multifocal ICC Median tumor size HAI, SR = 8.4 cm, 7.0 cm | HAI = FUDR vs. SR Median # HAI cycles = 8 | Median OS HAI = 20.3 mo Median OS SR = 18.9 mo (p = 0.32) | HAI Grade 3A+: 6.4% SR Grade 3A+: 25.3% (p = 0.04) |
Ishii (2022) [108] | Retrospective Cohort Study 04/2014–12/2020 | HAI N = 18 ChT N = 24 Mean age 64 y/o Advanced ICC Tumor size 1–12.1 cm | HAI = GEM-FP vs. Systemic ChT = GC | Median OS HAI = 19.7 mo Median OS ChT = 10.8 mo (p = 0.006) | HAI vs. ChT = ND except leukopenia > in ChT group |
Zhang (2022) [109] | Retrospective Cohort Study 01/2021–03/2022 | HAI N = 39 TACE N = 19 Unresectable ICC Included tumors >7 cm | HAI = GEMOX vs. TACE | Median PFS HAI = not reached by end of study Median PFS TACE = 11 mo | HAI vs. TACE = ND |
Cai (2021) [110] | Retrospective Cohort Study 03/2011–10/2019 | HAI N = 57 TACE N = 69 Unresectable ICC Included tumors >5 cm | HAI = mFOLFOX vs. TACE | Median OS HAI = 19.6 mo Median OS TACE = 10.8 mo Median PFS HAI vs. TACE = ND | Total HAI N = 26 Total TACE N = 9 |
Jolissaint (2021) [111] | Retrospective Cohort Study 2008–2018 | HAI N = 196 SR N = 237 ChT N = 140 ICC with LN metastasis Included tumors >10 cm | HAI = FUDR vs. SR vs. Systemic ChT | LN (-) median OS: SR = 59.9 mo, HAI = 24.9 mo, ChT = 13.7 mo (p < 0.001) LN (+) median OS: SR vs. HAI = ND | |
Higaki (2018) [114] | Retrospective Cohort Study 2007–2011 | HAI + ChT N = 12 Other N = 16 Unresectable ICC Median age HAI + ChT = 76 y/o Median age Other = 67 y/o Included tumors > 5 cm | HAI + Systemic ChT vs Other treatment (radiation, TACE or systemic ChT alone) | Median OS HAI + ChT = 10.1 mo Median OS Other = 4.0 mo | Grade 3–4: 4.54% |
Wright (2018) [115] | Retrospective Cohort Study 01/2004–06/2016 | IAT N = 59 SR N = 57 Mean age IAT 61.9 y/o Mean age SR 64.9 y/o Multifocal ICC Included tumors > 10 cm | IAT = HAI, TACE or TARE vs. SR | Median OS IAT = 16 mo (HA = 39 mo, TACE = 15 mo) Median OS SR = 20 mo | |
Konstantinidis (2016) [116] | Retrospective Cohort Study 01/2000–08/2012 | HAI + ChT N = 78 ChT alone N = 26 Median age 62 y/o Unresectable ICC Tumor size 1.5–16.4 cm | HAI = FUDR + Systemic ChT vs. Systemic ChT alone | Median OS HAI + ChT = 30.8 mo Median OS ChT alone = 18.4 mo | |
Konstantinidis (2014) [117] | Retrospective Cohort Study 08/2003–09/2009 | N = 44 Mean 59 y/o Unresectable ICC Mean tumor size = 9.3 cm | HAI = FUDR vs. FUDR + Bev | Median OS FUDR = 29.3 mo Median OS FUDR + Bev = 28.5 mo | Grade 3–4: 22.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Owen, M.; Makary, M.S.; Beal, E.W. Locoregional Therapy for Intrahepatic Cholangiocarcinoma. Cancers 2023, 15, 2384. https://doi.org/10.3390/cancers15082384
Owen M, Makary MS, Beal EW. Locoregional Therapy for Intrahepatic Cholangiocarcinoma. Cancers. 2023; 15(8):2384. https://doi.org/10.3390/cancers15082384
Chicago/Turabian StyleOwen, Mackenzie, Mina S. Makary, and Eliza W. Beal. 2023. "Locoregional Therapy for Intrahepatic Cholangiocarcinoma" Cancers 15, no. 8: 2384. https://doi.org/10.3390/cancers15082384
APA StyleOwen, M., Makary, M. S., & Beal, E. W. (2023). Locoregional Therapy for Intrahepatic Cholangiocarcinoma. Cancers, 15(8), 2384. https://doi.org/10.3390/cancers15082384